
Introduction OpenFOAM Implementation New solver and library Solver performance

Developing a solver to model the photopolymerization
process

Roozbeh Salajeghe

Manufacturing Section/Construct Department,
Technical University of Denmark (DTU),

Kongens Lyngby, Denmark

January 19, 2023

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 1 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Vat photopolymerization

Pagac et al. 1 [2] Pagac et al. 1 [2]

1Pagac et al., A review of vat photopolymerization technology: Materials, applications,
challenges, and future trends of 3d printing

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 2 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Vat photopolymerization

Kelly et al. 2 [1]

2Kelly et al., Volumetric additive manufacturing via tomographic reconstruction
Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 3 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Theory

PI
kd−−→ R∗

M+ R∗ ki−−→ P∗
1

P∗
n +M

kp−−→ P∗
n+1

P∗
n + P∗

m
kt−−→ Mn+m

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 4 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Theory

Rate of the chemical reactions

Ri = 2.3ϕiϵ[PI]I

Rp = kp[P
∗][M]

Rt = kt [P
∗]2

ϕi : Initiation quantum yield

ϵ : absorptivity

kp : propagation reaction constant

kt : termination reaction constant

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 5 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Theory

The kinetic constants of reactions are functions of both free volume and
conversion degree

kp =
kp0

1 + exp
[
Ap

(
1
f − 1

fcp

)]

kt =
kt0

1 +
{
Rrdkp[M]/kt0 + exp

[
At

(
1
f − 1

fct

)]}−1

kp0 = AEpe
−Ep
RT

kt0 = AEte
−Et
RT

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 6 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Theory

The fractional free volume used in the previous equations is defined as below.

f = fMϕM + fp(1− ϕM)

fM = 0.025 + αM(T − TgM)

fP = 0.025 + αP(T − TgP)

ϕM =
1− X

1− X + ρM

ρP
X

In which X is the monomer conversion.

X =
[M0]− [M]

[M0]

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 7 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Theory

The critical fractional free volume (fc) that is used in the above equations is a
function of the temperature.

1

fc
=

1

f refc

+
E

AR
(
1

T
− 1

T ref
)

Specific heat capacity and density are both functions of the temperature and the
monomer conversion degree.

CP,M = 5.6× T (K) + 218.6

CP,P = 9.1× T (K)− 1535.5

CP = CP,M(1− X) + CP,PX

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 8 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Theory

ρP =
1200

1 + αP(T − 308)

ρM =
1128

1 + αM(T − 298)

ρ = ρMϕM + ρP(1− ϕM)

Finally, the continuity, momentum, species transport and energy equations are
defined as below. In order to solve the incompressible momentum equations, the
temperature dependence of the density is disregarded.

∇.U = 0

∂(ρU)

∂t
+∇.(ρUU) = −∇p +∇.(µ∇U) + F

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 9 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Theory

∂(ρSi)

∂t
+∇.(ρUSi) = ∇.(Ds∇Si) + R

Si = [PI], [M], [P∗]

∂(ρCpT)

∂t
+∇.(ρUCpT) = ∇.(k∇T) + QR

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 10 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Simulation example case

SLA simulation in Tang’s thesis [3]

3Tang, STEREOLITHOGRAPHY CURE PROCESS MODELING
Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 11 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Theory

The intensity field is defined as

I = I0 exp

{
−2(Vs(t − t0))

2 + y2

w2
0

}
exp (−z/Dp)

λ(nm)

1.196× 108

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 12 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

reactingFoam Solver

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 13 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

createFields.H

The current tutorial focuses on the chemical reactions modeling in reactingFoam

solver.

In createFields.H

4 autoPtr<psiReactionThermo> pThermo(psiReactionThermo::New(mesh));

5 psiReactionThermo& thermo = pThermo();

The composition of the mixture is saved in a variable with the name composition

8 basicSpecieMixture& composition = thermo.composition();

The function composition is defined inside the basicThermo class.

1 //- Return the composition of the mixture

2 virtual typename MixtureType::basicMixtureType&

3 composition()

4 {

5 return *this;

6 }

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 14 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

createFields.H

Then, the mass fraction of the mixture is stored in the variable Y.

9 PtrList<volScalarField>& Y = composition.Y();

The access function Y() defined inside the basicMultiComponentMixture
returns a PtrList to the mass fractions of the species involved in the reaction.

Later, a pointer of type combustionModel is defined that will point to an object
of one of the derived classes of this class that is specified in the
combustionProperties dictionary.

65 autoPtr<CombustionModel<psiReactionThermo>> reaction

66 (

67 CombustionModel<psiReactionThermo>::New(thermo, turbulence())

68);

Here, it is assumed that the laminar combustion model has been chosen.

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 15 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Combustion models in OF

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 16 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

createFields.H

At the end of the createFields.H the heat generation rate is defined.

78 volScalarField Qdot

79 (

80 IOobject

81 (

82 "Qdot",

83 runTime.timeName(),

84 mesh,

85 IOobject::READ_IF_PRESENT,

86 IOobject::AUTO_WRITE

87),

88 mesh,

89 dimensionedScalar(dimEnergy/dimVolume/dimTime, Zero)

90);

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 17 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

YEqn.H

A different convection scheme is defined for the species transport equations and
the energy equation.

1 tmp<fv::convectionScheme<scalar>> mvConvection

2 (

3 fv::convectionScheme<scalar>::New

4 (

5 mesh,

6 fields,

7 phi,

8 mesh.divScheme("div(phi,Yi_h)")

9)

10);

It is followed by the correct() function that is called on the reaction object.

13 reaction->correct();

The correct() function in the laminar combustion model is shown below.

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 18 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

laminar::correct()

1 template<class ReactionThermo>

2 void Foam::combustionModels::laminar<ReactionThermo>::correct()

3 {

4 if (this->active())

5 {

6 if (integrateReactionRate_)

7 {

8 if (fv::localEulerDdt::enabled(this->mesh()))

9 {

10 const scalarField& rDeltaT =

11 fv::localEulerDdt::localRDeltaT(this->mesh());

12

13 scalar maxTime;

14 if (this->coeffs().readIfPresent("maxIntegrationTime", maxTime))

15 {

16 this->chemistryPtr_->solve

17 (

18 min(1.0/rDeltaT, maxTime)()

19);

20 }

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 19 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

laminar::correct()

1 else

2 {

3 this->chemistryPtr_->solve((1.0/rDeltaT)());

4 }

5 }

6 else

7 {

8 this->chemistryPtr_->solve(this->mesh().time().deltaTValue());

9 }

10 }

11 else

12 {

13 this->chemistryPtr_->calculate();

14 }

15 }

16 }

chemistryPtr_ is a pointer of type BasicChemistryModel, defined in
chemistryCombustion class, a base class of the laminar class.

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 20 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

YEqn.H

Then, the value of the reaction heat generation is updated by calling Qdot()

function on reaction object.

14 Qdot = reaction->Qdot();

The Qdot function inside the laminar combustion model is shown below.

1 ...

2 if (this->active())

3 {

4 tQdot.ref() = this->chemistryPtr_->Qdot();

5 }

6 ...

which simply calls on the Qdot() function of the chemistryPtr_. This function
is defined inside the standardChemistryModel class.

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 21 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

1 ...

2 forAll(Y_, i)

3 {

4 forAll(Qdot, celli)

5 {

6 const scalar hi = specieThermo_[i].Hc();

7 Qdot[celli] -= hi*RR_[i][celli];

8 }

9 }

10 ...

Which calculates the reaction’s heat according to the following formula

Q̇released = −(
∑

products

Hf Ṙ −
∑

reactants

Hf Ṙ)

Next, the species transport equations are defined and solved.

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 22 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 23 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

In the above piece of code, the R() function of the reaction pointer is called
as a source term. This function, which calculates the production/consumption of
each species, is shown below for the laminar class.

1 template<class ReactionThermo>

2 Foam::tmp<Foam::fvScalarMatrix>

3 Foam::combustionModels::laminar<ReactionThermo>::R(volScalarField& Y) const

4 {

5 tmp<fvScalarMatrix> tSu(new fvScalarMatrix(Y, dimMass/dimTime));

6

7 fvScalarMatrix& Su = tSu.ref();

8

9 if (this->active())

10 {

11 const label specieI =

12 this->thermo().composition().species()[Y.member()];

13

14 Su += this->chemistryPtr_->RR(specieI);

15 }

16

17 return tSu;

18 }

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 24 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

reactingFoam is not suitable for photopolymerization
modeling!!

It is not feasible to specify an exact value for the
molecular weight of the crosslinked molecule as

its shape and size are not known.

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 25 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

New solver and library

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 26 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Solver structure

Solver

reactingCureFoam Models the photopolymerization process in a stagnant or
flowing fluid

Library

photoCure class Evaluates and updates the properties of the resin
cureReaction class Evaluates and updates the reaction parameters

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 27 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

PhotoCure class

This class will be set up from scratch. However, the header of the file should be
copied from another existing predefined class.
The folder of the library is made in the user src directory.

cd $WM_PROJECT_USER_DIR/src

mkdir photoPolymerization

cd photoPolymerization

The header is copied from the viscosityModel class.

cp -r $FOAM_SRC/transportModels/incompressible/viscosityModels/

viscosityModel ./

mv viscosityModel photoCure

cd photoCure

rm viscosityModelNew.C

mv viscosityModel.H photoCure.H

mv viscosityModel.C photoCure.C

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 28 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

PhotoCure.H

In the photoCure.H file, modify the header section to show the proper name and
description.
In the photoCure.H file, the data and members of the class are declared and they
are later defined in the photoCure.C file.
The content of the class should be declared between the following macro lines to
prevent the multiple inclusion of the file’s contents within other classes.

1 #ifndef photoCure_H

2 #define photoCure_H

3

4 ... Contents of the file

5

6 #endif

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 29 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

PhotoCure.H

The first protected member of the class is a dictionary to read the resin properties
from a file.

1 const dictionary specieProperties_;

Then the field variables that will later be initialized by the constructor are
declared.

1 // Temperature field [K]

2 const volScalarField& T_;

3

4 // Conversion degree [dimless]

5 const volScalarField& X_;

6

7 //Storing the mesh

8 const fvMesh& mesh_;

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 30 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

PhotoCure.H

In the next stage, the variables that store the properties of the species are
declared. Just the first one is shown here.

1 //Monomer diffusion coefficient

2 const dimensionedScalar Dm_;

Then the properties of the mixture are declared as field variables.

1 // * * * * * * Properties of the mixture * * * * * * *

2

3 volScalarField rho_; // Density of mixture

4

5 volScalarField Cp_; // Specific heat of mixture

6

7 volScalarField mu_; // Viscosity of mixture

8

9 volScalarField kappa_; // Thermal conductivity of mixture

10

11 volScalarField alphat_; // Thermal diffusivity of mixture alpha = kappa/Cp

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 31 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

PhotoCure.H

Afterwards, the public members are declared. The first public member is the
consturctor, which takes three arguments here.

1 // Constructors

2

3 photoCure

4 (

5 const dictionary& specieProperties,

6 const volScalarField& T,

7 const volScalarField& X

8);

And other member functions are called, one of which is shown here.

1 // Member Functions

2 //Calculates the Cp value of the species

3 tmp<volScalarField> calcAndGetCpi

4 (

5 const dimensionedScalar Cp0,

6 const dimensionedScalar Cp1,

7 const volScalarField& T

8);

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 32 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

PhotoCure.H

Afterwards, the access members are defined. These members are some functions
that simply give access to the protected or private data from the outside of the
class. One access function that returns the density of the mixture is shown below.

1 tmp<volScalarField> rho() const

2 {

3 return rho_;

4 }

For this tutorial, the c++ polymorphism concept will be used. So, the functions
that will be used in the derived class should be declared as virtual here. Since no
definition is provided here, these functions are called pure virtual, and the class
will be an abstract class. One of the pure virtual functions is shown here.

1 virtual tmp<volScalarField> Ki() = 0;

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 33 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

PhotoCure.H

Now, based on the classes that have been used in the the file, the corresponding
header files should be included at the top of the file.

1 #ifndef photoCure_H

2 #define photoCure_H

3

4 #include "dictionary.H"

5 #include "fvMesh.H"

6 #include "dimensionedScalar.H"

7 #include "volFields.H"

8

9 // * //

10

11 namespace Foam

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 34 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

PhotoCure.C

photoCure.C contains the definitions of the members that were previously
declared in the photoCure.H file.
First, the photoCure.H file should be included.

1 #include "photoCure.H"

Next, the constuctor is defined.

1 Foam::photoCure::photoCure

2 (

3 const dictionary& specieProperties,

4 const Foam::volScalarField& T,

5 const Foam::volScalarField& X

6)

7 :

8 specieProperties_(specieProperties),

9 T_(T),

10 X_(X),

11 mesh_(T_.mesh()),

12 ...

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 35 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

PhotoCure.C

In the constructor, the dictionary object is assigned to the dictionary argument
that is passed as an argument. The monomer conversion and the temperature are
also initialized with the constructor arguments. Other protected members are
initialized by reading the dictionary.

1

2 ...

3 Dm_("D", dimViscosity, specieProperties_.subDict("Monomer").subDict("

transport")),

4 mu_m_("mu", dimViscosity*dimDensity, specieProperties_.subDict("Monomer").

subDict("transport")),

5 kappa_m_("kappa", dimPower/(dimLength*dimTemperature), specieProperties_.

subDict("Monomer").subDict("transport")),

6 ...

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 36 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

PhotoCure.C

In the constructor, the field variables are initialized by the monomer corresponding
values. As an example, density initialization is shown here.

1 rho_

2 (

3 IOobject

4 (

5 "rho",

6 mesh_.time().timeName(),

7 mesh_,

8 IOobject::NO_READ,

9 IOobject::AUTO_WRITE

10),

11 mesh_,

12 rho_m_

13),

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 37 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

PhotoCure.C

In the block of the constuctor, the correct function is called to update the field
variables. This function will be defined later.

1 {

2 correct();

3 }

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 38 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

PhotoCure.C

Next, the other member functions are defined. The first one is a member to
calculate the specific heat capacity of each species.

1 Foam::tmp<Foam::volScalarField> Foam::photoCure::calcAndGetCpi

2 (

3 const dimensionedScalar Cp0,

4 const dimensionedScalar Cp1,

5 const volScalarField& T

6)

7 {

8 tmp<volScalarField> Cpi = Cp0 + Cp1*T;

9

10 return Cpi;

11 }

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 39 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

PhotoCure.C

Then, this function is used to evaluate the specific heat capacity of the mixture.

1 void Foam::photoCure::calcCp()

2 {

3

4 const volScalarField& Cp_m = calcAndGetCpi(Cp0_m_, Cp1_m_, T_)();

5 const volScalarField& Cp_p = calcAndGetCpi(Cp0_p_, Cp1_p_, T_)();

6

7 Cp_ = Cp_m*(1 - X_) + Cp_p*X_;

8

9 }

The calcMu function, updates the viscosity of the mixture in a similar fashion

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 40 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

PhotoCure.C

Density of the mixture is calculated based on the monomer volume fraction, Ym.

1 void Foam::photoCure::calcRho(const volScalarField& Ym)

2 {

3 rho_ = rho_m_*Ym + rho_p_*(1 - Ym);

4 }

Finally, the correct function calls the other functions to update the fields.

1 void Foam::photoCure::correct()

2 {

3 calcCp();

4 calcMu();

5 calcAlphat();

6 // The calcRho function will be called in the derived class.

7 }

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 41 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

cureReaction.H

cureReaction class is made in a similar manner as the photoCure class, except that
the new class is inherited from the previous one. So, the header file of the
previous class should be included at the top of the cureReaction.H file.

1 #ifndef cureReaction_H

2 #define cureReaction_H

3

4 #include "photoCure.H"

5

6 // * //

7

8 namespace Foam

9 ...

Then, the inheritance is declared.

1 class cureReaction

2 : public photoCure

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 42 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

cureReaction.H

The protected variables and functions are declared similar to the previous class. At
the end of this file, the access functions are defined that will give access to the
protected data from outside of the class. Two of the access functions that give
the value of the initiation and propagation constants are shown below.

1 // * * * * * * Access functions * * * * * * *

2

3 // initiation reaction constant

4 tmp<volScalarField> Ki()

5 {

6 return Ki_;

7 }

8

9 // propagation reaction constant

10 tmp<volScalarField> Kp()

11 {

12 return Kp_;

13 }

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 43 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

cureReaction.C

At the beginning of the cureReaction.C file, the consturctor is defined. The
constructor receives five arguments, three of which are passed to the constructor
of the base class. After initializing a dictionary file, the other variables are
initialized similar to the previous case.

1 Foam::cureReaction::cureReaction

2 (

3 const dictionary& reactionParameters,

4 const dictionary& specieProperties,

5 const Foam::volScalarField& T,

6 const Foam::volScalarField& X,

7 const Foam::volScalarField& M

8)

9 :

10 photoCure(specieProperties, T, X),

11 reactionParameters_(reactionParameters),

12 M_(M),

13 ...

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 44 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

cureReaction.C

The functions that were declared in the cureReaction.H file, are defined here.
These functions evaluate reaction constants, monomer volume fraction, critical
fractional free volume, and fractional free volume. The function that is responsible
for the evaluation of the propagation constant is shown as an example here.

1 void Foam::cureReaction::calcKp()

2 {

3

4 const volScalarField& fcp =

5 calcAndGetFc(Ep_, Ap_, TrefRp_, fcRefRp_, T_)();

6

7 Kp_ = Aep_*exp(-Ep_/(Rconst_*T_));

8

9 Kp_ /= (scalar(1) + exp(Ap_*(scalar(1)/f_ - scalar(1)/fcp)));

10

11 }

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 45 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

cureReaction.C

At the end, the correct function is defined, which calls the other functions of the
current class to update the reaction values and the correct function of the
previous class to update the properties of the resin.

1 void Foam::cureReaction::correct()

2 {

3 photoCure::correct();

4 calcYm();

5 calcF();

6 calcKp();

7 calcKt();

8 }

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 46 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Compiling the library

To compile the library, the Make directory should be created, which contains the
files and options files.

cd $WM_PROJECT_USER_DIR/src/photoPolymerization

mkdir Make

cd Make

touch files

touch options

In the files file, it is specified which files should be compiled, and what the library
should be named. So, the following lines should be added to this file.

1 photoCure/photoCure.C

2 cureReaction/cureReaction.C

3

4 LIB = $(FOAM_USER_LIBBIN)/libphotoPolymerization

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 47 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Compiling the library

In the options file, the libraries that are used and the directories from which
some files are included, are specified. This file should read as below.

1 EXE_INC = \

2 -I$(LIB_SRC)/finiteVolume/lnInclude \

3 -I$(LIB_SRC)/meshTools/lnInclude
4

5 LIB_LIBS = \

6 -lfiniteVolume

Finally, the library is compiled by executing the wmake command.

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 48 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

reactingCureFoam solver

When parts of the resin cure, two different fluid co-exit, which resembles a
two-phase flow. In this regard, interFoam solver has been chosen as the frame
work to build the new solver.

cd $WM_PROJECT_USER_DIR/applications/solvers

cp -r $FOAM_SOLVERS/multiphase/interFoam/ ./

mv interFoam/ reactingCureFoam

cd reactingCureFoam

mv interFoam.c reactingCureFoam.c

Since the current solver does not rely on the VOF method and the variable α,
everything that is related to them should be removed from the solver. Refer to the
attached files to see which lines should be omitted.

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 49 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

reactingCureFoam solver

The cureReaction.H file should be included before the main function.

1 ...

2 #include "fvcSmooth.H"

3 #include "cureReaction.H" // Added

4

5 // * //

6

7 int main(int argc, char *argv[])

8 ...

Next, the intensity field is created and initialized. For this purpose, a new file with
the name createI.H is created.

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 50 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

reactingCureFoam solver

Inside the createI.H file, a dictionary object is defined that is responsible to
read the laser settings from a file inside the constant directory of the case.

1 IOdictionary laserSettings

2 (

3 IOobject

4 (

5 "laserSettings",

6 runTime.constant(),

7 mesh,

8 IOobject::MUST_READ_IF_MODIFIED,

9 IOobject::NO_WRITE

10)

11);

12

13 dimensionedScalar Vs("Vs", dimVelocity, laserSettings); //laser scanning

velocity

14

15 ...

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 51 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

reactingCureFoam solver

After reading the intensity settings, the intensity field is updated according to the
equation that was shown previously.

I = I0 exp

{
−2(Vs(t − t0))

2 + y2

w2
0

}
exp (−z/Dp)

λ(nm)

1.196× 108

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 52 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

reactingCureFoam solver

1 const volVectorField& C = mesh.C();

2 const dimensionedScalar conv("conv", dimEnergy*dimLength/dimMoles, 1.196e8); //

conversion constant

3 dimensionedScalar y("y", dimLength, Foam::scalar(0));

4 dimensionedScalar z("z", dimLength, Foam::scalar(0));

5 dimensionedScalar r2("r2", dimLength*dimLength, Foam::scalar(0));

6

7

8 forAll(C, counter)

9 {

10 //const scalar& x = C[counter].component(vector::X);

11 y.value() = C[counter].component(vector::Y);

12 z.value() = C[counter].component(vector::Z);

13 r2 = Vs*Vs*(t-t0)*(t-t0) + y*y;

14 I[counter] = (I0*Foam::exp(-2*r2/(w0*w0))*Foam::exp(-mag(z)/Dp)*lambda/

conv).value();

15 }

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 53 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

reactingCureFoam solver

In a similar fashion, another file with the name initReact.H is created that is
responsible for the initialization of the parameters of the reaction. After creating
two dictionaries that are responsible for reading the resin’s properties and reaction
parameters, the concentration fields are created. Monomer concentration is shown
below.

1 volScalarField M

2 (

3 IOobject

4 (

5 "M",

6 runTime.timeName(),

7 mesh,

8 IOobject::MUST_READ,

9 IOobject::AUTO_WRITE

10),

11 mesh

12);

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 54 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

reactingCureFoam solver

Based on the polymorphism concepts of c++, a pointer of type photoCure is
created that points to an object of cureReaction class.

1 autoPtr<photoCure> reaction

2 (

3 new cureReaction

4 (

5 reactionParameters,

6 specieProperties,

7 T,

8 X,

9 M

10)

11);

Using the access functions of the class, the variables for reaction parameters and
resin properties are retrieved in other variables to make it easier to use them. One
exaple is shown below.

1 const volScalarField& Ki = reaction -> Ki()();

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 55 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

reactingCureFoam solver

The two files that are just created are included in the createFields.H file after
the construction of the temperature field.

1 Info<< "Reading field T\n" << endl;

2 volScalarField T

3 (

4 IOobject

5 (

6 "T",

7 runTime.timeName(),

8 mesh,

9 IOobject::MUST_READ,

10 IOobject::AUTO_WRITE

11),

12 mesh

13);

14

15

16 //*********************** Creating intensity and reactions

17 #include "createI.H"

18 #include "initReact.H"

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 56 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

reactingCureFoam solver

Since the intensity is a function of the time, it should be updated at every time
step. Accordingly, a file with the name calcI.H is included in the main file after
the time step calculation.

1 ...

2 ++runTime;

3 Info<< "Time = " << runTime.timeName() << nl << endl;

4

5 //*********** Updating intensity**********

6 #include "calcI.H"

7 //**

8 // --- Pressure-velocity PIMPLE corrector loop

9 while (pimple.loop())

10 ...

in which, the intensity is updated as below.

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 57 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

reactingCureFoam solver

1 t.value() = runTime.timeOutputValue();

2

3 forAll(C, counter)

4 {

5 y.value() = C[counter].component(vector::Y);

6 z.value() = C[counter].component(vector::Z);

7 r2 = Vs*Vs*(t-t0)*(t-t0) + y*y;

8 I[counter] = (I0*Foam::exp(-2*r2/(w0*w0))*Foam::exp(-mag(z)/Dp)*lambda/

conv).value();

9 }

Next, the energy and species transport equations should be solved. These
equations are solved within the EEqn.H and CEqn.H files that are added after the
momentum predictor step, UEqn.H

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 58 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

reactingCureFoam solver

1 #include "UEqn.H"

2 //********* Specie transport and Temperature Eqs***********

3 #include "CEqn.H"

4 #include "EEqn.H"

5

6 #include "updateR.H"

7 //***

At the end of this piece of code, the reaction rates and heat generation are
updated in the file with the name updateR.H which reads.

1 reaction -> correct();

2

3 Ri = Ki*PI*I;

4 Rp = Kp*pDot*M;

5 Rt = Kt*pDot*pDot;

6

7 Qdot = Rp*heat;

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 59 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Solver compilation

The following lines should be added to the options file in the Main directory.

1 EXE_INC = \

2 ...

3 -I$(LIB_SRC)/TurbulenceModels/phaseIncompressible/lnInclude \

4 -I../photoPolymerization/lnInclude

5

6 EXE_LIBS = \

7 ...

8 -lincompressibleTurbulenceModels \

9 -L$(FOAM_USER_LIBBIN) \

10 -lphotoPolymerization

And the files file should read as below.

1 reactingCureFoam.C

2

3 EXE = $(FOAM_USER_APPBIN)/reactingCureFoam

Then, compile the solver.

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 60 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Case setup

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 61 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Boundary and initial conditions

Table: Initial values for concentrations and
temperature

Variable [unit] Initial Value
M [mol/m3] 1974
PI [mol/m3] 90

pDot [mol/m3] 0
T [K] 300

All the graphs that will be shown below are plotted on the red dot that is shown
in this figure. This point is located 1 mm below the origin.

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 62 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Intensity over time

I = I0 exp

{
−2(Vs(t − t0))

2 + y2

w2
0

}
exp (−z/Dp)

λ(nm)

1.196× 108

Table: laser parameters

Parameter Value unit
Vs 0.0272 m/s

lambda 325 nm
P 0.0288 W
w0 1.1e-4 m
Dp 2.483e-3 m
t0 0.02 s

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 63 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Intensity over time

Tang’s thesis 3 [3]
Current solver

3Yanyan Tang, Stereolithography cure process modeling
Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 64 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Resin properties

Table: Properties of species

Monomer Polymer
Property Value unit Property Value unit

Dm 1e−14 m2/s - - -
µm 0.15 Pa.s µp 0.15 Pa.s
κm 0.142 W/m/k κp 0.142 W/m/k
Tg ,m 205.65 K Tg ,p 488.35 K
αm 0.00177 1/K αp 0.00012 1/K

Cp0,m 218.6 J/kg/K Cp0,p -1535.5 J/kg/K
Cp1,m 5.6 J/kg Cp1,p 9.1 J/kg
ρm 1099 kg/m3 ρp 1199 kg/m3

Macroradical Photoinitiator
DpD 1e−16 m2/s DPI 1e−14 m2/s

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 65 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Table: Reaction parameters

Parameter Value unit
Φ 0.6 1
ϵ 19.9 m3/mol/m
h 2.85e5 J/mol

Propagation
Ap 6.1 1
Aep 28.4 m3/mol/s
Ep 1627 J/mol

TrefRp 0.0031 1/K
fcRefRp 6 1

Macroradical
At 6.4 1
Aet 8916 m3/mol/s
Et 2103 J/mol
Rrd 0.013 m3/mol

TrefRt 0.0031 1/K
fcRefRt 6 1

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 66 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Photoinitiator concentration variation over time

Tang’s thesis 3 [3]
Current solver

3Yanyan Tang, Stereolithography cure process modeling
Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 67 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Radical concentration variation over time

Tang’s thesis 3 [3]
Current solver

3Yanyan Tang, Stereolithography cure process modeling
Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 68 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Monomer conversion over time

Tang’s thesis 3 [3]
Current solver

3Yanyan Tang, Stereolithography cure process modeling
Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 69 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Temperature over time

Tang’s thesis 3 [3]
Current solver

3Yanyan Tang, Stereolithography cure process modeling
Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 70 / 71

Introduction OpenFOAM Implementation New solver and library Solver performance

Bibliography

Brett E Kelly, Indrasen Bhattacharya, Hossein Heidari, Maxim Shusteff,
Christopher M Spadaccini, and Hayden K Taylor.
Volumetric additive manufacturing via tomographic reconstruction.
Science, 363(6431):1075–1079, 2019.

Marek Pagac, Jiri Hajnys, Quoc-Phu Ma, Lukas Jancar, Jan Jansa, Petr
Stefek, and Jakub Mesicek.
A review of vat photopolymerization technology: Materials, applications,
challenges, and future trends of 3d printing.
Polymers, 13(4):598, 2021.

Yanyan Tang.
Stereolithography cure process modeling.
Georgia Institute of Technology, 2005.

Roozbeh Salajeghe Solver for photopolymerization process January 19, 2023 71 / 71

	Introduction
	OpenFOAM Implementation
	New solver and library
	Library

	Solver performance

