MSc/PhD course in CFD with OpenSource software, 7.5hec , 2013

Table of Contents

Basic information

Prerequisites and preparations


Schedule and Contents

Student reports/tutorials

Project suggestions


Useful links

More information

Master Thesis propositions


Basic information

The course homepage is . If you intend to make a link to something at the homepage, please add the year to the address, such as OS_CFD_2013. If you are not attending the course, but find the homepage useful, please write me a couple of words (to that help me argue that this way of working is acknowledged.

The course is open to master students at Chalmers, and PhD students enrolled anywhere.

Other interested should consider the industrial alternatives (OpenSource CFD for Industry – Basic Usage, and OpenSource CFD for Industry – High-level development, through Chalmers Professional Education - CPE), or contact me to be put in a mail list that is used for information regarding courses and conferences related to OpenSource CFD.

Some notes for master students at Chalmers: You will take this course under course code TME050, which means that you will be graded U/3/4/5. It also means that you can not use that course code for any other course, or if you have already used that course code you can not take this course. Talk to the student administration to make sure that you can take the course and that you can count it in your programme. Please see the formal syllabus of TME050.

If you are interested in taking the course you should contact me at so that I can maintain an e-mail list that will be used for further information until the course starts. Getting closer to the start of the course I will ask for a verification (registration) that you will take the course for sure.

Prerequisites and preparations

·        Time: You should make sure that you have time to take the course. It is very intense the first three weeks, with two full hands-on lecturing days per week, and assignments for the next week. You are expected to dedicate at least 25h per week to the course the first three weeks. After that you have a certain number of weeks to do a complete project, and then you should review the work by another student. You should spend at least 175h in total. Don’t underestimate the work required!

·        Fluid Dynamics and CFD: You should have a background in Fluid Dynamics, and ideally some CFD experience and/or a course in CFD.

·        Project: You should be able to identify a suitable project that fulfils the requirements of this course, and that you are able to complete in the available time. It is beneficial if it is related to a project you are anyway doing, or planning to do (PhD project/Master project etc.), since it will be more useful to you and you will put more effort into it. We will of course discuss the project before you start doing it.

·        Linux: The course requires you to have a basic knowledge in Linux. In order to be able to follow the lectures, you should make sure that you understand and can use the basic Linux commands presented at the link below. You need to have that knowledge in order to follow already the first lecture.

·        Software: It is HIGHLY recommended that you make sure that you can run Linux and OpenFOAM from your own laptop. See instructions at the link below. We should have access to a computer lab with OpenFOAM installed, during the lectures and presentations, and you can try to find a seat there whenever it is not booked (or work from your FoDat computer if you have access to that, or remotely on one of our servers). On the other hand, you will gain more knowledge and freedom if you learn to install Linux and OpenFOAM yourself. We will not go through the installation procedures during the course, so you must do it before arriving.


Install Ubuntu 12.04 LTS, OpenFOAM-2.2.x, OpenFOAM-1.6-ext etc. on your own laptop

How to run OpenFOAM at Chalmers, physically or remotely

How to run OpenFOAM from a USB iso

Miscellaneous tips and tricks (advanced raw information, mainly for myself)

Basic Linux commands


The course gives an introduction to the use of OpenSource software for CFD applications. It has a strong focus on how to efficiently use the Linux operating system and different softwares that are useful for CFD (to the largest extent OpenFOAM, see the short description below), rather than having a focus on teaching the basics of CFD or fluid dynamics. A major project work in OpenFOAM forms a large part of the course. The project may be defined according to the student's special interests. The result of the project should be a detailed tutorial for a specific application or library of OpenFOAM. The tutorials will be peer-reviewed by the students, and the tutorials thus form a part of the course. The tutorials will be made available, as a contribution to the OpenFOAM community. To pass the course the student must do the project and peer-review a tutorial from another project. There will also be some compulsory minor tasks.

The students will learn on the following subjects:

Other software that may be of interest, but are not covered: salome, freecad, blender, engrid, gmsh, cubit, visit, Dakota

OpenFOAM (Open Field Operation and Manipulation, is developed and distributed by OpenCFD Ltd at ESI Group and distributed by the OpenFOAM Foundation. OpenFOAM is an object oriented C++ toolbox for solving various systems of partial differential equations using the finite volume method on arbitrary control volume shapes and configurations. It includes preprocessing (grid generator, converters, manipulators, case setup), postprocessing (using OpenSource Paraview), and many specialized CFD solvers are implemented. The features in OpenFOAM are comparable to what is available in the major commercial CFD codes. Some of the more specialized features that are included in OpenFOAM are: sliding grid, moving meshes, two-phase flow (Langrange, VOF, Euler-Euler) and fluid-structure interaction. The strength of OpenFOAM is however the object-oriented approach to generating specialized solvers, utilities and libraries, using a flexible set of C++ modules. OpenFOAM runs in parallel using automatic/manual domain decomposition, and the parallelism is integrated at a low level so that solvers can generally be developed without the need for any parallel-specific coding. Due to the distribution as an OpenSource code it is possible to gain control over the exact implementations of different features, which is essential in research work. It also makes development and tailoring of the code for the specific application possible. In addition to the source code, OpenFOAM gives access to an international community of OpenFOAM researchers through the discussion board at the OpenFOAM home page. Community contributions are available through the OpenFOAM-Extend project at SourceForge (also at

This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks. Following the trademark policy.

Schedule and Contents

§  Syllabus

§  Access to computers and OpenFOAM

§  OpenFOAM applications and case set-up

§  ParaFoam tutorial

§  Find solver and utility tutorials in the source code, and learn how to use them

§  Some utility and functionObject tutorials

§  Start to work on assignment, with supervision (see below)

§  Compulsory assignment to be handed in by September 8
Make a pdf document of the questions in the link above (including question numbers) and answers for each question, and submit it through PingPong:

§  Source code and binary file directory organization

§  Application source code organization (not handed out)

§  Basic compilation procedure (not handed out)

§  High-level programming in OpenFOAM

§  Implement three applications
The rodFoam case

§  Basics of C++, and how it is used in OpenFOAM

§  Object orientation in C++ and OpenFOAM

§  … Continued … Object orientation in C++ and OpenFOAM

§  A look inside icoFoam

§  Implement a turbulence model
Code for kOmegaSSTF
Optional: Link to Pirooz’ licentiate thesis, and a description of turbulence models in OpenFOAM
Optional: Link to Martin’s master thesis, and a description of DES models in OpenFOAM

§  Implement a boundary condition

§  A look at oscillatingFixedValue, to prepare for homework (see code)

§  Start to work on assignment, with supervision (see below)

o    Homework

§  Compulsory assignment to be handed in by September 15
Put all requested files in a directory (e.g. assignment2_NN, where NN is your initials), and pack it with:

tar czf assignment2_NN.tgz assignment2_NN
Then submit it through PingPong:

§  Sparse guidelines for rampedFixedValue

§  SnappyHexMesh, m4 and Python scripting (files), by Olivier Petit (9:15-12:00)
Another slideshow

§  Advanced usage: Turbomachinery (incompressible flow in rotating machines) turboPassageRotating2D

§  Coupled solvers etc., Code Case, by Klas Jareteg (8:00-12:00)

§  Debugging in three ways

§  Setting up a case from scratch with pyFoam (set-up-file)

§  Start to work on project

§  Compulsory project work to be handed in by December 9, at 13:00!
Hand in intermediate draft, including project description, October 27, through PingPong!!!

§  Example of project description

§  LaTeX report template (originated from Per Carlsson, 2008.
Compile the tex file with latex or pdflatex. NOTE: output directly to pdf!)
Use the template provided at
the CoCoons project (but add the statements that the work is part of this course)

§  Report front page

§  LaTeX/Beamer slide template tar-file
Note that it is not required to use LaTeX/Beamer, but it is a nice experience.
The template should at least work in the Chalmers system.

§  Adam Jareteg: Coupling of Dakota and OpenFOAM for automatic parameterized optimization. Slides Report Files

§  Himanshu Kapoor: Description of the implementation of the different versions of the GGI interface. Slides Report Files

§  Alessandro Nocente: Implementing dropletFoam solver for liquid droplet collision. Slides Report Files

§  Tim Lackmann: A detailed description of sprayFoam, and implementation of a new top-level solver. Slides Report Files

The updated files will be distributed at the course homepage.
Example of a good peer-review
Example of a good response to a peer-review

Student reports/tutorials

Here the final, peer-reviewed, student reports/tutorials are listed.

·        Abolfazl Asnagi: interPhaseChangeFoam tutorial and PANS turbulence model. Slides Report Files Movie

·        Alejandro Lopez: LPT for erosion modeling in OpenFOAM. Differences between solidParticle and kinematicParticle, and how to add erosion modeling. Slides Report Files

·        Daniel Lindblad: Implementation and run-time mesh refinement for the kOmegaSSTDES turbulence model when applied to airfoils. Slides Report Files

·        Ulf Nilsson: Descriptions of adjointShapeOptimizationFoam and how to implement new objective functions. Slides Report Files

·        Pedram Ramin: interSettlingFoam. Slides Report Files

·        Ali Al Sam: A wave motion class. Slides Report Files

·        Salman Arshad: Descriptions and comparisons of sprayFoam, reactingParcelFoam, and basicSprayCloud, basicReactingCloud. Slides Report Files

·        Emil Ljungskog: Description of ReactingParcelFilmFoam. Slides Report Files Movies

·        Reza Gooya: Descriptions of porousSimpleFoam and adding the Brinkmann model to the porous models. Slides Report Files

·        Boxiong Chen: Eulerian-Lagrangian modeling of cavitation. Slides Report Case Code

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some other OpenSource software are introduced to the students. Any reader should be aware that it might not be free of errors. Still, it might be useful for someone who would like learn some details similar to the ones presented in the report and in the accompanying files. The material has gone through a review process. The role of the reviewer is to go through the tutorial and make sure that it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no responsibility for the contents.

Project suggestions

Project suggestions may be listed here (or see the previous courses), but you are encouraged to work in your own PhD/Master project, with a twist to make it appropriate in the current course. For inspiration, also see if there are master thesis suggestions below, where a part can be done as the project in this course. People visiting this web page may send suggestions to me at

·        Improve the functionality for projecting blockMesh patches to stl surfaces, based on the work by Kalle Nogenmyr. It is currently (2013-12-17) using an external multigrid solver, amgpp, which is very slow except for very small cases. Further, it gives an FPE, so the OpenFOAM FPE check must be disabled. An alternative would be to use the OpenFOAM GAMG solver instead. Files are located here:, and descriptions are located here: I think that Kalle would be happy to supervise a bit. Requires a skilled student.

·        Continue the work on coupled solvers, by Klas Jareteg 2012, having Klas as contact person. Requires a skilled student.


There is no requirement to buy any book. You have to find the information you need to solve your project and the tasks.

The C++ part of the course is based on “C++ Direkt”, by Jan Skansholm, Studentlitteratur, which is in Swedish. Any introductory C++ book should be fine. Anyone who is doing CFD is recommended to have “An Introduction to Computational Fluid Dynamics: The Finite Volume Method by Versteeg and Malalasekera. Another useful book is “Computational Methods for Fluid Dynamics” by J.H. Ferziger and M. Peric. Some useful references:

1.      C++ how to Program by Paul and Harvey Deitel, Current version is 9 but older versions will also work fine.

2.      Object Oriented Programming in C++ by Robert Lafore , 4th Edition

3.      C++ from the Beginning by Jan Skansholm (should be a very good book for a complete basic programming newbie.)

4.      Free on-line book on C-programming in Linux (I haven't checked it)

5.      C++ tutorial

6.      Free on-line text book in CFD (I haven't checked it)                  Accompanying exercise book

Useful links

1.      The CoCoons project (community-driven documentation of OpenFOAM)

2.      OpenFOAM Workshops (mirror)

3.      Documents related to OpenFOAM, collected by Professor Hrvoje Jasak.

4.      Some small mesh generation tools

5.      Mesher for complex terrains

6.      Another similar course 2012 2013

7.      Git reference


9.      An open code for blade geometry generation:

More information

See the homepages of the course given 2007, 2008, 2009, 2010, 2011 and  2012 for more information. The course for 2013 will develop from the one given in 2012. You can also contact me at

Master Thesis propositions

Cavitation modeling for Fluid Power, at Institut für fluidtechnische Antriebe und Steureungen, RWTH Aachen University

Tank design using multiphase flow simulations, at Institut für fluidtechnische Antriebe und Steureungen, RWTH Aachen University

Hydraulic structures in industrial plants, DHI, Denmark


For those of you travelling to Chalmers, here are some suggested hotels:
SGS Veckobostäder - This is a student-apartment-like alternative (~10min walking)

Quality Hotel Panorama – This is located closest to Chalmers (~5min walking). Ask for special price since you are visiting Chalmers.

Jonsereds Herrgård Apply for free accomodation during 1-3 months, for scientists and PhD students.


List of hotels close to Chalmers (ask for special price, for those in 1-3, since you are visiting Chalmers):

1.Normal standard:
City Hotel
Hotel Royal
Hotel Vasa AB
Hotel Flora AB
2. High standard:
Quality Hotel Panorama
Hotel Opalen
Hotell Liseberg Heden
Hotel Novotel
Grand Hotel Opera AB
Hotel Riverton AB
3. Very high standard:
Hotel Avalon
Elite Plaza Hotel
Cheap alternatives:
Youth Hostel Stigbergsliden
Hotel Nice B&B
5. Other:
Info from go:teborg&company
More hotels


Flag Counter