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Introduction

Whenever a CFD analysis is performed there will have to be, at some point,
boundaries.

These boundaries can be physical, e.g walls, or numerical, e.g outlets from which
the flow exits the domain).

When performing simulations of compressible flows, reflection of waves on these
type of outlets can create problems.

There are many ways to solve this problem, but most of them involve solving the
equations in an additional non-physical domain, which highly increases the
computational cost.

One way of solving this issue is by using non-reflecting boundary conditions
(NRBCs), which are usually based on the characteristic analysis of the
equations.

The goal of this type of boundary conditions is to have no reflection of waves of
fluid quantities at the boundary.
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Characteristic analysis of the N-S equations

N-S equations for compressible viscous flow:

∂ρ

∂t
+

∂

∂xi
(mi ) = 0,

∂mi

∂t
+

∂

∂xj
(miuj) +

∂p

∂xi
=
∂τij
∂xj

,

∂ρE

∂t
+

∂

∂xi
[(ρE + p)ui ] =

∂

∂xi
(ujτij)−

∂qi
∂xi

,

Where mi = ρui , and ρE = 1
2ρukuk +

p
γ−1 .

In vector form, the system can be written as:

∂Ũ
∂t

+
∂F̃

i

∂xi
+
∂D̃

i

∂xi
= 0,

Where Ũ = |ρ ρu1 ρu2 ρu3 ρE |T is the vector of conservative variables.
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Characteristic analysis of the N-S equations (2)

If a vector of primitive variables is defined as U =
∣∣ ρ u1 u2 u3 p

∣∣T, the
equation can be rewritten in terms of primitive variables as

∂U
∂t

+ F i ∂U
∂xi

+ D = 0,

where

D = P−1∂D̃
i
/∂xi includes all the viscous and diffusive terms.

F k is the non-conservative Jacobian matrix related to the k th direction.

P = ∂Ũ/∂U is the Jacobian matrix that allows to change coordinates
between primitive and conservative variables.
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Characteristic analysis of the N-S equations (3)

Each non-conservative Jacobian matrix F k related to every direction k can be
diagonalized through

S−1
k F kSk = Λk ,

and the eigenvalues are given by

λk1 = uk − c ,

λk2,3,4 = uk ,

λk5 = uk + c ,

where c =
√

γp
ρ is the speed of sound.

Once the equations have been written in this form, a wide variety of different
boundary conditions can be considered depending on the type of boundary
type.
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Characteristic analysis of the N-S equations (4)

Figure: 2D domain with waves leaving and entering the domain

When considering a boundary with normal vector parallel to x1, the characteristic
waves considered will be those traveling along the x1 direction and therefore only
F 1 needs to be diagonalized, the equation can be written as

∂U
∂t

+ S1Λ
1S−1

1

∂U
∂x1

+ F 2 ∂U
∂x2

+ F 3 ∂U
∂x3

+ D = 0,

Leandro Lucchese Implementation of non-reflecting boundary conditions in OpenFOAM January 15, 2023 6 / 52



Introduction and Theory NRBC in OpenFOAM Custom boundary conditions Simulations and results Conclusions

Characteristic analysis of the N-S equations (5)

a vector L whose components Li represent time variation of the amplitudes of the
characteristic waves can be defined

L = Λ1S−1
1

∂U
∂x1

=



λ1

(
∂p
∂x1

− ρc ∂u1
∂x1

)
λ2

(
c2 ∂ρ

∂x1
− ∂p

∂x1

)
λ3

∂u2
∂x1

λ4
∂u3
∂x1

λ5

(
∂p
∂x1

+ ρc ∂u1
∂x1

)


.

The conservation equation can finally be written as a function of the wave
amplitude variations obtaining

∂U
∂t

+ S1L+ F 2 ∂U
∂x2

+ F 3 ∂U
∂x3

+ D = 0,
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Characteristic analysis of the N-S equations (6)

For a 1-D inviscid flow (Euler flow), all terms regarding derivatives along the x2
and x3 directions, together with the D vector are set to zero.

The system arising from this description is called local one dimensional inviscid
(LODI) system

∂ρ

∂t
+

1

c2

[
L2 +

1

2
(L5 + L1)

]
= 0,

∂p

∂t
+

1

2
(L5 + L1) = 0,

∂u1
∂t

+
1

2ρc
(L5 − L1) = 0,

∂u2
∂t

+ L3 = 0,

∂u3
∂t

+ L4 = 0,
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Characteristic based boundary conditions

By imposing different conditions to the amplitudes of characteristic waves Li a
series of physically meaningful boundary conditions can be imposed.

A fixed pressure boundary condition for example can be obtained by setting
L5 = −L1 to fix the amplitude variation of the wave entering the domain

For a perfectly non-reflecting boundary condition the incoming wave
amplitude has to be set to zero L1 = 0

This is an approximation, but in cell centered finite volume methods the
contribution of every boundary face enters the system by summing a term to the
diagonal part of the coefficient matrix or to the source term (or both).

The error made when using the LODI equations at the boundary is limited since
the contribution of the boundary face is only one of many faces.
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Perfectly non-reflecting boundary conditions

If the flow is in the positive x1 direction, to impose a perfectly non-reflecting
boundary condition, the upcoming wave amplitude has to be set to zero L1 = 0.

The LODI system of equations becomes:

∂p

∂t
+ (u1 + c)

∂p

∂x
= 0,

∂u1
∂t

+ (u1 + c)
∂u1
∂x

= 0,

∂u2
∂t

+ u1
∂u2
∂x

= 0,

∂u3
∂t

+ u1
∂u3
∂x

= 0,

These equations have to be applied to the primitive variables in order to find their
values at the boundary face.
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Partially non-reflecting boundary conditions

Using perfectly non-reflecting conditions is often non recommendable since it may
lead to an ill-posed problem.

For example, with a fixed mass flow rate inlet and a perfectly non-reflecting
outlet, there will be no constaint on the pressure and it will drift form the
initial value.

In order to add some physical information on the mean static pressure, partially
non-reflective boundary conditions can be applied by imposing

L1 = K (p − p∞),

This is equivalent to imagining an outlet at a certain distance from the domain
with pressure p∞ that sends waves into the domain.

When this is applied the pressure equation becomes:

∂p

∂t
+ (u1 + c)

∂p

∂x
+ K (p − p∞) = 0,
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Perfectly non-reflecting BCs in finite volume method

Every LODI equation is an advection equation with advection speed W

∂ϕ

∂t
+W

∂ϕ

∂x
= 0.

This equations can be discretized (for example with an Euler time scheme),
becoming

ϕn+1
f − ϕnf
∆t

+W
ϕn+1
f − ϕn+1

c

∆x
= 0,

that, when manipulated, becomes

ϕn+1
f = ϕnf

1

1 + α
+

α

1 + α
ϕn+1
c ,

with α = ∆tW /d.
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Partially non-reflecting BCs in finite volume method

Applying the same procedure to the partially non-reflecting equation, after some
manipulations the result becomes

ϕn+1
f = (ϕnf + kϕ∞)

1

1 + α+ k
+

α

1 + α+ k
ϕn+1
c ,

These formulas are extremely important since they correspond exactly to the
way OpenFOAM defines its non-reflecting boundary conditions.
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General boundary conditions in OpenFOAM

The two main functions used for discretizing the PDE’s in OpenFOAM are
fvm::div and fvm::laplacian, and they can be seen in every top level solver.

These functions create the linear system corresponding to the discretized PDE in
terms of coefficient matrix and source term.

In this context, boundary conditions contribute either to the diagonal
coefficients of the coefficient matrix, to the source term, or both. This can be
clearly seen in the fvmDiv function of the gaussConvectionScheme
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General boundary conditions in OpenFOAM (2)

a part of the fvmDiv function of gaussConvectionScheme.C

76 forAll(vf.boundaryField(), patchi)

77 {

78 const fvPatchField<Type>& psf = vf.boundaryField()[patchi];

79 const fvsPatchScalarField& patchFlux = faceFlux.boundaryField()[patchi];

80 const fvsPatchScalarField& pw = weights.boundaryField()[patchi];

81

82 fvm.internalCoeffs()[patchi] = patchFlux*psf.valueInternalCoeffs(pw);

83 fvm.boundaryCoeffs()[patchi] = -patchFlux*psf.valueBoundaryCoeffs(pw);

84 }

Two functions valueInternalCoeffs() and valueBoundaryCoeffs() of the
class fvPatchField<Type> provide the contribution of the boundary
conditions to the diagonal term of the coefficient matrix and the source term.

The Laplacian term works the same way but by using the functions
gradientInternalCoeffs() and gradientBoundaryCoeffs().
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mixed boundary conditions in OpenFOAM

Boundary conditions in OpenFOAM can be either fixedValue, fixedGradient,
or a mixture of the two, namely mixed.

The classes used for non reflecting boundaries are the advective and
waveTranmissive, and are both sub-classes of the mixed boundary condition.

The way mixed boundary conditions work in OpenFOAM is by defining the value
of the field at the boundary face as

ϕf = wϕref + (1− w)(ϕc + d∇(ϕref)),

where:

ϕf is the boundary face value,

ϕc is the boundary cell value,

ϕref is a reference value,

d is the face-to-cell distance,

w is the ”value fraction”.
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mixed boundary conditions in OpenFOAM (2)

The main functions of the mixedFvPatchField class are:

evaluate: Evaluates the patch Field.

snGrad: Returns the patch normal gradient.

valueInternalCoeffs: Returns the contribution of the divergence term to
the coefficient matrix of the linear system at boundary patch.

valueBoundaryCoeffs: Returns the contribution of the divergence term to
the source term of the linear system at boundary patch.

gradientInternalCoeffs: Returns the contribution of the laplacian term
to the coefficient matrix of the linear system at boundary patch.

gradientBoundaryCoeffs: Returns the contribution of the laplacian term
to the source term of the linear system at boundary patch.
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mixed boundary conditions in OpenFOAM (3)

valueInternalCoeffs function of mixedFvPatchField.C

192 template<class Type>

193 Foam::tmp<Foam::Field<Type>>

194 Foam::mixedFvPatchField<Type>::valueInternalCoeffs

195 (

196 const tmp<scalarField>&

197 ) const

198 {

199 return Type(pTraits<Type>::one)*(1.0 - valueFraction_);

200 }

Type(pTraits<Type>::one) substantially returns one, depending on the Type
of the field given as input.

If we call the variable valueFraction_ = f, the function
valieInternalCoeffs returns (1 - f).

The return of this function will be summed to the diagonal coefficient of the
matrix, i.e will multiply ϕc .
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mixed boundary conditions in OpenFOAM (4)

valueBoundaryCoeffs function of mixedFvPatchField.C

203 template<class Type>

204 Foam::tmp<Foam::Field<Type>>

205 Foam::mixedFvPatchField<Type>::valueBoundaryCoeffs

206 (

207 const tmp<scalarField>&

208 ) const

209 {

210 return

211 valueFraction_*refValue_

212 + (1.0 - valueFraction_)*refGrad_/this->patch().deltaCoeffs();

213 }

The function valueBoundaryCoeffs returns f*refValue + (1-f)*refGrad*d,
this output will sum the RHS of the system.

If the two expressions are merged in order to obtain a single formula for the value
that this boundary condition imposes to the field at the boundary patch, we obtain

ϕn+1
f = f ∗ refValue+ (1− f )(ϕn+1

c + refGrad ∗ d).
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advective boundary conditions in OpenFOAM

The advectiveFvPatchField class is one of the two main classes used for
non-reflecting boundary conditions in OpenFOAM.

It is a sub-class of the mixedFvPatchField class.

The two main functions of the advectiveFvPatchField class are:

advectionSpeed(): calculates and returns the value of the advection speed
at the boundary.

updateCoeffs(): updates the coefficients associated to the patch field, i.e
the refValue_, valueFraction_ and refGrad_ used in the
mixedFvPatchField boundary condition.

The advectionSpeed function returns phip/this->patch().magSf() where
phip is the flux that in OpenFOAM is calculated as U · Sf . The function hence
returns un, the velocity normal to the patch.
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advective boundary conditions in OpenFOAM (2)

updateCoeffs function of advectiveFvPatchField.C

1 const scalarField w(Foam::max(advectionSpeed(), scalar(0)));

2 const scalarField alpha(w*deltaT*this->patch().deltaCoeffs());

3

4 if (lInf_ > 0)

5 {

6 const scalarField k(w*deltaT/lInf_);

7

8 if

9 (

10 ddtScheme == fv::EulerDdtScheme<scalar>::typeName

11 || ddtScheme == fv::CrankNicolsonDdtScheme<scalar>::typeName

12 )

13 {

14 this->refValue() =

15 (

16 field.oldTime().boundaryField()[patchi] + k*fieldInf_

17 )/(1.0 + k);

18 this->valueFraction() = (1.0 + k)/(1.0 + alpha + k);

19 }

20
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advective boundary conditions in OpenFOAM (3)

updateCoeffs function of advectiveFvPatchField.C

1 else

2 {

3 if

4 (

5 ddtScheme == fv::EulerDdtScheme<scalar>::typeName

6 || ddtScheme == fv::CrankNicolsonDdtScheme<scalar>::typeName

7 )

8 {

9 this->refValue() = field.oldTime().boundaryField()[patchi];

10

11 this->valueFraction() = 1.0/(1.0 + alpha);

12 }

13

When the paremeter lInf_ = 0 (fully non-reflecting conditions),

refValue = ϕf at the previous time step,

valueFraction = 1/(1 + alpha), with alpha= w∆t
d .
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advective boundary conditions in OpenFOAM (4)

When lInf_ > 0 (partially non-reflecting), the function defines a parameter k

k =
w∆t

lInf
,

and then changes the values of refValue and valueFraction as

refValue = (ϕf + kϕ∞)
1

1 + k
,

valueFraction =
1 + k

1 + α+ k
,

Where expressions are substituted in the return of mixedFvPatchField, we
obtain:

ϕn+1
f = (ϕnf + kϕ∞)

1

1 + α+ k
+

α

1 + α+ k
ϕn+1
c ,

I.e, the same formula obtained from the LODI system for partially non-reflecting
boundaries with an advection speed w = un.
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waveTranmissive boundary conditions in OpenFOAM

The waveTranmissiveFvPatchField class is a sub-class
advectiveFvPatchField class.

It only has one function called advectionSpeed, which overrides the same
function of its base class advectiveFvPatchField.

The function returns

phip/this->patch().magSf() + sqrt(gamma_/psip)

Therefore, the waveTransmissive class works exactly like the advective, i.e it
transports the field at the boundary through a simple advection equation,
but with advection speed

w = un +

√
γ

ψ
= un + c ,
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How to use NR boundary conditions in OpenFOAM

According to the theory, the way these boundary conditions should be used is by
applying an advective boundary condition to the variables that are
advected with un and a waveTransmissive boundary condition to those
that travel with u + c .

In the OpenFOAM-v2112 tutorials however, the waveTransmissive boundary
condition is used in 10 tutorials and is always only applied only to pressure
while for velocity, temperature and other variables the inletOutlet boundary
condition is used.

In order to understand how to properly use this boundary conditions, a simple test
case has been studied:

A 2-D square domain with a fixed temperature constraint at the center
(so-called ”spark”) causing a pressure wave to travel towards the output.
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Test cases setup

The simulation has been runned twice with two sets of boundary conditions

Case 1 Case 2
p waveTransmissive waveTransmissive
U pressureInletOutletVelocity waveTransmissive
T inletOutlet advective
lInf 10 10

Case 1 corresponds to the OpenFOAM tutorials’ way to apply non-reflecting
boundary conditions.

Case 2 corresponds to the way these boundary conditions should be used
according to the LODI theory.
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Results

Figure: Pressure field for three different time steps in the 2-D square simulation

Results show that the correct way to apply OpenFOAM’s native set of
boundary condition is that described by Case 2.
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The problem with OpenFOAM’s approach

The problem OpenFOAM’s approach is that, according to the LODI theory, the
only velocity component that should be advected with an advection speed
w = un + c is the one normal to the outlet patch.

Instead, the components of the velocity orthogonal to the outlet patch should
travel with w = un.

To fix this problem, the boundary conditions have to be modified in order to:

1 Project the velocity on a reference frame normal to the outlet patch.

2 Separately solve the transport equations for the normal component un with
an advection speed w = un + c , and the tangential component ut with
w = un.

3 Project the velocity back to the cartesian reference frame.
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Projecting the velocity vector

Figure: Patch normal vector in the cartesian reference frame

the components of the patch normal and tangential vectors n and t in the
Cartesian reference frame are

n =

[
cos(θ)
sin(θ)

]
, t =

[
− sin(θ)
cos(θ)

]
,
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Projecting the velocity vector (2)

The velocity components in the patch-normal reference frame un and ut are
calculated through: [

un
ut

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
u
v

]
,

They have to be transported at the boundary face according to the LODI
relations, which for a fully non-reflecting case are:

(un)
n+1
f = (un)

n
f

1

1 + αuc
+

αuc

1 + αuc
(un)

n+1
c ,

(ut)
n+1
f = (ut)

n
f

1

1 + αu
+

αu

1 + αu
(ut)

n+1
c ,

Where the normal component is advected with un + c , hence αuc = ∆t(un+c)
d .

and the tangential component with un, hence αu = ∆tun
d .
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Projecting the velocity vector (3)

Once the velocity components are transported, it’s necessary to transform them
back the Cartesian reference frame through

[
u
v

]n+1

f

=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
un
ut

]n+1

f

=

(un)
n+1
f

[
cos(θ)
sin(θ)

]
+ (ut)

n+1
f

[
− sin(θ)
cos(θ)

]
,

This procedure has been implemented in the custom non-reflecting boundary
conditions

For this purpose, two new classes have been created: ”basic/mixedV2D” and
”derived/LODI2D” by modifying, adding functionalities and merging the mixed,
advective and waveTransmissive boundary conditions.
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Implementation of the mixedV2D boundary condition

A new version of the mixed boundary condition named mixedV2D has been
created, containing a series of new member data:

Un_ and Ut_ are the velocities normal and tangential to the patch.

n_ is the patch normal vector.

refValueU_ and refValueUC_ are the value fields necessary to build the
transport equations of the normal and tangential velocity components with
different advection speeds.

valueFractionU_ and valueFractionUC_ are the weights necessary to
build the transport equations of the normal and tangential velocity
components.

vector1_, vector2_ and vector3_ are the three vectors that define the
rotation matrix to go back to Cartesian coordinates.

Differently from the mixed class, which is a templated class, the new mixedV2D

boundary condition has to be defined only for vectorField type of inputs, hence
all the functions have to be re-defined accordingly.
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Implementation of the mixedV2D boundary condition (2)

vector1_, vector2_ and vector3_ data are initialized in the constructors.

Part of a constructor of the mixedV2DFvPatchField class

57 n_ = this->patch().nf();

58 forAll(vector1_, i)

59 {

60 vector1_[i][0] = n_[i][0];

61 vector1_[i][1] = n_[i][1];

62 vector1_[i][2] = n_[i][2];

63 }

64 forAll(vector2_, i)

65 {

66 vector2_[i][0] = -n_[i][1];

67 vector2_[i][1] = n_[i][0];

68 vector2_[i][2] = n_[i][2];

69 }

70 forAll(vector3_, i)

71 {

72 vector3_[i][0] = 0.0;

73 vector3_[i][1] = 0.0;

74 vector3_[i][2] = 1.0;
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Implementation of the mixedV2D boundary condition (3)

The components of the velocity in the patch-normal reference frame are
calculated by using the patch normal vector n

Part of the evaluate function of the mixedV2DFvPatchField class

323 forAll(U, i)

324 {

325 Un[i] = U[i][0]*n[i][0] + U[i][1]*n[i][1]; //ucos+vsin

326 Ut[i] = -U[i][0]*n[i][1] + U[i][1]*n[i][0]; //-usin+vcos

327 }

and are used in the various functions of the class to define the rest of the member
data.
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Implementation of the mixedV2D boundary condition (4)

The functions of the new class use two different refValue_ and
valueFraction_ data, one referred to the un component and the other to ut .
Before returning the output, these are multiplied by the vectors to go from
patch-normal to Cartesian reference frame.

valueInternalCoeffs function of the mixedV2DFvPatchField class

384 Foam::tmp<Foam::vectorField>

385 Foam::mixedV2DFvPatchVectorField::valueInternalCoeffs

386 (

387 const tmp<scalarField>&

388 ) const

389 {

390 scalarField valueU =

391 (1.0 - valueFractionU_);

392

393 scalarField valueUC =

394 (1.0 - valueFractionUC_);

395

396 return vector1_ * valueUC + vector2_ * valueU;

397 }
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Implementation of the LODI2D boundary condition

The member variables valueFractionU_, valueFractionUC_, refValueU_ and
refValueUC_ used inside the functions of mixedV2D are defined inside a second
class that inherits from mixedV2D, called LODI2D.

This class’ structure is identical to the advective class, but with some
differences:

It is not templated, it has to take into account only vector type of inputs.

It has two different advectionSpeed functions in order to transport the
normal and orthogonal components of the velocity differently.

It has much more member data, required to assign the values to the data of
the mixedV2D class.
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Implementation of the LODI2D boundary condition (2)

The member data added to the LODI2D class are:

Unold_, Utold_, Unoold_ and Utoold_ are the normal and tangential
velocity vectors at the previous and even previous times.

fieldInf_ is the field (the velocity in this case) at infinity.

UnInf_ is the component of the velocity at infinity normal to the boundary
patch.

lInf_ is the relaxation length used to calculate the strength of the reflecting
wave when considering partially non-reflecting boundary conditions.

The Unold_, Utold_, Unoold_ and Utoold_ data are calculated through the
field.oldTime() and the field.oldTime.oldTime() functions, and projected
into the patch-normal reference frame.
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Implementation of the LODI2D boundary condition (2)

Part of the updateCoeffs function of the LODI2DFvPatchField class

284 const scalarField wU(Foam::max(advectionSpeed(), scalar(0)));

285 // advection speed U +- C

286 const scalarField wUC(Foam::max(advectionSpeedWT(), scalar(0)));

287

288 // Calculate the field wave coefficient alpha with U and U+-C(See notes)

289 const scalarField alphaU(wU*deltaT*this->patch().deltaCoeffs());

290 const scalarField alphaUC(wUC*deltaT*this->patch().deltaCoeffs());

The updateCoeffs function is the core of the class.

The two advectionSpeed functions (identical to those from the advective and
waveTransmissive classes) are used to calculate the advection speeds.

The two parameters alpha corresponding to the two advection speeds are
calculated.

Like for the advective class, the core of the function corresponds to a series of
if statements that fill the valueFraction_ and refValue_ scalar fields.
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implementation of the LODI2D boundary condition (3)

Part of the updateCoeffs function of the LODI2DFvPatchField class

320 if (lInf_ > 0)

321 {

322 const scalarField k(wUC*deltaT/lInf_);

323 if

324 (

325 ddtScheme == fv::EulerDdtScheme<scalar>::typeName

326 || ddtScheme == fv::CrankNicolsonDdtScheme<scalar>::typeName

327 )

328 {

329 this->refValueU() = Utold_;

330

331 this->refValueUC() =

332 (

333 Unold_ + k*UnInf_

334 )/(1.0 + k);

335

336 this->valueFractionU() = 1.0/(1.0 + alphaU);

337 this->valueFractionUC() = (1.0 + k)/(1.0 + alphaUC + k);

338 }
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implementation of the LODI2D boundary condition (4)

When inserted in the expression of the functions of the mixedV2D class, this
refValue and valueFraction data yield the following expressions for the normal
and tangential velocity components

(un)
n+1
f = ((un)

n
f + k(un)

∞)
1

1 + αuc + k
+

αuc

1 + αuc + k
(un)

n+1
c ,

(ut)
n+1
f = (ut)

n
f

1

1 + αu
+

αu

1 + αu
(ut)

n+1
c ,

Meaning that the normal component of the velocity is being transported
with un + c , and sees a partially non-reflecting boundary, while the tangential
component is transported with u and sees a perfectly non-reflecting boundary.
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Compiling the custom boundary conditions

For compiling the custom BCs place the mixedV2D and LODI2D folders inside the
user’s src/finiteVolume folder with the following structure:

finiteVolume

Make

files

options

fields

fvPatchFields

basic

mixedV2D

mixedV2DFvPatchVectorField.H

mixedV2DFvPatchVectorField.C

derived

LODI2D

LODI2D2DFvPatchVectorField.H

LODI2D2DFvPatchVectorField.C
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Introduction

Simulations are performed with OpenFOAM native non-reflecting boundary
conditions and with the custom boundary conditions.

The difference between the custom LODI2D and the native waveTransmissive
boundary conditions is substantial, however, many problems become numerically
very similar since in most practical cases the velocity is already normal to
the outlet patches, and the tangential components tend to be very small.

Moreover, the custom boundary conditions up to this point have only been
implemented for a 2-D case on the x − y plane, whilst turbulence and other flow
phenomena are intrinsically three-dimensional.

For these reasons, defining a test case to assess properly the performance of the
new boundary conditions requires more time and focus, and will be part of future
work, together with an implementation of the full three-dimensional
implementation of the LODI relations.
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2-D circle simulation

The first test case is a simple 2-D circle with a diameter of 2 m and a
temperature spark in the center that causes a series of pressure waves to travel
towards the boundaries.

The simulation has been performed with two different sets of BCs, the
OpenFOAM native boundary conditions and the custom LODI2D boundary
conditions for the velocity

Case 1 Case 2
p waveTransmissive waveTransmissive
U waveTransmissive LODI2D
T advective advective
lInf 10 10

The solver is rhoPimpleFoam for a time interval of t = 0.01s and an initial
∆t = 2e + 6.
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Figure: Propagation of pressure waves in the domain.

Figure: Propagation of pressure waves along the horizontal axis.
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2-D circle simulation results

The pressure waves created by the spark travels towards the boundary and, for
both cases, exits the domain with no visible reflection.

The two solutions are identical, since because of the geometry of the domain, the
velocity is always parallel to the outlet patches therefore transporting both
components of the velocity with advection speed w = u + c becomes equivalent
to rotating the velocity, transporting the normal component with u + c and going
back to the Cartesian reference frame, since the velocity component tangential to
the patch is always null.

In order to further investigate the correct usage of OpenFOAM’s native set of
non-reflecting boundary conditions, the same simulation has been also performed
with the setup implemented in all the tutorials,
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2-D flow around bluff body

This test case consists of a bluff body inside a laminar free-stream flow.

The characteristic length of the body is L = 0.1 m while the length of the domain
is LD = 115L.

The overall computational cost of the simulation is kept small by applying a
strong mesh refinement in correspondence of the body and its wake, which limits
the overall cell count to 38200 cells.

The laminar flow past the square body is simulated at M∞ = 0.1 to establish the
effectiveness of numerical outflow boundary treatments for flows past bluff bodies.

Under these flow conditions, vortices are periodically shed in the bluff body
wake and preventing spurious reflection of pressure waves from the outflow is
challenging for numerical boundary conditions.
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2-D flow around bluff body - results

Figure: Pressure field of the 2-D bluff body simulation for four successive time steps for
the LODI2D case (top) and the waveTranmissive case (bottom)
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2-D flow around bluff body - results (2)

Figure: Uy field of the 2-D bluff body simulation for four successive time intervals, for
the two cases. The iso contours are shown for Uy ranging from 1 to 15 m/s.
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2-D flow around bluff body - results (3)

p̄′2 represents the
average of the
product of the
pressure fluctuations.

It is a parameter that
measures the
magnitude of the
pressure fluctuations
in the field.

In the
waveTransmissive

case, the pressure
fluctuations seem to
cover a larger area
downstream of the
bluff body.

Figure: p̄′2 field of the 2-D bluff body
simulation.
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2-D flow around bluff body - results (3)

For both cases, some minor pressure waves can be observed at the outlet.

The p̄′2 field shows a slightly larger pressure fluctuation zone downstream of
the body in the waveTransmissive case, this could indicate a better
performance of the LODI2D boundary conditions.

It is worth noting that for this particular geometry the outlet patch is
perfectly parallel to the Cartesian reference frame and the only difference
between the two simulations is that in the waveTransmissive case, Uy at the
boundary is transported with an advection speed u + c , while in the LODI2D case,
it is transported with u.

Regardless of this, the overall behavior of the two simulations is similar,
therefore further investigation is clearly required.
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Conclusions

In conclusion:

OpenFOAM’s approach to non-reflecting boundary conditions consists of two
classes: advective and waveTransmissive.

These classes allow to transport the velocity vector with advection speed
un + c , which theory shows that should be applied only to the
patch-normal component.

Two new classes: mixedV2D and LODI2D have been implemented in order to
transport the velocity components with the correct advection speeds.

Regardless of the difference between OpenFOAM’s native boundary
conditions and the theory, their performance is already satisfactory for
most applications.

However, the way OpenFOAM’s native boundary conditions have to be
applied is different to the way they are applied in the tutorials.

Preliminary simulations have shown some slight improvement in terms of
performance of the LODI2D boundary conditions, but firther investigation is
required.
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Goodbye

Thank you for your attention!
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