Cite as: Liu, S.N.: Implementation of a Complete Wall Function for the Standard k& — ¢ Turbulence Model
in OpenFOAM 4.0. In Proceedings of CFD with OpenSource Software, 2016,
Edited by Nilsson. H., http://wuw.tfd.chalmers.se/ hani/kurser/0S_CFD_2016

CFD wiTH OPENSOURCE SOFTWARE

A COURSE AT CHALMERS UNIVERSITY OF TECHNOLOGY
TAUGHT BY HAKAN NILSSON

Implementation of a Complete Wall
Function for the Standard k — ¢ Turbulence

Model in OpenFOAM 4.0

Developed for OpenFOAM-4.0

Author:

Shengnan Liu
University of Stavanger
shengnan.liu@uis.no

Peer reviewed by:
MOHAMMAD ARABNEJAD
HAKAN NILSSON

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone
through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no
responsibility for the contents.

February 16, 2017

Contents

1 Introduction 3

2 Near-wall Physics 4
21 Overviewon k—emodel 4
2.2 Wall Functions 4

3 Wall Functions Implementation for Standard k¥ — ¢ Turbulence Model in Open-

FOAM 4.0 7
3.1 k — € turbulence model code in OpenFOAM 4.0 7
3.2 Summary of available wall functions of k — e turbulence model in OpenFOAM 4.0 . 10
3.2.1 k wall functions in OpenFOAM 4.0 10
3.2.2 e wall functions in OpenFOAM 4.0 13
3.2.3 wvp wall functions in OpenFOAM 4.0 20
4 New Wall Function Implementation for Standard k£ —e Turbulence Model in Open-

FOAM 4.0 22
4.1 TImplementation of new wall function in OpenFOAM 4.0 22
4.2 Modifications to existing wall functions 000 23
4.2.1 Modification to kOngWallFunction 24
4.2.2 Modification to epsilonOngWallFunction 29
4.2.3 Modification to nutOngWallFunction 30
4.2.4 Compile Ong wall functions in OpenFOAM 4.0 31

5 Test Cases 33
5.1 Test case 1 o L L e e 33
5.1.1 Caseset up oo 33

5.1.2 Post-processig in paraFoam Lo Lo oo 34

5.2 Test Case 2 o L e 35
521 Caseset UP oo i e 35

5.2.2 Results e 36

Learning outcomes

The reader will learn:

e how to build a new wall function.

the theory of wall function.

how to add new member functions.

how to realize Newton interation.

how to create nonuniform inlet input profile.

how to test new wall function and post-processing.

Chapter 1

Introduction

Most turbulent flows are bounded by one or more solid surfaces, such as channel flow, pipe flow and
flow around offshore foundations or ships. In turbulent flow, the presence of a wall causes a number
of different effects, some of which are shown as follows:

e Low Reynolds number - the turbulence Reynolds number Rel = k?/(ev) decreases as the wall
is approached. Here k is the turbulent kinetic energy, € is the turbulence dissipation rate and
v is the kinematic velocity.

e High shear rate - the highest mean shear rate 0 < U >/9y (< U > is the mean shear velocity,
y is the distance in normal direction) occurs at the wall. The velocity changes from the no-slip
condition at the wall to its stream value.

e Wall blocking - through the pressure field, the impermeability condition the v=0 (at y=0)
affects the flow up to an integral scale from the wall.

The present work is based on the k — € turbulent model. The form of the basic k — € and shear
stress models have not changed since 1970s (pioneered by Jones and Launder, 1972; Launder and
Sharma, 1974). However, researchers still have different ideas about the near wall treatment until
present (Kalitzin et al., 2005; Ong et al., 2009; Parente et al., 2011 and Balogh et al., 2012). In
the late 1980s (pioneered by Rogallo, 1981), detailed direct numerical simulation (DNS) data for
viscous near-wall region started to be available, which the current wall function mainly based on. If
DNS is used to simulate the near-wall region, very fine mesh close to the wall is required to resolve
the flow field for the direct integration, especially at high Reynolds number flow condition. The
smallest turbulence scales decrease with the increase of Reynolds numbers, moreover the boundary
layer will be thin and there will be high mean velocity gradient on the wall, so a large number of
grids are needed to capture near-wall pressure and velocity gradients. The idea of the wall function
approach is to use appropriate wall boundary conditions at some distance away from the wall, so
that fine grids are not required to resolve the near-wall flow condition. In this way, it will reduce
the computational cost significantly.

Chapter 2

Near-wall Physics

2.1 Overview on k — ¢ model

The k — € turbulence model belongs to the two-equation models, in which model transport equations
are solved for two turbulence quantities (Launder and Spalding, 1972; Rodi, 1993), see equations
2.1 and 2.2.

ok ok 0 vr ok 8’LLZ 8uj 8Ui

Oe de 0 ,vr Oe € Ou; Ouj, Ouy €2
ot uj%j - 8xj(06 aatj) + Clk‘VT(&vj + axi)&vj Cs k (2:2)

The main components of k& — € model are concluded as follow.

e The first is the transport equation for turbulent kinetic energy k, which determines the energy
in the turbulence.

e The second is the transport equation for turbulent dissipation €, which determines the rate of
dissipation of the turbulent kinetic energy.

e The turbulent viscosity is specified as vy = Cﬂkz/e and C; = 1.44, C, = 1.92, C,, = 0.09,
o =1.0,0.=1.3.

2.2 Wall Functions

Typical boundary layer flow over a flat plate includes three regions: linear viscous sub-layer, buffer
layer and log-law layer (also called inertial sub-layer) (Tennekes and Lumley, 1972). Viscous effect
dominates in the viscous sub-layer. For the log-law layer, the viscous effect is small, and it is
dominated by turbulence. For the buffer layer, both viscous and turbulent effects are important.
figure 2.1 shows the relation between y* and u™, where y™ = (u*y)/v, v is the normal distance from
the wall. u* = (7,,/p)"/? is the friction velocity, where 7,, is the wall shear stress and p is the density
of water, and v is the kinematic viscosity of the fluid, u* = u/u*, u is the tangential velocity of the
fluid.

2.2. WALL FUNCTIONS

|
defect layer,
30
viscous layer buffer layer| log-law layer
- -
I
20 |
|
u+ /
I -
~1
10 /
u+=y+ / u+ = 1/k In(y+) +B
| | | | |
0.1 1 2 10 30 100 1000 10000
y+

Figure 2.1: Wall function of different layers.

e Viscous sub-layer

The fluid very close to the wall is dominated by viscous shear in absence of the turbulent
shear stress effects for y* < 5. It can be assumed that the shear stress is almost equal to the
wall shear stress 7,, throughout the viscous layer.

ou

The expression shows the velocity gradient on the wall, where u is the tangential veloc-
ity. In this region vt = y*, but the standard specification vp = Cqu /€ yields too large
for turbulent viscosity in the near wall region. Jones and Launder (1972) include vari-
ous damping functions to allow the model to be used within the viscous near wall region,
vr = f,C,k*/e. Rodi and Mansour (1993) suggested one relation according to the DNS data:
fu = 1—exp(—0.0002y™ —0.00065y72) , which is used in the present study. Applying boundary
conditions and manipulations, we obtain the following equation set to be used in the viscous

near wall region:

o Buffer layer (mixed layer)

yt=uty/v
T =u/u*
ut =yt

k=u*?/\/C,
€= 03/4/4:3/2/&3;
vy = fMCHkQ/G

Outside the viscous sub-layer (5 < y* < 30) buffer layer region exists. The largest varia-
tion occurs from either law occurring approximately where the two equations intercept, at

2.2. WALL FUNCTIONS

yt = 11. That is, before 11 wall units the linear approximation is more accurate and after
11 wall units the logarithmic approximation should be used. Considering both the linear and
logarithmic approximation by a weighted average (linear interpolation), u* can be obtained

as follows (Ong et al., 2009).
1

KW 1—w
(mtemy) + (55
where the weighting factor w = (y* —5)/25, F = 9.8, von Karman constant £ = 0.41. Simi-
larly, we can obtain the following equation set to be used in the near wall region:

U+:

(2.5)

yt=uty/v
ut = u/u*
1
ut = —
(mEy) + (55) (2.6)

k=u*/\/C,
6202/4]63/2//43:[/
vr = f.Cuk? /e

e Log-law layer

At some distance from the wall and outside the buffer layer (30 < y™ < 100) a region exists
where turbulent effects are important. Within this inner region the shear stress is assumed to
be constant and equal to wall shear stress and varying gradually with distance from the wall.
The relationship between y* and u™ in the log-law region is given as:

ut = %ln(Ey"‘) (2.7)

where E=9.8. As the relationship between y™ and u* is logarithmic, the above expression is
known as log-law and the layer where y* takes the values between 30 and 100 is known as
log-law layer. We can obtain the following equation set to be used in the near wall region:

yt=u'y/v
ut = u/u*
ut = lln(Eer)

K
k=u*?/\/C,
€= 03/4163/2//@1;

vr = f.C.k*/e

e Defect layer

In an defect layer (overlap region, y*™ >= 100) with approximately constant shear stress
and far enough from the wall for (direct) viscous effects to be negligible.

Due to different wall functions in different regions, the height of the first layer must be ac-
curately calculated, so that the first node results will be obtained from the right functions.
However, in OpenFOAM, the wall function for k£ — ¢ model are not defined strictly according
to the method stated above, which are only available for one region (log-law region) or at
most two regions (viscous region and log-law region), as the green dash line in Figure 2.1. The
objective of this project is to modify the wall functions for the & — € model in OpenFOAM in
order to cover all the regions in boundary layer .

Chapter 3

Wall Functions Implementation for
Standard £ — ¢ Turbulence Model
in OpenFOAM 4.0

3.1 k — e turbulence model code in OpenFOAM 4.0

The code of k—e turbulence model can be found in http : //cpp.open foam.org/v4d/al0852_source.html
or in folder $FOAM_SRC/ TurbulenceModels/ turbulenceModels/ RAS/ kEpsilon/ kEpsilon.C can
be checked by command:OF4x && vi SFOAM_SRC/TurbulenceModels/turbulenceM odels/RAS /KEp-
silon/kEpsilon.C. kEpsilon < BasicTurbulenceModel > calls three functions, i.e. GeometricField,
eddyViscosity and dimensioned. The collabration diagram for kEpsilon < BasicTurbulenceModel >
is shown as figure 3.1 for settings.

k_
GeometricField« scalar, - — — — — — - __epsilen
fwPatchField, velMesh T T T T == _
’ ” - n_ut_ _ - kEpsilon< BasicTurbulence
eddyViscosity< RASModel Model >
< BasicTurbulenceModel > > Cmu_
sigmak_ d
Cc3_ L7
sigmakps_ ’
c2_ -

-
-

-
- - C1_ -
dimensioned< scalar >]

Figure 3.1: Collabration diagram for kEpsilon

The main code of kEpsilon < BasicT'urbulenceModel > is shown as follows.

39 template<class BasicTurbulenceModel>

40 void kEpsilon<BasicTurbulenceModel >::correctNut ()
41 {

42 this—>nut_. = Cmuxsqr(k_)/epsilon_;

43 this—>nut_.correctBoundaryConditions ();

44 fv::options::New(this—>mesh_).correct (this—>nut_);
45

46 BasicTurbulenceModel :: correctNut ();

47 }

48

49

3.1. K —¢e¢ TURBULENCE MODEL CODE IN OPENFOAM 4.0

50 template<class BasicTurbulenceModel>
51 tmp<fvScalarMatrix> kEpsilon<BasicTurbulenceModel >::kSource () consf

52 {

53 return tmp<fvScalarMatrix>
54 (

55 mnew fvScalarMatrix

56 (

57 k_,

58 dimVolumex*this —>rho_.dimensions ()*k_.dimensions ()
59 /dimTime

60)
61);
62
63
64

65 template<class BasicTurbulenceModel>
66 tmp<fvScalarMatrix> kEpsilon<BasicTurbulenceModel>
::epsilonSource () const

67 {

68 return tmp<fvScalarMatrix>
69

70 new fvScalarMatrix

71 (

72 epsilon_,
73 dimVolumexthis —>rho_.dimensions ()*epsilon_.dimensions ()
74 /dimTime

75
76);
77)

Firstly, kSource() is defined to obtain the value of k, and epsilonSource() is defined to obtain the
value of epsilon, correct Nut() is used to correct vr in the whole field. Then the function correct() is
defined which is also the main function of kEpsilon.C (shown below). The main calculation process
stated in the code will be explained.

void kEpsilon<BasicTurbulenceModel >::correct ()

222 {

223 if (!this—>turbulence_)
224 |

225 return;

226 }

227

228

229 const alphaField& alpha = this—>alpha_;

230 const rhoField& rho = this—>rho_;

231 const surfaceScalarField& alphaRhoPhi = this—>alphaRhoPhi_;
232 const volVectorField& U = this—>U_;

233 volScalarField& nut = this—>nut_;

234 fv::options& fvOptions(fv::options::New(this—>mesh_));
235

236 eddyViscosity <RASModel<BasicTurbulenceModel >>::correct ();
237

238 volScalarField :: Internal divU

239 (

3.1.

K — ¢ TURBULENCE MODEL CODE IN OPENFOAM 4.0

240 fvc::div(fve::absolute (this—>phi(), U))().v()
241);

242

243 tmp<volTensorField> tgradU = fvc::grad(U);
244 volScalarField :: Internal G

245

246 this—>GName() ,

247 nut.v()x*(dev(twoSymm (tgradU ().v())) && tgradU().v())
248 ;

249 tgradU. clear ();

250

251

252 epsilon..boundaryFieldRef (). updateCoeffs ();
253

254

255 tmp<fvScalarMatrix> epsEqn

256 |

257 fvm::ddt(alpha, rho, epsilon_)

258 + fvm::div(alphaRhoPhi, epsilon_)

259 — fvm::laplacian (alpha*rhoxDepsilonEff (), epsilon_)
260 =

261 Cl_xalpha()*rho()*Gxepsilon_()/k_()

262 — fvm::SuSp(((2.0/3.0)«C1l. + C3_)«alpha()*rho()*divU, epsilon.)

263 — fvm::Sp(C2_xalpha()*rho()*epsilon_()/k_(), epsilon_)
264 + epsilonSource ()

265 + fvOptions(alpha, rho, epsilon_)

266);

267

268 epsEqn.ref (). relax ();

269 fvOptions.constrain (epsEqn.ref ());

270 epsEqn.ref ().boundaryManipulate(epsilon_.boundaryFieldRef ());
271 solve(epsEqn);

272 fvOptions.correct (epsilon_);

273 bound(epsilon_, this—>epsilonMin_);

274

275

276 tmp<fvScalarMatrix> kEqn
277 |

278 fvm::ddt(alpha, rho, k_)

279 4+ fvm::div(alphaRhoPhi, k_)

280 — fvm::laplacian (alphasxrhoxDKEff(), k_)

281 =

282 alpha()*rho ()G

283 — fvm::SuSp((2.0/3.0)«alpha()*rho()*divU, k_)
284 — fvm::Sp(alpha()*rho()*epsilon_()/k-(), k-)
285 + kSource ()

286 + fvOptions(alpha, rho, k_)

287);

288

289 kEqn.ref ().relax ();

290 fvOptions.constrain (kEqn.ref ());

291 solve (kEqn);

292 fvOptions.correct (k_);

293 bound(k-, this—>kMin_);

3.2. SUMMARY OF AVAILABLE WALL FUNCTIONS OF K — e TURBULENCE MODEL IN
OPENFOAM 4.0 .

294
295 correctNut ();
296 1

From the code above, the turbulence calculation can be concluded as following:

e Calculate turbulent kinetic energy production term G and correct the value of G at first layer
mesh close to the wall by ’epsilon_.boundaryFieldRef().updateCoef fs()’. The correction on
e and G is achieved by updateCoeffs() function of e.

e After updating G, the € equation is built by this new G. Then the e equation is revised by
‘epsEqn.ref().boundaryM anipulate(epsilon_.boundaryFieldRef());

e Solve € equation and obtain the updated e field.
e Solve k equation using the new e, and k field including the k& on the wall is renewed.

e Calculate vr, and update the v at wall by correctNut();

3.2 Summary of available wall functions of k£ — ¢ turbulence
model in OpenFOAM 4.0

The key parameters of k — € wall function include k, €, vr. The available wall functions of k, €, v
of OpenFOAM 4.0 are concluded here. In addition the wall functions used for further modification
are explained in detail.

3.2.1 k wall functions in OpenFOAM 4.0

In OpenFOAM 4.0, there are two available wall functions for k, i.e., kqRWallFunction and kLowRe-
WallFunction. Normally, kgRWallFunction is used for high Reynolds numbers and kLowReWall-
Function can be used for both low Reynolds numbers and high Reynolds numbers. See Table 3.1.

Type name kqRWallFunction kLowReWallFunction

é‘i\;z}cl?:;fi:rsz(éﬁeposi tion) Log-law region Viscous and log-law region

Class Foam::kqRWallFunction- Foam::kLowReWallFunction-
FvPatchField FvPatchField

Inherit from Foam::zeroGradientFvPatchField | Foam::fixedValueFvPatchField

Other references zeroGradient fixedValue

Table 3.1: Available k wall functions in OpenFoam 4.0

kqRWallFunction is a simple wrapper around the zero-gradient condition. It provides a suitable
condition for turbulence k, ¢ and R fields for the case of high Reynolds number flow. kLowRe-
WallFunction provides a turbulence kinetic energy wall function condition for both low- and high-
Reynolds number turbulent flow cases. The model operates in two modes, based on the computed
laminar-to-turbulent switch-over y* value derived from kappa and E.
k wall function is modified based on kLowReWallFunction, therefore, kLowReWallFunctionFvPatch-
ScalarField.C is explained here.

10

3.2. SUMMARY OF AVAILABLE WALL FUNCTIONS OF K — e TURBULENCE MODEL IN
OPENFOAM 4.0 .

First, the function yPlusLam is used to calculate the switching point of y*, and the return value
will be stored at yPlusLam_.

scalar kLowReWallFunctionFvPatchScalarField :: yPlusLam
57 (

58 const scalar kappa,

59 const scalar E

60)

61 {

62 scalar ypl = 11.0;

63

64 for (int 1=0; i<10; i++)
65 {

66 ypl = log(max(Exypl, 1))/kappa;
67 }

68

69 return ypl;

70 }

71

According to the code above, y* at switching point is calculated by 10-step iteration. The itera-
tion formula used here is y* = log(maz(E * y*,1))/k; because in viscous sublayer u* = y™, and
ut = 1/kin(Ey™) in log-law layer. Through the iteration, the switching point of y™ between viscous
sublayer and log-law layer can be obtained and will also be used for the mode change for k, € and
nut. The initial value of yT is set to 11, because theoretically the switch point will be around 11.
After the iteration, the value is around 11.53. And this value will be stored in yPlusLam_.

The value of k is set by the following function "updateCoef fs()’.

void kLowReWallFunctionFvPatchScalarField :: updateCoeffs ()

165 {
166 if (updated())
167 {
168 return ;
169 }
170
171 const label patchi = patch().index ();
172
173 const turbulenceModel& turbModel
= db().lookupObject<turbulenceModel>
174 (
175 IOobject :: groupName
176 (
177 turbulenceModel :: propertiesName ,
178 internalField (). group ()
179)
180);
181 const scalarField& y = turbModel.y ()[patchi];
182
183 const tmp<volScalarField> tk = turbModel .k ();
184 const volScalarField& k = tk();
185

11

3.2. SUMMARY OF AVAILABLE WALL FUNCTIONS OF K — e TURBULENCE MODEL IN
OPENFOAM 4.0 .

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218

219
220
221
222
223

224 }

const tmp<scalarField> tnuw = turbModel.nu(patchi);
const scalarField& nuw = tnuw ();

const scalar Cmu25 = pow025(Cmu.);

scalarField& kw = xthis;

forAll (kw, facei)
label faceCelli = patch (). faceCells ()[facei];
scalar uTau = Cmu25xsqrt (k[faceCelli]);
scalar yPlus = uTauxy[facei]/nuw|facei];

if (yPlus > yPlusLam_)

{

scalar Ck = —0.416;

scalar Bk = 8.366;

kw[facei] = Ck/kappa_xlog(yPlus) + Bk;
else
{

scalar C = 11.0;

scalar Cf = (1.0/sqr(yPlus + C)

+ 2.0%yPlus/pow3(C) — 1.0/sqr(C));

kw[facei] = 2400.0/sqr (Ceps2_)*Cf;
}

kw[facei] %= sqr(uTau);

model due to division by kw
kw = max(kw, SMALL);

fixedValueFvPatchField<scalar >::updateCoeffs ();

more than one boundary face

This function shows how the k value at the current wall calculated. This refers to Kalitzin et al.
(2005) and is designed for v? — f model. At first friction velocity u* is calculated by k. (subscript c
means the value of the cell close to the wall) and y* is calculated based on this u* with the following

expression.

(3.1)

fr-cink

y' =ty v

Then k,, (value at the wall) is calculated through:

12

3.2. SUMMARY OF AVAILABLE WALL FUNCTIONS OF K — e TURBULENCE MODEL IN
OPENFOAM 4.0 .

L ((Ck/KIn(y™) + By) * \/Cy * ke, y© > yPlusLam (32)
v 2400 x* C’Jc/C’zps2 x/C,, * ke, yt < yPlusLam '
where C; = (1.0/(y* + C)?> + 2.0 xy+/C? — 1.0/C?); C = 11.0; C,,=0.09, k- = 0.41, E_ = 9.8,
Ceps2 = 1.9, C, = —0.416; By, = 8.366.

3.2.2 ¢ wall functions in OpenFOAM 4.0

Correspondingly, there are two available wall functions for € in OpenFOAM 4.0, i.e., epsilonWall-
Function and epsilonLowReWallFunction. Normally, epsilonWallFunction is used for high Reynolds
numbers and epsilonLowReWallFunction can be used for both low Reynolds numbers and high
Reynolds numbers (see Table 3.2). epsilonWallFunction provides a turbulence dissipation wall func-

Type name epsilonWallFunction epsilonLowReWallFunction
Available scope
(first layer cell position)

Log-law region Viscous and log-law region

Foam::epsilonWallFunction- | Foam::epsilonLowReWall-

Class FvPatchField FunctionFvPatchField
3/4,3/2 1 EN (C2/4k§/2)
Formula €. = L ZN ,(Cﬁ ke) €c = N 2uf=i Ky
¢ N = KYi N cv
f=i y eczﬁzf:i(zzg)
Inherit from Foam::fixedInternal Value- Foam::epsilonWallFunction-
FvPatchField FvPatchScalarField

Table 3.2: Available k wall functions in OpenFoam 4.0

tion condition for high Reynolds number turbulent flow cases. This wall function calculates € and
G (produnction term), and inserts near wall epsilon values directly into the epsilon equation to act
as a constraint. epsilonLowReWallFunction can be used for both low- and high-Reynolds number
turbulent flow cases. The model operates in two modes, based on the computed laminar-to-turbulent
switch-over y+ value derived from kappa and E, which is the same with the calculation in kLowRe-
WallFunction. epsilonWallFunctionFvPatchScalarField.C is explained here.

The main external function of epsilonW all FunctionFvPatchScalar Field.C' is updateW eighted —
Coeffs(), first it checks whether the epsilon value at the wall is updated, if not, it calls the
setMaster() function to set the master patch, then update the values of epsilon on master patches
(wall patches). The code of updateWeightedCoef fs() is shown below.

void Foam::epsilonWallFunctionFvPatchScalarField :: updateWeightedCoeffs

449 (

450 const scalarField& weights

451)

452 {

453 if (updated())

454

455 return ;

456 }

457

458 const turbulenceModel& turbModel
= db().lookupObject<turbulenceModel>

459 (

13

3.2. SUMMARY OF AVAILABLE WALL FUNCTIONS OF K — e TURBULENCE MODEL IN
OPENFOAM 4.0 .

460 IOobject :: groupName

461 (

462 turbulenceModel :: propertiesName ,

463 internalField (). group ()

464)

465);

466

467 setMaster ();

468

469 if (patch().index () = master_)

470

471 createAveragingWeights ();

472 calculateTurbulenceFields (turbModel, G(true)
, epsilon(true));

473 }

474

475 const scalarField& GO = this—>G();

476 const scalarField& epsilon0 = this—>epsilon ();

477

478 typedef DimensionedField<scalar , volMesh> FieldType;

479

480 FieldType& G =

481 const_cast <FieldType&>

482 (

483 db ().lookupObject<FieldType>(turbModel .GName())

484)i

485

486 FieldType& epsilon = const_cast<FieldType&>(internalField ());

487

488 scalarField& epsilon = *xthis;

489

490

491 forAll (weights, facei)

492 {

493 scalar w = weights[facei];

494

495 if (w > tolerance.)

496 {

497 label celli = patch().faceCells ()[facei];

498

499 G[celli] = (1.0 — w)*G[celli] + wxG0[celli];

500 epsilon[celli] = (1.0 — w)xepsilon[celli]

+ wxepsilon0[celli |;

501 epsilonf[facei] = epsilon|celli];

502 }

503 }

504

505 fvPatchField<scalar >::updateCoeffs ();

506 }

The code of function setMaster() is shown as follows.

void Foam::epsilonWallFunctionFvPatchScalarField :: setMaster ()
66 {

14

3.2. SUMMARY OF AVAILABLE WALL FUNCTIONS OF K — e TURBULENCE MODEL IN
OPENFOAM 4.0 .

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83
84
85
86
87
88
89
90
91
92 1

if (master. != —1)

return;

}

const volScalarField& epsilon =
static_cast <const volScalarField&>(this—internalField ());

const volScalarField :: Boundary& bf = epsilon.boundaryField ();

label master = —1;
forAll(bf, patchi)

{

if (isA<epsilonWallFunctionFvPatchScalarField >(bf[patchi]))

{

epsilonWallFunctionFvPatchScalarField& epf
= epsilonPatch (patchi);

if (master = —1)

master = patchi;

}

epf.master () = master;

First, this 'setMaster’ function judges that if the master_ value of the current member is not equal
to —1. If it is true, then the return action will be executed. Otherwise it will obtain the epsilon
boundary and store the value at bf. Then for all the bf, if the boundary type is ’epsilon WallFunc-
tionFvPatchScalarField’, then it will do another judgement, i.e. whether the temporary variable
‘master’ is equal to 1, if it is true, pass the value of 'patchi’ to 'master’, then pass the value of tem-
porary variable 'master’ to the corresponding epf.master(). Overall, if there are several boundaries
use the ’epsilonWallFunctionFvPatchScalarField’ boundary type, the the boundary with smallest
index will be set as master, the non-master boundary can obtain information from master.

According to the updateWeightedCoef fs() code, after setMaster(), check whether the patch type
is master type ’epsilonWall FunctionFvPatch’. If it is ture, then ’create AveragingWeights()’ and
‘calculateTurbulence Fields()’ will be executed. These two functions are explained as follows.

void

Foam:: epsilonWallFunctionFvPatchScalarField :: createAveragingWeights ()

96 {
97
98
99

100

101

102

103

104

105

106

const volScalarField& epsilon =
static_cast <const volScalarField&>(this—>internalField ());

const volScalarField :: Boundary& bf = epsilon.boundaryField ();
const fvMesh& mesh = epsilon.mesh();
if (initialised- && !mesh.changing())

{

return;

15

3.2. SUMMARY OF AVAILABLE WALL FUNCTIONS OF K — e TURBULENCE MODEL IN
OPENFOAM 4.0 .

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
142
143

144
145
146
147
148
149
150
151 }

}
volScalarField weights
(
IOobject
(
"weights”
mesh . time (). timeName () ,
mesh ,
IOobject : : NOREAD,
IO0object : : NO_WRITE,
false
)
mesh ,
dimensionedScalar (”zero” , dimless, 0.0)
);

DynamicList<label> epsilonPatches(bf.size ());
forAll (bf, patchi)

{
if (isA<epsilonWallFunctionFvPatchScalarField >(bf[patchi]))
{
epsilonPatches.append(patchi);
const labelUList& faceCells
= bf[patchi].patch (). faceCells ();
forAll (faceCells, 1)
{
weights[faceCells [1]]++;
}
}
}

cornerWeights_.setSize (bf.size ());
forAll (epsilonPatches, i)

label patchi = epsilonPatches[i];
const fvPatchScalarField& wf

= weights.boundaryField ()[patchi];
cornerWeights_[patchi] = 1.0/wf.patchInternalField ();

}

G_.setSize (internalField ().size (), 0.0);
epsilon_.setSize (internalField ().size (), 0.0);

initialised. = true;

‘create AveragingWeights()' is used to set the weight of every patch cell.

The weight will be

used in the calculation of G and epsilon later. Inside this function, 'DynamicList’ means check-
ing all the boundary fields. If its type is ’epsilonW all Function FvPatchScalar Field', it will then

be put in DynamicList.

‘weight’ is the number of wall boundary faces in one cell, it is used to

weight how many boundary faces with ’epsilonW all FunctionFvPatchScalar Field type the celli

16

3.2. SUMMARY OF AVAILABLE WALL FUNCTIONS OF K — e TURBULENCE MODEL IN
OPENFOAM 4.0 .

use. 'cornerWeights’ is used to save the inversed value of weight’, and weight of every boundary
faces equal to the weight of the cell which the faces belong to. Then line 147 and line 148 set initial
value of G and epsilon to 0. Actually, G_ and epsilon_ save the value of the whole internal field
instead of the boundary cell value. It means the data member G_ and epsilon_ of master patch
contain the information of both master patches and non-master patches. So the value of non-master
patches can also be obtained from G_ and epsilon_ according to the corresponding cell id.

Subsequently, calculateTurbulenceFields function is called, the details are explained as follows.

void Foam::
epsilonWallFunctionFvPatchScalarField :: calculateTurbulenceFields
170 (
171 const turbulenceModel& turbulence ,
172 scalarField& GO,
173 scalarField& epsilon0
174)
175 {
176
177 forAll (cornerWeights_, patchi)
178 {
179 if (!cornerWeights_[patchi].empty())
180 {
181 epsilonWallFunctionFvPatchScalarField& epf
= epsilonPatch(patchi);
182
183 const List<scalar>& w = cornerWeights_[patchi];
184
185 epf.calculate (turbulence , w, epf.patch(), GO, epsilon0);
186 }
187 }
188
189
190 forAll (cornerWeights_, patchi)
191 {
192 if (lcornerWeights_[patchi].empty())
193 {
194 epsilonWallFunctionFvPatchScalarField& epf
= epsilonPatch (patchi);
195
196 epf = scalarField (epsilon0, epf.patch().faceCells ());
197 }
198 }
199 }

In function ’calculateTurbulenceFields’, first 'if lcornerWeights_[patchl].empty()’ is used to judge
the wall type. If it is ’epsilonWall FunctionFvPatchScalar Field’, then the calculate function is
called to update the GO and epsilon value. Then zero-gradient condition is applied for epsilon. The
first layer mesh value is assigned to the wall patch value.

The statements ’constscalar Field&G0 = this— > G();” and ’ constscalar Field&epsilon0 = this— >
epsilon();’ return the value of member function G and epsilon back to variable GO and epsilon0.
The definition of member function G and epsilon are shown as follows.

‘ Foam:: scalarField&

17

3.2. SUMMARY OF AVAILABLE WALL FUNCTIONS OF K — e TURBULENCE MODEL IN
OPENFOAM 4.0 .

Foam:: epsilonWallFunctionFvPatchScalarField : :G(bool init)

365 {
366
367
368
369
370
371
372
373
374
375
376
377 }
378
379

380 Foam::
Foam:: epsilonWallFunctionFvPatchScalarField ::

381 (
382
383)
384 {
385
386
387
388
389
390
391
392
393
394
395
396 }

if (patch().index () = master_)

if (init)

{
}

return G_;

G_ = 0.0;

}

return epsilonPatch (master_).G();

scalarField&

bool init
if (patch().index() = master.)
if (init)
{
epsilon_. = 0.0;
}
return epsilon_;

}

epsilon

return epsilonPatch (master_).epsilon (init);

The two functions G and epsilon return the values of G_ and epsilon_, for the ’epsilonWallFunction-
FvPatchScalarField’ type wall boundary patches. Then the returned values of non-master patches
come from the data member of master_.

As a summary, the patch cell with smaller id number will be set to 'master’” when using this wall
function. When the ’master’ type is called, the parameters will be calculated, and ’non-master’
members can obtain required information from 'master’.

The calculate function is the function to calculate the value of epsilon and G, it is shown as follows.

void Foam::epsilonWallFunctionFvPatchScalarField ::

203 (
204
205
206
207
208
209)

const turbulenceModel& turbulence ,
const List<scalar>& cornerWeights
const fvPatch& patch,

scalarField& G,

scalarField& epsilon

18

calculate

3.2. SUMMARY OF AVAILABLE WALL FUNCTIONS OF K — e TURBULENCE MODEL IN
OPENFOAM 4.0 .

210 {
211 const label patchi = patch.index ();
212
213 const scalarField& y = turbulence.y()[patchi];
214
215 const scalar Cmu25 = pow025(Cmu_);
216 const scalar Cmu75 = pow(Cmu-, 0.75);
217
218 const tmp<volScalarField> tk = turbulence.k();
219 const volScalarField& k = tk();
220
221 const tmp<scalarField> tnuw = turbulence.nu(patchi);
222 const scalarField& nuw = tnuw ();
223
224 const tmp<scalarField> tnutw = turbulence.nut(patchi);
225 const scalarField& nutw = tnutw ();
226
227 const fvPatchVectorField& Uw =

turbulence .U().boundaryField ()[patchi];
228
229 const scalarField magGradUw(mag(Uw.snGrad ()));
230
231
232 forAll (nutw, facei)
233
234 label celli = patch.faceCells ()[facei];
235
236 scalar w = cornerWeights[facei|;
237
238 epsilon[celli] 4+=

wxCmu75+pow (k[celli], 1.5)/(kappa_xy[facei]);

239
240 Glcelli] 4=
241 W
242 *(nutw | facei] + nuw|facei])
243 xmagGradUw [facei]
244 *Cmu25xsqrt (k[celli])
245 /(kappa_xy|[facei]);
246 }
247 }

The calculate function calculates the value of G and epsilon using the following expression:
1 o Co kS

ee=—>» ("
— Y

N
1 (v+vp) *
Gomy o

)

(3.3)
UiUe | o1/ g2

KYi

)

Subscript ¢ means the value of the cell close to the wall; i represents the index of boundary cell; y
is the normal distance from the cell center to the wall patch. *ManipulateMatriz’ function (line
525-575) renews the parameters of each patch cell into the matrix.

19

3.2. SUMMARY OF AVAILABLE WALL FUNCTIONS OF K — e TURBULENCE MODEL IN
OPENFOAM 4.0

3.2.3 vr wall functions in OpenFOAM 4.0

There are many types of vp wall functions in OpenFOAM 4.0 which are built based on one virtual
base class 'nutWall Function’. The vy wall functions calculat the turbulence viscosity on the wall
by using virtual function ’calcNut’, and return the vy value to the boundary through function

‘updateCoef fs’. Different vy wall functions are summerized in Table 3.3.

Type name

nutkWallFunction

nutkRoughWallFunction

Available scope
(first layer cell position)

Class

Log-law region

Foam::nutkWallFunction-

Log-law region

Foam::nutkRoughWallFunction-

FvPatchScalarField FvPatchScalarField
Calculate from k k
Inherit from Foam::nutWallFunction- -

FvPatchScalarField
Type name nutUWallFunction nutURoughWallFunction

Available scope
(first layer cell position)

Class

Log-law region

Foam::nutUWallFunction-

Log-law region

Foam::nutURoughWallFunction-

FvPatchScalarField FvPatchScalarField
Calculate from U U
Inherit from Foam::nutWallFunction- Foam::nutWallFunction-
FvPatchScalarField FvPatchScalarField
Type name nutLowReWallFunction nutkAtmRoughWallFunction

Available scope
(first layer cell position)

Class
Calculate from

Inherit from

Log-law and viscous region

Foam::nutLowReWallFunction-
FvPatchScalarField

k

Foam::nutWallFunction-
FvPatchScalarField

Log-law region

Foam::nutkAtmRoughWallFunction-
FvPatchScalarField

k

Foam::nutWallFunction-
FvPatchScalarField

Type name

nutUSpaldingWallFunction

nutUTabulated WallFunction

Available scope
(first layer cell position)

Class
Calculate from

Inherit from

All regions

Foam::nutUSpaldingWall-
FunctionFvPatchScalarField
U

Foam::nutWallFunction-
FvPatchScalarField

All regions

Foam::nutUTabulated Wall-
FunctionFvPatchScalarField
U

Foam::nutWallFunction-
FvPatchScalarField

Table 3.3: Available v wall functions in OpenFoam 4.0

These vy wall functions can be divided into two categories, i.e., (i) calculated from U (ii) calcu-

lated from k, this can be easily identified by checking the type name. nutkWallFunction provides
a turbulent kinematic viscosity condition based on turbulence kinetic energy. nutUWallFunction
provides turbulent kinematic viscosity condition based on U. In addition, nutkRoughWallFunction
and nutkRoughWallFunction manipulate the E parameter to account for the effects of roughness.
nutLowReWallFunction provides a turbulent kinematic viscosity condition for low Reynolds number
models, it sets vp to zero, and provides an access function to calculate y™. nutUSpaldingWall-
Function is used for rough walls to give a continuous v profile to the wall based on one fitting
formula of y* and u™ proposed by Spalding (1961). nutUT abulatedW all Function’ needs one user-
defined table of U+ as a function of near-wall Reynolds number. The table should be located in the
$FOAM_CASE/constant directory.nutkAtmRoughWallFunction provides v for atmospheric veloc-

20

3.2. SUMMARY OF AVAILABLE WALL FUNCTIONS OF K — e TURBULENCE MODEL IN
OPENFOAM 4.0

ity profiles. The 'atmBoundaryLayerInletV elocity’ boundary condition is needed here.

In the present study, a new vy wall function is built based on 'nutkWall Function’ which is ex-
plained as follows. The main function is ’calcNut()’, and the value of vy will be returned to
'updateCoef fs() .

tmp<scalarField > nutkWallFunctionFvPatchScalarField :: calcNut () const

41 {
42 const label patchi = patch().index ();
43
44 const turbulenceModel& turbModel =

db ().lookupObject<turbulenceModel>
45 (
46 IOobject :: groupName
47 (
48 turbulenceModel :: propertiesName ,
49 internalField (). group ()
50)
51);
52
53 const scalarField& y = turbModel.y ()[patchi];
54 const tmp<volScalarField> tk = turbModel.k ();
55 const volScalarField& k = tk();
56 const tmp<scalarField > tnuw = turbModel.nu(patchi);
57 const scalarField& nuw = tnuw ();
58
59 const scalar Cmu25 = pow025(Cmu_);
60
61 tmp<scalarField > tnutw(new scalarField (patch().size (), 0.0));
62 scalarField& nutw = tnutw.ref ();
63
64 forAll (nutw, facei)
65 {
66 label faceCelli = patch (). faceCells ()[facei];
67
68 scalar yPlus = Cmu25+y[facei]

xsqrt (k[faceCelli])/nuw]|facei];
69
70 if (yPlus > yPlusLam._)
71 {
72 nutw [facei] =
nuw [facei]x(yPlusxkappa_/log (E_xyPlus) — 1.0);

73
74 }
75
76 return tnutw;
77}

This achieves the standard wall function, vy is set to zero when yPlus < yPlusLam_, and vp =

vk (% — 1) when yPlus > yPlusLam._.

21

Chapter 4

New Wall Function
Implementation for Standard k& — ¢
Turbulence Model in OpenFOAM

4.0

4.1 Implementation of new wall function in OpenFOAM 4.0

As mentioned in Chapter 2, the new wall function includes three section functions which cover all
the wall regions. The name of the new wall function is given as kOngWallFunction, epsilonOng-
WallFunction and nutOngWallFunction (based on Ong et al., 2009). According to equation 2.4, 2.6
and 2.8, the new expression of k, € and vy can be obtained. The methodology of the wall function
implementation is first calculating turbulence kinetic energy k based on velocity; then € and v are
calculated based on k.

First, k is calculated by k = u*?/,/C,. C, is constant. Therefore, the key is how to obtain
u*. Solving the equation set 2.4, 2.6 and 2.8, equation of u* can be obtained in different regions, see
equation 4.1.

. uv .
R <5
y (y" <5)
K(yu® /v —B)yu” /v — (30 — yu™ /v)in(Eyu”/v) u* _ ot e
25yu* Jvin(Eyu* v) =0 (b<=y"<=30) (41)
E *
yu- exp(%) =0 (ot > 30)

Equation 4.1 shows the u* expression when y* is in different regions. For the case of y* < 5, the
expression of u* is simple and can be directly used for the calculation of k. However, for the cases
of 5 <=y <=30 and y* > 30, u* can not be solved directly. The approach here is using Newton
iteration method to solve the equation of u*.The equations of u* are defined as follows:

22

4.2. MODIFICATIONS TO EXISTING WALL FUNCTIONS

* _ * _ _ * E * *
i) = KOSy = Dy = (B0 =y)i (By)
25yu* /vin(Eyu* /v) u (4.2)
B Eyu* KU .
f2(u) = = — eap(~2) (y+ > 30)
Then the equation set to be solved is:
flw*) =0 (56<=y" <=30) (4.3)
f2(u) =0 (y" > 30) '
According to Newton iteration method, the iteration relation of f1(u*) and f2(u*) are:
. A
Upp1 = Up — fl/(’(;) (5 <= er <=130)
n 4.4
T 2y
where f1'(u}) and f2'(u}) is the derivative with respect to u*.
PUT——— (2ryuy, /v — 5k + In(Eyuy, /v))y (30 — yuy,/v)
Y v 25(yur /v)utln(Eyuk /v)

(5(5 = yuy, /v)yuy, /v + (30 — yuy, /v)in(Eyuy, /v))(y + In(Eyuy, /v)y)
25v(yuy, /vin(Eyus, [v))?

(5 <=yt <= 30)

Fy ku KU
2/ *\ I v +
F2(un) == +u226wp(uz) (y™ > 30)
(4.5)

where u is the velocity, y is the height of the first layer cell, u* is the only unknown variable. Replace
fl(u*) and f2(u*) with the expression 4.2, after a certain number of iteration steps, the value of u*
can be obtained. Subsequently k can be obtained by k = u*?/ \/CTL € and v are calculated based
on equation (2.4). This section gives a basic idea of implementation. Next section will introduce
how to modify the code in OpenFOAM 4.0.

4.2 Modifications to existing wall functions

The Ong wall functions are modified based on kLowReWallFunction, epsilonWallFunction and nutk-
WallFunction. First, copy these three files to the corresponding folder usig the following commands.

Change work directory to wall function directory.

0F4X
cd $FOAM_SRC/TurbulenceModels/turbulenceModels/derivedFvPatchFields/wallFunctions

Copy the required wall function files in the same folder.

cp -r kqRWallFunctions/kLowReWallFunction kqRWallFunctions/kOngWallFunction
cp -r epsilonWallFunctions/epsilonWallFunction epsilonWallFunctions/\
epsilonOngWallFunction

cp -r nutWallFunctions/nutkWallFunction nutWallFunctions/nutOngWallFunction

23

4.2. MODIFICATIONS TO EXISTING WALL FUNCTIONS

4.2.1 Modification to kOngWallFunction

Change the .H and .C files’ names to the new wall function names.

cd kgqRWallFunctions/kOngWallFunction
mv kLowReWallFunctionFvPatchScalarField.C kOngWallFunctionFvPatchScalarField.C
mv kLowReWallFunctionFvPatchScalarField.H kOngWallFunctionFvPatchScalarField.H

Change all the key words from kLowReW all Function to kOngW all Function

sed -i s/kLowReWallFunction/kOngWallFunction/g kOngWallFunctionFvPatchScalarField.C
sed -i s/kLowReWallFunction/kOngWallFunction/g kOngWallFunctionFvPatchScalarField.H

'yPlusLam’ function is not required in the kOngWallFunction, the declaration and definition of
'yPlusLam’ function are deleted in case of any conflict. Then modify the original updateCoef fs()’
into:

void kMukWallFunctionFvPatchScalarField :: updateCoeffs ()

{
{if (updated ())

}

const label patchi = patch().index ();

return;

const turbulenceModel& turbModel = db().lookupObject<turbulenceModel
(

IOobject :: groupName

(

turbulenceModel :: propertiesName ,
internalField (). group()

)
)

const scalarField& y = turbModel.y ()[patchi];

const tmp<volScalarField> tk = turbModel.k ();
const volScalarField& k = tk();

const tmp<scalarField> tnuw = turbModel.nu(patchi);
const scalarField& nuw = tnuw ();

const scalar Cmu25 = pow025(Cmu_);

const fvPatchVectorField& Uw = turbModel .U().boundaryField ()[patchi];
const scalarField magUp(mag(Uw.patchInternalField () — Uw));

const scalarField magGradU (mag(Uw.snGrad ()));

scalarField& kw = xthis;

24

4.2. MODIFICATIONS TO EXISTING WALL FUNCTIONS

forAll (kw, facei)
label faceCelli = patch (). faceCells ()[facei];
scalar uTau = Cmu25xsqrt (k[faceCelli]);

scalar yPlus = uTauxy|[facei]/nuw|facei];
tmp<scalarField > tuTau = calcUTau(magGradU);
scalarField& uts = tuTau.ref ();

tmp<scalarField > tuTau2 = calcUTau2 (magGradU);
scalarField& uts2 = tuTau2.ref ();

if (yPlus <= 5)
{

kw|facei] = magUp|[facei|*nuw|facei]/y[facei];

}
clse if (yPlus > 5 && yPlus < 30)

{

kw[facei] = uts2[facei]*uts2[facei]l;

}

else

{

kw[facei] = uts[facei]xuts[facei]l;

}

kw[facei] /= sqrt(Cmu_);

¥
kw = max(kw, SMALL);

fixedValueFvPatchField<scalar >::updateCoeffs ();

This is the main function calculating k according to equation (2.4), (2.6) and (2.8). Two new member
functions are used here to calculate v* in different regions. Member function calcUT au is defined to
calculate the v* in Log-law region. Then the value of u* will be returned back to the else statement

in updateCoef fs():

else

{

kw[facei] = uts[facei]*uts|[faceil;

}

25

4.2. MODIFICATIONS TO EXISTING WALL FUNCTIONS

The other member function 'calcUTau?’ is defined to calculate the u* in buffer layer region and the
value of u* will be returned back to the ’else i f’ statement in 'updateCoef fs()’:

else if (yPlus > 5 && yPlus < 30)

kw[facei] = uts2[facei]*uts2[faceil;

}

The definition of calcUT au is shown as follows:

tmp<scalarField > kMukWallFunctionFvPatchScalarField :: calcUTau

(
const scalarField& magGradU
) const

{

const label patchi = patch().index ();
const turbulenceModel& turbModel = db().lookupObject<turbulenceModel

IOobject :: groupName

(

turbulenceModel :: propertiesName ,
internalField (). group()

)
)
const scalarField& y = turbModel.y ()[patchi];

const fvPatchVectorField& Uw = turbModel .U().boundaryField ()[patchi];
const scalarField magUp(mag(Uw. patchInternalField () — Uw));

const tmp<scalarField> tnuw = turbModel.nu(patchi);
const scalarField& nuw = tnuw ();

const scalarField& nutw = xthis;

tmp<scalarField > tuTau(new scalarField (patch().size(), 0.0));
scalarField& uTau = tuTau.ref ();

forAll (uTau, facei)
{

scalar ut = sqrt ((nutw|facei] + nuw[facei])+*magGradU[facei]);
if (ut > ROOTVSMALL)

int iter = 0;
scalar err = GREAT;

do

{

scalar kUu = max(kappa_xmagUp|[facei]/ut, 13.86);
scalar ftkUu = exp(kUu);

26

4.2. MODIFICATIONS TO EXISTING WALL FUNCTIONS

scalar f =
— utxy[facei]/nuw[facei]+ 1/E_xfkUu;

scalar df =
y[facei]/nuw|[facei]| + 1/E_xkUuxfkUu/ut;

scalar uTauNew = ut + f{/df;

err = mag((ut — uTauNew)/ut);

ut = uTauNew;
} while (ut > ROOTVSMALL && err > 0.01 && ++iter < 10);
uTau[facei] = max(0.0, ut);

}

return tuTau;

First u* is assigned with a initial value. ROOTVSMALL and GREAT are simply constant defined
in

src/OpenF0AM/primitives/Scalar/scalar/scalar.H
src/OpenF0AM/primitives/Scalar/floatScalar/floatScalar.H

The value of ROOTVSMALL is 1.0e-18, GREAT is 1.0e+6. u™ is defined as kUwu here. This function
is used when y* is larger the 30(corresponding u™ > 13.86), therefore, the value of u™ keeps larger

|“:_“:z,+1|
o

than 13.86. The relative error is defined as err = . Then do at least 10 steps interation of

f2(u*)(refer to equation(4.4) which is introduced in Section 4.1) until the relative error is less than
0.01. Then return back the value of u*.
The definition of calcUT au2’ is shown as follows:

tmp<scalarField > kMukWallFunctionFvPatchScalarField :: calcUTau2

(
const scalarField& magGradU
) const

{

const label patchi = patch().index ();

const turbulenceModel& turbModel = db().lookupObject<turbulenceModel
(

IOobject :: groupName

(

turbulenceModel :: propertiesName ,
internalField (). group()

)
)s

const scalarField& y = turbModel.y ()[patchi];

const fvPatchVectorField& Uw = turbModel.U().boundaryField ()[patchi];

27

4.2. MODIFICATIONS TO EXISTING WALL FUNCTIONS

const scalarField magUp(mag(Uw.patchInternalField () — Uw));

const tmp<scalarField> tnuw = turbModel.nu(patchi);
const scalarField& nuw = tnuw ();

const scalarField& nutw = xthis;

tmp<scalarField > tuTau2(new scalarField (patch().size(), 0.0));
scalarField& uTau2 = tuTau2.ref ();

forAll (uTau2, facei)

{
scalar ut2 = sqrt ((nutw[facei] + nuw|facei])*magGradU|[facei]);
if (ut2 > ROOTVSMALL)
int iter = 0;
scalar err = GREAT;
do
{
scalar lg = log(E_xy[facei]|*ut2/nuw|facei]);
scalar yp = min(y[facei]*ut2/nuw|facei], 30);
yp = max(5,yp);
scalar f =
—ut2/magUp|[facei]+
(kappa_x(yp—=>5)*yp—(30—yp)*lg)/(25*ypxlg);
scalar dfl=
((—2+kappa_xyp+bsxkappa_—lg)*y[facei]|/nuw| facei |
+(30—yp)/ut2)/(25xyp*lg);
scalar df2=
—(~kappa_*(yp—5)*yp+(30—yp)*lg)*(yp/ut2+lg*y[facei]
/nuw [facei]) /(25xsqr(ypxlg));
scalar df =
1/magUp|[facei]+dfl1+df2;
scalar uTauNew = ut2 + f/df;
err = mag((ut2 — uTauNew)/ut2);
ut2 = uTauNew;
} while (ut2 > ROOTVSMALL && err > 0.01 && ++iter < 10);
uTau2|[facei] = max (0.0, ut2);
}
}

return tuTau2;

The structure of 'calcUTau?2’ function is similar with 'calcUTau’, the difference is the iteration part

28

4.2. MODIFICATIONS TO EXISTING WALL FUNCTIONS

which uses the Newton iteration of f1(u*) (refer to equation(4.4)).

The declaration of these functions must be added into kOngWallFunctionFvPatchScalarField.H:

virtual tmp<scalarField> calcUTau(const scalarField& magGradU) const;
virtual tmp<scalarField> calcUTau2(const scalarField& magGradU) const;

The modification to kOngWallFunction has been completed so far.

4.2.2 Modification to epsilonOngWallFunction

The € expression in epsilonOngWallFunction is the same with which in epsilonWallFunction:

forAll (nutw, facei)

{
label celli = patch.faceCells ()[facei];

scalar w = cornerWeights[facei|;
epsilon[celli] += wxCmu75*xpow (k[celli], 1.5)/(kappa_xy[facei]);

G[celli] 4=
W
*(nutw [facei]| + nuw|[facei])
xmagGradUw [facei |
*Cmu2b+xsqrt (k[celli])
/(kappa_xy[facei]);

Therefore, make the epsilonOngWallFunction a simple wrapper of epsilonWallFunction. The com-
mands used here are:

cd epsilonWallFunctions/epsilonOngWallFunction

mv epsilonWallFunctionFvPatchScalarField.C\
epsilonOngWallFunctionFvPatchScalarField.C
mv epsilonWallFunctionFvPatchScalarField.H\
epsilonOngWallFunctionFvPatchScalarField.H

Change the file name first, then rename all the class name in the .C and .H file.

sed -i s/epsilonWallFunction/epsilonOngWallFunction/g\
epsilonOngWallFunctionFvPatchScalarField.C
sed -i s/epsilonWallFunction/epsilonOngWallFunction/g\
epsilonOngWallFunctionFvPatchScalarField.H

29

4.2. MODIFICATIONS TO EXISTING WALL FUNCTIONS

4.2.3 Modification to nutOngWallFunction
Similarly, the files and classes should be renamed first.

cd nutWallFunctions/nutOngWallFunction

mv nutkWallFunctionFvPatchScalarField.C nutOngWallFunctionFvPatchScalarField.C
mv nutkWallFunctionFvPatchScalarField.H nutOngWallFunctionFvPatchScalarField.H

sed -i s/nutkWallFunction/kOngWallFunction/g nutOngWallFunctionFvPatchScalarField.C
sed -i s/nutkWallFunction/kOngWallFunction/g nutOngWallFunctionFvPatchScalarField.H

Then, the main function ’caleNut()’ should be renewed to the following one.

tmp<scalarField > nutMukWallFunctionFvPatchScalarField :: caleNut () const

{

const label patchi = patch().index ();

const turbulenceModel& turbModel = db().lookupObject<turbulenceModel
(

IOobject :: groupName

(

turbulenceModel :: propertiesName ,
internalField ().group()

)

const scalarField& y = turbModel.y ()[patchi];

const tmp<volScalarField> tk = turbModel.k();

const volScalarField& k = tk();

const tmp<scalarField> tnuw = turbModel.nu(patchi);
const scalarField& nuw = tnuw ();

const scalar Cmu25 = pow025(Cmu_);

tmp<scalarField > tnutw(new scalarField (patch().size(), 0.0));
scalarField& nutw = tnutw.ref ();

for All (nutw, facei)

{
label faceCelli = patch (). faceCells ()[facei];

scalar yPlus = Cmu25xy[facei]xsqrt(k[faceCelli])/nuw|facei];

nutw | facei] = (1—exp (—0.0002%xyPlus —0.00065«sqr (yPlus)))
*Cmu2bxy [facei|*xsqrt (k[faceCelli])xkappa_;

}

return tnutw;

30

4.2. MODIFICATIONS TO EXISTING WALL FUNCTIONS

Here v is calculated by equation (2.4).

4.2.4 Compile Ong wall functions in OpenFOAM 4.0

First change the working directory to turbulenceModels/Make:
cd $FOAM_SRC/TurbulenceModels/turbulenceModels/Make

Open the ‘files’ file, add the following statement inside under the 'wallFunctions = derivedFvPatch-
Fields/wallFunctions’ accordingly.

$(nutWallFunctions) /nutOngWallFunction/nutOngWallFunctionFvPatchScalarField.C
$(epsilonWallFunctions)/epsilonOngWallFunction\
/epsilonOngWallFunctionFvPatchScalarField.C

$ (kqRWallFunctions)/kOngWallFunction/kOngWallFunctionFvPatchScalarField.C

Then change the last line 'LIB = $(FOAM_LIBBIN)/libturbulenceModels’ to 'LIB = $(FOAM_
USER _LIBBIN)/ libturbulenceModels’ Touch the change of wall functions:

cd $FOAM_SRC/TurbulenceModels

wclean

touch turbulenceModels/derivedFvPatchFields/wallFunctions\
/epsilonWallFunctions/epsilonOngWallFunction\
/epsilonOngWallFunctionFvPatchScalarField.C

touch turbulenceModels/derivedFvPatchFields/wallFunctions\
/epsilonWallFunctions/epsilonOngWallFunction)\
/epsilonOngWallFunctionFvPatchScalarField.H

touch turbulenceModels/derivedFvPatchFields/wallFunctions\
/kgRWallFunctions/kOngWallFunction\
/kOngWallFunctionFvPatchScalarField.C

touch turbulenceModels/derivedFvPatchFields/wallFunctions\
/kqRWallFunctions/kOngWallFunction\
/kOngWallFunctionFvPatchScalarField.H

touch turbulenceModels/derivedFvPatchFields/wallFunctions\
/nutWallFunctions/nutOngWallFunction\
/nutOngWallFunctionFvPatchScalarField.C

touch turbulenceModels/derivedFvPatchFields/wallFunctions\
/nutWallFunctions/nutOngWallFunction\
/nutOngWallFunctionFvPatchScalarField.H

Compile the turbulence model by using the following commands.

cd $FOAM_SRC/TurbulenceModels

wmake libso turbulenceModels/derivedFvPatchFields/wallFunctions\
/nutWallFunctions/nutOngWallFunction

wmake libso turbulenceModels/derivedFvPatchFields/wallFunctions\
/kgRWallFunctions/kOngWallFunction

wmake libso turbulenceModels/derivedFvPatchFields/wallFunctions\

31

4.2. MODIFICATIONS TO EXISTING WALL FUNCTIONS

/epsilonWallFunctions/epsilonOngWallFunction
./Allumake

After compiling successfully, restart the terminal window and prepare for the case Test.

32

Chapter 5

Test Cases

A verification study will be performed to ensure that the new wall function (Ong wall function) is
implemented correctly. Two test cases are introduced here, i.e. (i) Case 1: The uniform velocity
flow past a long flat plate; (ii) Case 2: A fully developed boundary layer flow past a short flat plate.
A summary of test cases are shown in Table 5.1.

Case Test case 1 | Test case 2
Fisrt layer cell position | buffer layer | buffer layer
First layer cell height 0.0005 0.0005
Mesh quantity 244600 143700

Table 5.1: Summary of test cases

5.1 Test case 1

5.1.1 Case set up

A uniform velocity profile is introduced in the inlet. The main improvement of Ong wall function is
including the buffer layer. Therefore, in these two test cases, the first layer cell is set in buffer layer
(5 < y* < 30). The set up of Case 1 is shown as Figure 5.1. The outlet velocity profile are used
to check whether the newly-implemented wall function can produce physically-sound velocity profiles.

The calculation process of inlet velocity can be concluded as: (1) According to the experience,
assume that at the position y = 0.22 it is the switching point to fully developed flow; (2) According
the wall function equation (2.8), the value of u* can be calculated; (3) Combine the equation (2.4)
(2.6)and (2.8) with the known w*, the velocity profile can be obtained. The key step during this
process is selecting the position of first point, we must make sure that this point is above the real
boundary layer switching point, thus, it will not cause that the boundary layer region is forced to
be fully developed flow.

The computational domain of a simple 2-D flow along a horizontal plate is shown below.

where H is the height of the 2D domain. The inlet velocity is uniform value, the bottom is set as

33

5.1. TEST CASE 1

zeroGradient

Outlet
Inlet velocity profile H (zeroGradient)
(uniform velocity) noSlip boundary condition(wall)

10H

Figure 5.1: Test case 1 set up

noSlip (wall), top and outlet is set as zeroGradient (patch). The summary of the test cases is shown
as Table 5.1. At inlet boundary, the following expression are used for k, e and vy (Ong et al., 2009).

3

k= 5(Iquo)2
C,k3/2)
_ Zuh o2 5.1
¢ 01L (5.1)
]f2
vr = Cus

For the 0 folder, the setting for U, p, k, € and vy are required. On the wall, the k, € and vp are set to
the wall function name we defined (kOngWallFunction, epsilonOngWallFunction, nutOngWallFunc-
tion), vr are set to 'calculated’ on inlet patches. Detailed setting in 0, cnstant and system folder
can be found in Appendix C.

After finishing the setting, run simpleFoam in the test case folder.

5.1.2 Post-processig in paraFoam

When the simulation is done, type paraFoam in terminal. Click ’Apply’, then select U in the upper
toolbar. Click ’slice’ then input the coordinate (9, 0.5, 0.5) and apply.

Then click *splithorizontal’— >’ spreadsheetview’, the data can be seen as Figure 5.3. Then save
the data to csv format file by 'File— > savedata’. In this way, after plate flow is stable, outlet
velocity profile can be compared with the theoretical value to check whether this new wall function
is applicable.

According to the stable velocity profile and the equations of Ong wall function, the theoretical
velocity profile can be obtained. Different wall function will cause a big difference in the real simu-
lation especially for the cases that the separating point varies with the flow.

The results comparison of present simulated velocity profile and the velocity profile calculated based
on Ong et al., (2009) is shown as Figure 5.4.

It can be seen that he results of simulated results and the calculated results do not agree so good.
The reason is that the plate flow is still not fully developed, which can be seen by comparing the
velocity profiles between * = 8H and = = 10H. It means the flow around the horizontal plate
needs longer computation domain and longer time to achieve the fully developed boundary layer.
In addition, the meshes must be fine enough to capture the velocity profile. Therefore, Case 2 is
suggested for further verification study.

34

5.2. TEST CASE 2

Fle Edit View Sources Fiters Tools Catalyst Macros Help

ParaView 5.0.1 64-bit (Legacy Rendering Backend)

PEBERDE?F R KAD DM S mmeEm o Pua
] D1 oo T ndBssak [Fleed

[buittin:
@ {0 test33.0penFOAM
@

Properties | information |

Properties
i 5 e
[Search ... (use Escto clear text) | H

= rrapemes (slice
Slice Type

%] Show Plane.

Note: Use 'P' key to pick origin posit
on mesh

(u] Snap Picked Point on Mesh Point
o — s
[xNomal | resetsour?]

[——a— Gl

Renderviewl m|8|0)#|x

U Magnitude
- 1.000e+00

£0.75
'0.5
t025

~0.000e+00

Figure 5.2: Slice in paraview a

5.2 Test Case 2

5.2.1 Case set up

Test Case 1 requires lone simulation time to achieve the converged results, Test Case 2 is less time-
consuming and also a good way to verify the newly implemented wall function. The basic idea is to
calculate a fully developed boundary layer flow according to the equations of Ong wall function. Set
this boundary layer flow on the inlet pathes, and compare the velocity profile of inlet and outlet.
If these two velocity profiles fit well, it means the new wall function can maintain the velocity and
produce the correct velocity profile.

The case set up is shown in Figure 5.5. The inlet velocity in case 2 is a boundary layer flow.
A nonuniform setting for U, k, € and vr is required in 0’ folder. In addition, boundaryData folder
is required in ’constant’ folder, which contains all the nonuniform inlet information. This process
can also be done by swak4Foam, but in the present study, the data points are used to set up the
boundary condition at the inlet. The inlet velocity profile calculated from the Ong wall function is
shown in Figure 5.6. The detailed setting can be found in Attachment C.

The inlet boundary conditions for k, € and vr are based on Ong et al., (2010) :
k= maz{C{ — 1/2)(1 — y/y’)?u*?,0.0001U2 }

Cou(3/4)ky®
€= (5.2)
2
v = C k—
€

where Uy, is the velocity of infinity. y/ is the height of first layer cell. The expression of [is:
I = min{ky(1+3.5y/y") ™", Cuy}

Run simple Foam in the main folder.

35

5.2. TEST CASE 2

ParaView 5.0.1 64-bit (Legacy Rendering Backend)

Fle Edit View Sources Fiters Tools Catalyst Macros Help

PO BEYOC?F R KAD DB e o Haa
] DL) et) BB i ddls 266G

E9QUERO@

E2@ b LRyt

Pipeline Browser

Olayout #1x | +

[buittin:
@ [test33.0penFOAM
@

& o mm E R RS R B »Renderviewl [T]B)0]#]x]

1 (wfefoj=]~<

Properties

Properties

ow Plane
: Use 'P' key to pick origin position
esh

ap Picked Point on Mesh Point

"o o5 Jouswons

Properties (Slice (o [4]
Type E_E

X Normal Reset Bounds |~

: v

W veru [[- a

5.2.2 Results

The post-processing is similar with those shown section 5.1.2. The comparison of inlet and outlet

Showing | Slicel [= |attribute: Point Data |~ [Precision:| 6 [=] + | 1]()
Block Number Point ID Points. u [a
0 2 0 9 1 0 1.0266... 0.00240741
1 2 1 9 1.02663... 0.00240719
2 2 2 9 1 0.1 |1.0266... 0.00240741
3 2 3 9 0.94 0.1 1.02663.. 0.00240719
4 2 4 9 1.02671... 0.00240655
5 2 5 9 1.02671. 0.00240655
6 2 6 9 1.02682. 0.00240591
— 7 2 7 9 1.02682... 0.00240591
8 2 8 9 1.02694. 0.00240488
9 2 9 9 1.02694. 0.00240488
10 (2 10 9 1.02708... 0.00240396
1 (2 11 9 1.02708. 0.00240396
12 (2 12 9 1.02724. 0.00240371
13 (2 13 9 1.02724... 0.00240371
14 |2 14 9 1.02741... E
[te: [ETerminal @12 =

Figure 5.3: Slice in paraview b

velocity profile is shown in Figure 5.7.

The result shows that the Ong wall functions keep the fully-developed velocity profile stable.

It also means that the new wall function is implemented successfully.

36

5.2. TEST CASE 2

0.9

0.8F

0.7

0.6

y/H
L]
L

0.4¢

0.3+

01k

Inlet velocity profile
(nonuniform velocity)

¥=10H
— = = ¥=BH

Ong Wall Function

1.2

Figure 5.4: Inlet velocity profile

zeroGradient

Outlet
(zeroGradient)

noSlip boundary condition(wall)

[

Figure 5.5: Test case 2 set up

37

.

5.2. TEST CASE 2

0.9}

0.8F

0.7

0.6}

0.5

yi/H

0.4F

0.3

0.2}t

0.1¢

a 0.2 0.4 0.6 0.8
U/Uszo

Figure 5.6: Inlet velocity profile

0.9F Inlet velocity
« Outlet velocity

0.8

0.7

0.6F

0.5F

y/H

0.4F

0.3}

0.2¢

0.1

a 0.2 0.4 0.6 0.8
U/Ux

Figure 5.7: Inlet and outlet velocity profile

38

Study questions

1. How many near-wall regions are usually used around the wall? What are them? What does
the division depends on?

2. Which folder are the wall functions situated?

3. What commands should be used to copy existing wall functions to an aimed folder? Please
give an example.

4. How can you add non-uniform inlet velocity? Please give more available ways.

5. How to verify a newly complemented wall function? Please describe what kind of case should
be used and what results are expected?

39

Reference

Balogh, M., Parente, A. and Carlo B. "RANS simulation of ABL flow over complex terrains applying
an enhanced k — ¢ model and wall function formulation: Implementation and Comparison for Fluent
and OpenFOAM.” Journal of Wind Engineering and Industrial Aerodynamics 104 (2012): 360-368.

Jones, W. P., and Launder B.E. "The prediction of laminarization with a two-equation model of
turbulence.” International journal of heat and mass transfer 15.2 (1972): 301-314.

Kalitzin, G., Medic, G., Iaccarino, G. and Durbin, P. ”Near-wall behavior of RANS turbulence
models and implications for wall functions.” Journal of Computational Physics 204.1 (2005): 265-
291.

Launder, B. E., and Sharma, B. I. ” Application of the energy-dissipation model of turbulence to the
calculation of flow near a spinning disc.” Letters in heat and mass transfer 1.2 (1974): 131-137.

Liestyarini, U. C. CFD Analysis of Internal Pipe Flows, Master Thesis, University of Stavanger,
Norway (2016).

Ong, M.C., Trygsland, E. and Myrhaug, D. "Numerical Study of Seabed Boundary Layer Flow
around Monopile and Gravity-Based Wind Turbine Foundation”, Proceedings of 35th International
Conference on Ocean, Offshore and Arctic Engineering, ASME, OMAE2016-54643, Busan, Korea
(2016).

Ong, M.C., Utnes, T., Holmedal, L.E., Myrhaug, D. and Pettersen, B. ”Numerical simulation of flow
around a smooth circular cylinder at very high Reynolds numbers.” Marine Structures 22.2 (2009):
142-153.

Ong, M.C., Utnes, T., Holmedal, L.E., Myrhaug, D. and Pettersen, B. ”Numerical simulation of
flow around a circular cylinder close to a flat seabed at high Reynolds numbers using a k — e model.”
Coastal Engineering 57.10 (2010): 931-947.

Parente, A., Gorle, C., van Beeck, J. and Benocci, C. "Improved k& — ¢ model and wall function
formulation for the RANS simulation of ABL flows.” Journal of wind engineering and industrial

aerodynamics 99.4 (2011): 267-278.

Rodi, W., and Mansour, N. N. "Low Reynolds number k — ¢ modelling with the aid of direct
simulation data.” Journal of Fluid Mechanics 250 (1993): 509-529.

Spalding, D. B. ”A single formula for the "law of the wall”. ”Journal of Applied Mechanics 28.3
(1961): 455-458.

Tennekes, H., and Lumley, J.L.. A first course in turbulence. MIT press, 1972.

40

