
Cite as: William.A.Hay: A low-Mach number solver for variable density flows. In Proceedings of CFD with

OpenSource Software, 2018, Edited by Nilsson. H., http://dx.doi.org/10.17196/OS_CFD#YEAR_2018

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

A low-Mach number solver for variable
density flows

Developed for OpenFOAM-v1806

Author:
William. A. Hay
Universitè catholique de Louvain

Peer reviewed by:
Silje Almeland
Håkan Nilsson

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone

through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

December 27, 2018

Learning outcomes

The reader will learn:

How to use

� The low-Mach number solver in a simple tutorial of a Rayleigh-Bénard convection cell

The theory of

� the low-Mach number approximation and its application to variable density flows with strong
temperature gradients

How to implement

� the necessary changes to compile a true low-Mach solver from pre-existing solvers.

How to modify

� function objects to assess heat transfer in Rayleigh-Bénard convection

1

Prerequisites

In order to get maximum benefit out of this report the reader should :

� be able to run standard tutorials like heatTransfer/buoyantPimpleFoam/hotRoom

� have knowledge of natural convection and the role of the non-dimensional Rayleigh, Prandtl
and Nusselt Numbers

� have an insight into the physics of turbulent Rayleigh-Bénard convection from [1]

2

Contents

1 Theory 5
1.1 Introduction . 5
1.2 Governing Equations . 5

1.2.1 Continuity . 5
1.2.2 Momentum Equation . 6
1.2.3 Energy Equation . 6
1.2.4 Equation of State . 6

1.3 Low-Mach Number Approximation . 6
1.4 Numerical Algorithm . 7

1.4.1 Variable Density Pressure Poisson Equation 8
1.4.2 Transient Variable Density PISO Algorithm 8

2 Tutorial A : Build of lowMachBuoyantPimpleFoam 10
2.1 Copying and Renaming the Solver . 10
2.2 Create readRayleighBenardNusselt.H . 10
2.3 Create calculateRayleighBenardNusselt.H . 13
2.4 Modify createFieldRefs.H . 14
2.5 Modify createFields.H . 14
2.6 Modify EEqn.H . 16
2.7 Modify pEqn.H . 17
2.8 Modify UEqn.H . 19
2.9 Compiling the Solver . 19

3 Tutorial B: A Rayleigh-Bénard Convection Test Case 21
3.1 Background . 21
3.2 Copying and Renaming Tutorial . 22
3.3 Initial and Boundary Conditions . 22

3.3.1 Modify T . 23
3.3.2 Create dummy variables for post-processing 24

3.4 Thermophysical And Flow Properties . 24
3.4.1 Create flowProperties . 24
3.4.2 Create hRef . 25

3.5 Modify system/ files . 26
3.5.1 Modify blockMeshDict . 26
3.5.2 Modify finite volume files . 27
3.5.3 Modify controlDict . 28
3.5.4 Copy sampling files . 31
3.5.5 Create fieldTransfer . 31

3.6 Run test case . 34
3.7 Analysis and Results . 34

4 Study questions 36

3

CONTENTS

5 Hints and tricks 37

4

Chapter 1

Theory

1.1 Introduction

Variable density low-Mach number flows appear frequently in nature and industrial processes with
examples including atmospheric, oceanographic and combustion flows. A low-Mach number flow
is defined as such when pressure variations are small, but temperature/concentration (and hence
density) gradients are large.

In many numerical methods for simulations of flows with variable density the change in density
is only captured in the gravitational term of the momentum equation and density is considered
constant in the remaining unsteady and convection terms. This is the Boussinesq approximation,
which Ferziger and Peric [2] suggest can be used for liquid flows if the temperature gradient is less
than 2K and for gaseous flows if the temperature gradient is less than 15K. Using the Boussinesq
approximation outside of this range can potentially produce qualitatively erroneous results.

If the Mach number in the entire flow field is low then the low-Mach number approximation
can be applied to the governing equations. The result is a set of equations that can be solved
via a predictor-corrector method, such as that of [3]. In such a projection method the divergence
of the discretized momentum equation leads to a pressure Poisson equation. Unlike in constant
density flows however, where the divergence of the velocity field is zero, in variable density flows the
divergence of ρu is required. Using the continuity equation we then enforce continuity by replacing
this divergence term with the RHS of the continuity equation. This tutorial will outline how and
why these changes can be implemented within the structure of an existing OpenFOAM solver.

1.2 Governing Equations

The aim of this section is to provide the governing equations to be solved by the low-Mach number
variable density solver. First, the compressible Navier-Stokes equations are written in their entirety
and the low-Mach number approximation is carried out, enabling the full low-Mach number system
of equations to be written.

1.2.1 Continuity

The continuity equation is given by

∂ρ

∂t
+∇ · (ρu) = 0 (1.1)

Where ρ (kg
m3) is the fluid density and u the velocity (m

s).

5

CHAPTER 1. THEORY

1.2.2 Momentum Equation

Assuming the only relevant body force to be that of buoyancy the momentum-balance law equation
is given by

∂ (ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · τ + ρg (1.2)

Where p is the pressure (Pa), g is the constant of gravitational acceleration (9.81 m
s2) and τ is the

viscous stress tensor, expanded as follows

τ = µ
((
∇u + (∇u)

T
)
− 2

3
(∇ · u) I

)
Where µ (kg

m s) is the fluid viscosity and I is the identity matrix. It is noted that the bulk viscosity is
considered zero (everywhere) in OpenFOAM and the second coefficient of viscosity is estimated as
2
3µ. Finally, the term containing the velocity divergence is non-zero, unlike the incompressible case.

The buoyancy and the pressure gradient terms are grouped together to improve the robustness of
the solver. The hydrodynamic pressure p′ = p−ρg ·h is used in the gradient term and a new source
term appears on the RHS.

∂ (ρu)

∂t
+∇ · (ρuu) = −∇p′ +∇ · τ − g · h∇ρ (1.3)

1.2.3 Energy Equation

The energy equation is written in terms of specific enthalpy with the viscous terms considered
negligible, an assumption which stands for low-Mach number flows. Assuming no heat source/sink
within the material volume and that the material derivative of pressure is written as dp

dt , the energy-
balance law is given by

∂ (ρh)

∂t
+∇ · (ρuh) = ∇ · (k∇T) +

dp

dt
(1.4)

Where h (kJ
kg) is the specific enthalpy, the heat flux divergence term has been expanded in accordance

with Fourier’s law; k is the thermal conductivity
(

W
m K

)
and T is the temperature (K).

1.2.4 Equation of State

In this tutorial the fluid is treated as a perfect gas

p = ρRT =
ρT

γM2
(1.5)

Where R is the gas constant, γ is the ratio of specific heats at a reference temperature
(
Cp

Cv

)
and

M is the Mach number, which for low-Mach number flows is considered small.

1.3 Low-Mach Number Approximation

For a full derivation of the non-dimensional low-Mach number equations see [4], below are the
important aspects required for understanding of this tutorial. The low-Mach number equations are
found by expanding the flow variables; ρ, u, T and p, as a power series around ε = γM2.

ρ = ρ0 + ερ1 +O
(
ε2
)

u = u0 + εu1 +O
(
ε2
)

6

CHAPTER 1. THEORY

T = T 0 + εT 1 +O
(
ε2
)

p =
ρT

γM2
=

1

ε
p0 + p1 +O (ε)

Where we now see that the pressure has been decomposed into two contributions; the thermodynamic
pressure, p0 and the dynamic pressure, p1 hereon referred to as pd. The consequence of this is two-
fold, first knowing that ε = γM2 << 1, the pressure appearing in the material derivative term of
the energy equation is predominantly the thermodynamic term, p0. Secondly, the spatially uniform
nature of p0 means that the pressure appearing in the gradient term of the momentum equation
is uniquely the dynamic term, pd. The final set of governing equations with all superscript values
dropped (except in the pressure terms) is thus given as follows

∂ρ

∂t
+∇ · (ρu) = 0 (1.6)

∂ (ρu)

∂t
+∇ · (ρuu) = −∇p′d +∇ · τ + g · h∇ρ (1.7)

Where p′d = pd − ρg · h.

∂ (ρh)

∂t
+∇ · (ρuh) = ∇ · (k∇T) +

∂p0

∂t
(1.8)

With the following equation of state to close the system :

ρ =
p0

RT
(1.9)

The only contribution to the pressure material derivative in the energy equation is the partial time
derivative as, as already stated, the p0 term is constant in space but, under certain conditions only,
not in time. If the compuatational domain is open to atmosphere then the thermodynamic pressure
is constant (in space and time) and equal to that of atmospheric pressure. In a closed domain
however p0 can vary in time, although the total mass must remain constant and equal to the volume
integral of the density [4]. The p0 term is then calculated as follows

p0 =
M0∫
1
RT dV

=
M0∫
ψdV

(1.10)

Where the total mass, must be constant in time and equal to M0, a check which is later carried out in

the code. For the case where the ideal gas law is the equation of state, ψ
(

m2

s2

)
, the compressibility,

is set to 1
RT .

1.4 Numerical Algorithm

In this section Chapter 3.8 from [5] is expanded and the discretisation procedure of the Navier-
Stokes system for variable density flows is explained. In his PhD, Jasak refers the reader to [6] for
an understanding of the fully compressible PISO algorithm but the case for low-Mach number PISO
algorithm has no clear reference, a fact which motivates this tutorial.

The changes outlined in the introduction must be introduced, but the idea remains the same as
in the constant density PISO algorithm; use the momentum equations to provide the velocity field
and a combination of the continuity and the momentum equations to formulate a pressure Poisson
equation.

7

CHAPTER 1. THEORY

1.4.1 Variable Density Pressure Poisson Equation

A semi-discretized version of the momentum equation (source terms in differential form) is formulated
as follows:

apUp +
∑
N

aNUN −
U0

∆t
= −∇p′d − g · h∇ρ (1.11)

From which we can get a relation for the velocity at point P as follows

Up =
1

ap
H(U)− 1

ap
∇p′d −

1

ap
g · h∇ρ (1.12)

Where H(U) = −
∑
N aNUN + U0

∆t

Multiplying equation (1.12) through by ρ gives the term inside the divergence operator of the con-
tinuity equation (1.6) as follows

ρUp =
ρ

ap
H(U)− ρ

ap
∇p′d −

ρ

ap
g · h∇ρ (1.13)

In the spirit of Rhie-Chow the pressure equation is solved at the cell faces as opposed to the cell
centres. The ρU values on the cell faces are thus found by interpolating to the face, denoted here
by the notation (...)f . Equation (1.14) is later used to determine φ, the face flux, which for variable
density flows is equal to (ρU)f ·Sf . Incidentally, the fvc::flux(...) OpenFOAM function does exactly
this procedure; first interpolate to the face, then take the dot product with the face normal.

F =
(
ρU
)
f
· Sf =

(ρ
ap
H(U)

)
f
· Sf −

(ρ
ap

)
f

(g · h)f

(
∇ρ
)
f
· Sf −

(ρ
ap

)
f

(
∇p′d

)
f
· Sf (1.14)

Taking the divergence of Equation (1.13) gives the following

∇ · (ρUp) = ∇ ·
(
ρ

ap
H(U)− ρ

ap
g · h∇ρ

)
−∇ ·

(
ρ

ap
∇p′d

)
(1.15)

Combining (1.15) and (1.6) gives the pressure Poisson equation as follows

∇ ·
(
ρ

ap
∇p′d

)
= ∇ ·

(
ρ

ap
H(U)− ρ

ap
g · h∇ρ

)
+
∂ρ

∂t
(1.16)

In the third term on the RHS of (1.16) ρ can be replaced by ψp0 to give the final discretized form
of the variable density pressure poisson equation as follows

∑
f

((
ρ

ap

)
f

(∇p′d)f

)
· Sf︸ ︷︷ ︸

fvm::laplacian(rhorAUf,pd)

=
∑
f

((ρ
ap
H(U)

)
f
−
(ρ
ap

)
f

(g · h)f

(
∇ρ
)
f

)
· Sf︸ ︷︷ ︸

fvc::div(phiHbyA)

+
∂ψ

∂t
p0 · V︸ ︷︷ ︸

fvc::ddt(psi)∗p

(1.17)

1.4.2 Transient Variable Density PISO Algorithm

The aim of the PISO algorithm is to use a segregated approach to solve the discretized Navier-Stokes
system just described. Starting with known ρ, T, u and p at time n the full algorithm is then as
follows

8

CHAPTER 1. THEORY

1. Using ρn and pnd solve for u∗ (momentum predictor step)

2. Using ρn and u∗ solve for h∗ from energy equation (get T ∗)

3. Using T ∗ find ψ∗ from equation of state

4. Using integral of ψ∗ find p0∗ from (1.10)

5. Using p0∗ and T ∗ find ρ∗ from equation of state

6. Using u∗ and ρ∗ formulate the H(U)∗ operator

7. Using H(U)∗, and ρ∗ formulate the pressure equation from (1.17)

8. Solve for p∗d (pressure solution step)

9. Solve for u∗∗ from (1.12) (explicit velocity correction)

The explicit nature of step 9 means that only the correction due to the pressure gradient term is
taken into account here. That is to say that the correction due to the density related terms in (1.12)
are ignored, likewise the contribution from the H(U) term. In the current algorithm, the PISO
corrector step iterates over step 6-9 a certain number of times (defined by the user in fvSolution
nCorrectors) to update the H(U)∗ term based on the updated velocity (u∗∗). After a certain number
of nCorrector iterations one has pn+1

d and un+1. It is noted that energy and momentum balance
laws are coupled. In such a situation, [3] states that there should also be a corrector step for the
temperature (and hence the density terms) which is not currently the case and this improvement
task is left to the user if they wish to further improve the algorithm.

9

Chapter 2

Tutorial A : Build of
lowMachBuoyantPimpleFoam

As already mentioned, the OpenFOAM solver which solves the set of equations most closely rep-
resenting our problem is buoyantPimpleFoam; a transient solver for buoyant, turbulent flow of
compressible fluids for ventilation and heat-transfer. Changes are predominantly required to the
energy equation (EEqn.H), momentum equation (UEqn.H) and the PISO algorithm (pEqn.H); the
latter requiring significant updates and resembling somewhat the pEqn.H in Reference [7]. Finally,
we introduce new variables to the solver (via an additional file readFlowProperties.H) to help save
time in post-processing for the specific case of Rayleigh-Bénard convection in a cube. All source
code associated with the moving reference frame (MRF) is removed for clarity.

2.1 Copying and Renaming the Solver

In this first section the buoyantPimpleFoam solver is copied, renamed and recompiled.

foam

cp -r --parents applications/solvers/heatTransfer/buoyantPimpleFoam/ $WM_PROJECT_USER_DIR

ufoam

cd applications/solvers/heatTransfer/

mv buoyantPimpleFoam/ lowMachBuoyantPimpleFoam

cd lowMachBuoyantPimpleFoam/

mv buoyantPimpleFoam.C lowMachBuoyantPimpleFoam.C

sed -i s/buoyantPimpleFoam/lowMachBuoyantPimpleFoam/g Make/files

wclean

wmake

At this point the user will have an identical solver to buoyantPimpleFoam with a different name.

2.2 Create readRayleighBenardNusselt.H

The following is required for post-processing of the Nusselt number in a cubic domain for Rayleigh-
Bénard convection. We first add lines of code (lines 1 - 59) that searches for a dictionary called
flowProperties containing the definition of the user-defined (and case specific) variables of TRef,
deltaTRef, rhoRef, URef, RaRef and PrRef. Then we create the new fields (lines 60 - 143) that are
required to dynamically calculate the Nusselt number introduced in 3.1.

Listing 2.1: readRayleighBenardNusselt.H

10

CHAPTER 2. TUTORIAL A : BUILD OF LOWMACHBUOYANTPIMPLEFOAM

1

2 // For Rayleigh-Benard Nusselt number in a cube

3

4 Info<< "Reading flowProperties\n" << endl;

5

6 IOdictionary flowProperties

7 (

8 IOobject

9 (

10 "flowProperties",

11 runTime.constant(),

12 mesh,

13 IOobject::MUST_READ_IF_MODIFIED,

14 IOobject::NO_WRITE

15)

16);

17

18 dimensionedScalar TRef

19 (

20 "TRef",

21 dimTemperature,

22 flowProperties

23);

24

25 dimensionedScalar deltaTRef

26 (

27 "deltaTRef",

28 dimTemperature,

29 flowProperties

30);

31

32 dimensionedScalar rhoRef

33 (

34 "rhoRef",

35 dimDensity,

36 flowProperties

37);

38

39 dimensionedScalar URef

40 (

41 "URef",

42 dimVelocity,

43 flowProperties

44);

45

46

47 dimensionedScalar RaRef

48 (

49 "RaRef",

50 dimless,

51 flowProperties

52);

53

54 dimensionedScalar PrRef

11

CHAPTER 2. TUTORIAL A : BUILD OF LOWMACHBUOYANTPIMPLEFOAM

55 (

56 "PrRef",

57 dimless,

58 flowProperties

59);

60

61 Info<< "Creating field nonDimT\n" << endl;

62 volScalarField nonDimT

63 (

64 IOobject

65 (

66 "nonDimT",

67 runTime.timeName(),

68 mesh,

69 IOobject::MUST_READ,

70 IOobject::AUTO_WRITE

71),

72 mesh

73);

74

75 Info<< "Creating field nonDimRho\n" << endl;

76 volScalarField nonDimRho

77 (

78 IOobject

79 (

80 "nonDimRho",

81 runTime.timeName(),

82 mesh,

83 IOobject::MUST_READ,

84 IOobject::AUTO_WRITE

85),

86 mesh

87);

88

89 Info<< "\nReading field nonDimU\n" << endl;

90 volVectorField nonDimU

91 (

92 IOobject

93 (

94 "nonDimU",

95 runTime.timeName(),

96 mesh,

97 IOobject::MUST_READ,

98 IOobject::AUTO_WRITE

99),

100 mesh

101);

102

103 Info<< "Creating field nusseltOne\n" << endl;

104 volScalarField nusseltOne

105 (

106 IOobject

107 (

108 "nusseltOne",

12

CHAPTER 2. TUTORIAL A : BUILD OF LOWMACHBUOYANTPIMPLEFOAM

109 runTime.timeName(),

110 mesh,

111 IOobject::MUST_READ,

112 IOobject::AUTO_WRITE

113),

114 mesh

115);

116

117 Info<< "Creating field nusseltTwo\n" << endl;

118 volScalarField nusseltTwo

119 (

120 IOobject

121 (

122 "nusseltTwo",

123 runTime.timeName(),

124 mesh,

125 IOobject::MUST_READ,

126 IOobject::AUTO_WRITE

127),

128 mesh

129);

130

131 Info<< "Creating field nusseltTotal\n" << endl;

132 volScalarField nusseltTotal

133 (

134 IOobject

135 (

136 "nusseltTotal",

137 runTime.timeName(),

138 mesh,

139 IOobject::MUST_READ,

140 IOobject::AUTO_WRITE

141),

142 mesh

143);

2.3 Create calculateRayleighBenardNusselt.H

The following is required for post-processing of the Nusselt number in a cubic domain for Rayleigh-
Bénard convection. Using the declared fields from readRayleighBenardNusselt.H we now define
them (lines 4-6 and 32-34) and finally create the remaining fields required to dynamically calculate
the Nusselt number (lines 8-30).

Listing 2.2: calculateRayleighBenardNusselt.H

1

2 // To calculate the Nusselt number in RBC in a cube

3

4 nonDimU = (U/URef);

5 nonDimRho = (rho/rhoRef);

6 nonDimT = (T-TRef)/(deltaTRef);

7

8 volVectorField gradNonDimT(fvc::grad(nonDimT));

9

13

CHAPTER 2. TUTORIAL A : BUILD OF LOWMACHBUOYANTPIMPLEFOAM

10 volScalarField gradNonDimTy

11 (

12 IOobject

13 (

14 "gradNonDimTy",

15 runTime.timeName(),

16 mesh

17),

18 gradNonDimT.component(vector::Y)

19);

20

21 volScalarField nonDimUy

22 (

23 IOobject

24 (

25 "nonDimUy",

26 runTime.timeName(),

27 mesh

28),

29 nonDimU.component(vector::Y)

30);

31

32 nusseltOne = sqrt(RaRef*PrRef)*nonDimUy*nonDimRho*nonDimT;

33 nusseltTwo = hRef*gradNonDimTy; // hRef is to nonDimensionalize the denominator

34 nusseltTotal = nusseltOne - nusseltTwo;

2.4 Modify createFieldRefs.H

In the createFieldRefs.H file from buoyantPimpleFoam the compressibility field, psi, is defined and
declared. In the low-Mach number solver psi is no longer a reference field, i.e. it is used in the
calculation of other fields in the solver, it is thus moved to createFields.H and the createFieldRefs.H
file is as follows

Listing 2.3: createFieldRefs.H

1 const volScalarField& T = thermo.T();

2.5 Modify createFields.H

The hydrodynamic pressure field, p′d, is defined and declared in createFields.H as pd (line 55 - 67),
note that the ’ has been dropped. The psi field is defined and declared (lines 624 - 636). Its value
is stored from the previous time-step thus allowing for the calculation of the ∂ψ

∂t term later on (see
pEqn.H lines 63 - 66). The thermodynamic pressure, p0, is defined as p (lines 34 - 37), it is declared
in accordance with Equation (1.10), which itself requires a definition of M0, given in line 622 as the
dimensionedScalar totalMass0.

Listing 2.4: createFields.H

1 Info<< "Reading thermophysical properties\n" << endl;

2

3 autoPtr<rhoThermo> pThermo(rhoThermo::New(mesh));

4 rhoThermo& thermo = pThermo();

5 thermo.validate(args.executable(), "h");

14

CHAPTER 2. TUTORIAL A : BUILD OF LOWMACHBUOYANTPIMPLEFOAM

6

7 volScalarField rho

8 (

9 IOobject

10 (

11 "rho",

12 runTime.timeName(),

13 mesh,

14 IOobject::MUST_READ,

15 IOobject::AUTO_WRITE

16),

17 thermo.rho()

18);

19

20 dimensionedScalar totalMass0 = fvc::domainIntegrate(rho); // total mass based on thermo.rho AT t0

21

22 volScalarField psi

23 (

24 IOobject

25 (

26 "psi",

27 runTime.timeName(),

28 mesh

29),

30 thermo.psi()

31);

32 psi.oldTime(); // need to store for ddt term

33

34 volScalarField& p = thermo.p();

35

36 p = totalMass0/fvc::domainIntegrate(psi);

37 Info<< "min/max(p) = " << min(p).value() << ", " << max(p).value() << endl;

38

39 Info<< "Reading field U\n" << endl;

40 volVectorField U

41 (

42 IOobject

43 (

44 "U",

45 runTime.timeName(),

46 mesh,

47 IOobject::MUST_READ,

48 IOobject::AUTO_WRITE

49),

50 mesh

51);

52

53 #include "compressibleCreatePhi.H"

54

55 Info<< "Creating field pd\n" << endl;

56 volScalarField pd

57 (

58 IOobject

59 (

15

CHAPTER 2. TUTORIAL A : BUILD OF LOWMACHBUOYANTPIMPLEFOAM

60 "pd",

61 runTime.timeName(),

62 mesh,

63 IOobject::MUST_READ,

64 IOobject::AUTO_WRITE

65),

66 mesh

67);

68

69 Info << "Creating turbulence model.\n" << nl;

70 autoPtr<compressible::turbulenceModel> turbulence

71 (

72 compressible::turbulenceModel::New

73 (

74 rho,

75 U,

76 phi,

77 thermo

78)

79);

80

81 #include "readGravitationalAcceleration.H"

82 #include "readhRef.H"

83 #include "gh.H"

84

85

86 Info<< "Creating field dpdt\n" << endl;

87 volScalarField dpdt

88 (

89 IOobject

90 (

91 "dpdt",

92 runTime.timeName(),

93 mesh

94),

95 mesh,

96 dimensionedScalar("dpdt", p.dimensions()/dimTime, 0)

97);

98

99 mesh.setFluxRequired(pd.name());

100

101 #include "createFvOptions.H"

2.6 Modify EEqn.H

The energy equation is in specific enthalpy form, this must be respected in the runCaseName/con-
stant/thermophysicalProperties choice made by the user. The ∂p

∂t term has been included (line 7)
in accordance with Equation (1.8). In the heat transfer solvers of OpenFOAM, the temperature in
Fourier’s law is replaced using the relation T = h

Cp
, the resulting k

Cp
prefactor is then encorporated

into the alphaEff() object (line 8) which is associated with the chosen turbulence model. This is
ofcourse only possible if Cp is considered constant and the user should be wary of the physical
limitations of this computational method.

16

CHAPTER 2. TUTORIAL A : BUILD OF LOWMACHBUOYANTPIMPLEFOAM

Listing 2.5: EEqn.H

1 {

2 volScalarField& h = thermo.he();

3

4 fvScalarMatrix EEqn

5 (

6 fvm::ddt(rho, h) + fvm::div(phi, h)

7 - dpdt

8 - fvm::laplacian(turbulence->alphaEff(), h)

9 ==

10 fvOptions(rho, h)

11);

12

13 EEqn.relax();

14

15 fvOptions.constrain(EEqn);

16

17 EEqn.solve();

18

19 fvOptions.correct(h);

20

21 thermo.correct();

22

23 Info<< "min/max(T) = "

24 << min(T).value() << ", " << max(T).value() << endl;

25 }

2.7 Modify pEqn.H

In lines 2-4 the thermodynamic pressure is calculated for the new time-step. In lines 6-18 info
statements will show whether or not mass is conserved as we march forward in time and further
that the thermodynamic pressure is calculated correctly. The key step here is the inclusion of the
fvc::ddt(psi)*p term in the pressure Poisson equation (line 42) to enforce continuity. Where psi
is declared via the equation of state, selected by the user in constant/thermophysicalProperties.
As a consequence of adding this term explicitly (see use of fvc::), the pdEqn fvScalarMatrix is ill-

conditioned. We therefore add the term
∂(ψ p′d)
∂t implicitly (using fvm:: in line 41) and subtract

explicitly (using fvc:: in line 42) to increase the diagonally dominance of the matrix and thus help
with convergence. This numerical method was taken from Reference [8].

Listing 2.6: pEqn.H

1

2 psi = thermo.psi();

3 p = totalMass0/fvc::domainIntegrate(psi);

4 rho = thermo.rho();

5

6 dimensionedScalar totalMass = fvc::domainIntegrate(rho);

7 scalar constantMass = (totalMass0/totalMass).value();

8 Info<< "Should be constant in time " << constantMass << endl;

9

10

11 Info<< "min/max(rho) = "

12 << min(rho).value() << ", " << max(rho).value() << endl;

17

CHAPTER 2. TUTORIAL A : BUILD OF LOWMACHBUOYANTPIMPLEFOAM

13

14 Info<< "min/max(psi) = "

15 << min(psi).value() << ", " << max(psi).value() << endl;

16

17 Info<< "min/max(p) = "

18 << min(p).value() << ", " << max(p).value() << endl;

19

20 volScalarField rAU(1.0/UEqn.A());

21 surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));

22 volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));

23 surfaceScalarField phig("phig", -rhorAUf*ghf*fvc::snGrad(rho)*mesh.magSf());

24

25 surfaceScalarField phiHbyA

26 (

27 "phiHbyA",

28 (

29 fvc::flux(rho*HbyA)

30)

31 + phig

32);

33

34 constrainPressure(pd, rho, U, phiHbyA, rhorAUf);

35

36 while (pimple.correctNonOrthogonal())

37 {

38 fvScalarMatrix pdEqn

39 (

40 fvm::ddt(psi, pd) // implicit addition of pd

41 - fvc::ddt(psi, pd) // explicit subtraction of pd

42 + fvc::ddt(psi)*p

43 + fvc::div(phiHbyA)

44 - fvm::laplacian(rhorAUf, pd)

45 ==

46 fvOptions(psi, pd, rho.name())

47);

48

49 pdEqn.solve(mesh.solver(pd.select(pimple.finalInnerIter())));

50

51 if (pimple.finalNonOrthogonalIter())

52 {

53 phi = phiHbyA + pdEqn.flux();

54 U = HbyA + rAU*fvc::reconstruct((pdEqn.flux() + phig)/rhorAUf);

55 U.correctBoundaryConditions();

56 fvOptions.correct(U);

57 }

58 }

59

60 #include "rhoEqn.H"

61 #include "compressibleContinuityErrs.H"

62

63 if (thermo.dpdt())

64 {

65 dpdt = fvc::ddt(p);

66 }

18

CHAPTER 2. TUTORIAL A : BUILD OF LOWMACHBUOYANTPIMPLEFOAM

67

68 #include "calculateRayleighBenardNusselt.H"

2.8 Modify UEqn.H

The pressure gradient term is the only change required in the UEqn.H file where pd is now used
(line 33). In the momentum predictor step (which should be switched on by the user in runCase-
Name/system/fvSolution) Equation (1.7) is solved.

Listing 2.7: UEqn.H

1 fvVectorMatrix UEqn

2 (

3 fvm::ddt(rho, U)

4 + fvm::div(phi, U)

5 + turbulence->divDevRhoReff(U)

6 ==

7 fvOptions(rho, U)

8);

9

10 UEqn.relax();

11

12 fvOptions.constrain(UEqn);

13

14 if (pimple.momentumPredictor())

15 {

16 solve

17 (

18 UEqn

19 ==

20 fvc::reconstruct

21 (

22 (

23 - ghf*fvc::snGrad(rho)

24 -fvc::snGrad(pd)

25)*mesh.magSf()

26)

27);

28

29 fvOptions.correct(U);

30 }

2.9 Compiling the Solver

No extra libraries are required and the code can be compiled with the following

ufoam

cd applications/solvers/heatTransfer/lowMachBuoyantPimpleFoam

wclean

wmake

19

CHAPTER 2. TUTORIAL A : BUILD OF LOWMACHBUOYANTPIMPLEFOAM

At this point the user will have a low-Mach-number solver with additional post-processing capabilities
for Rayleigh-Bénard convection in a cube. If required, these additional capabilities can be switched
off by deleting the two *RayleighBenardNusselt.H files, removing the appropriate lines of code in
lowMachBuoyantPimpleFoam.C (line 58) and pEqn.H (line 68) and then recompiling.

20

Chapter 3

Tutorial B: A Rayleigh-Bénard
Convection Test Case

As a simple tutorial, we will carry out a simulation of Rayleigh-Bénard convection in a 2D square
domain with adiabatic sidewalls at a Rayleigh number of 105 using air as the working fluid, hence
a Prandtl number of 0.7.

3.1 Background

Rayleigh-Bénard Convection is a classical problem in fluid mechanics which can be summarized as
a fluid filled container heated from below and cooled from above. The system is determined by the
two dimensionless control parameters of Rayleigh number and Prandtl number [1].

Ra =
gβ∆TL3

να
Pr =

ν

α

21

CHAPTER 3. TUTORIAL B: A RAYLEIGH-BÉNARD CONVECTION TEST CASE

Where β is the coefficient of thermal expansion (1
K), ∆T is the temperature difference (K) between

the upper and lower walls, L is the distance between the same walls (m), ν is the kinematic viscosity

(m
2

s) and α is the thermal diffusivity (m
2

s).

The system response to the imposed Ra and Pr can be measured in terms of a dimensionless heat
flux (Nusselt number) across the geometry. For the case of a cube, this is given either by a time and
area averaged slice taken at a chosen height in the domain [9]

Nuy =
√
RaPr 〈ρvT 〉xzt︸ ︷︷ ︸
component 1

− ∂〈T 〉xzt
∂y︸ ︷︷ ︸

component 2

(3.1)

Or alternatively by a time and volume average over the entire domain [9]

Nu =
√
RaPr 〈ρvT 〉xyzt + 1 (3.2)

At a Rayleigh number of 105 the flow is near the transition to turbulence so the simulation must
be run until a statistically steady state is reached, at which point thermal (Nusselt number) and
flow (Reynolds number) dynamics can be statisically assessed. We focus on Nusselt number in this
tutorial where we carry out a Direct Numerical Simulation (DNS), i.e. no turbulence model is used.
It is noted that a more interesting test case would be to increase the Rayleigh to a more turbulent
(and hence) chaotic case (at least 106) - in such a study the time averaging function objects to be
used would be more relevant. If the user wishes to do the simplest way to increase the Rayleigh
number is to increase the height of the domain, it must then be checked that all Kolmogorov and
Batchelor scales are captured with the new grid. References [10] and [11] provide more detail on for
bulk and boundary layer refinement criteria.

Finally, the solution is considered to be statistically steady once the Nusselt number is constant
in the cube when measured at different locations. This is achieved after a certain number of LSC
free-fall times, involving a certain amount of trial and error. A LSC free-fall time is, approximately,
the physical time taken for a fluid particle to circulate the domain and is hence calculated as the
height of the domain (L) divided by the free fall velocity uf =

√
gβ∆TL, in the simulations of this

tutorial we consider that the solution is statistically steady after 500 LSC free-fall times and we then
take statistics over 500 more.

3.2 Copying and Renaming Tutorial

The hotRoom tutorial provides the appropriate names for the boundary conditions that we wish
to use. It is therefore copied to the users run directory where the Allrun and Allclean scripts are
updated.

run

cp -r $FOAM_TUTORIALS/heatTransfer/buoyantPimpleFoam/hotRoom ./rayleighBenard2DTestCase

cd rayleighBenard2DTestCase

mv 0.orig 0

sed -i s/cleanCase0/cleanCase/g Allclean

cp $FOAM_TUTORIALS/heatTransfer/buoyantPimpleFoam/thermocoupleTestCase/Allrun .

3.3 Initial and Boundary Conditions

The fields associated with the turbulence are removed and the dynamic pressure field is created.

22

CHAPTER 3. TUTORIAL B: A RAYLEIGH-BÉNARD CONVECTION TEST CASE

cd 0/

rm alphat epsilon k nut

mv p_rgh pd

sed -i s/"internalField uniform 1e5"/"internalField uniform 0"/g pd

sed -i s/"uniform 1e5"/"\$internalField"/g pd

cd ..

Check the pd file to see if the sed commands have functioned correctly, if not, make the changes
manually in a text editor.

3.3.1 Modify T

vim 0/T

Ideally the initial temperature condition would be a linear temperature profile between the hot and
the cold walls. Here, for simpicity, the internal field is initialized to Tmean. Further, the boundary
condition for the frontAndBack patch should be empty for all fields as shown in the T example
below

Listing 3.1: T

/*--------------------------------*- C++ -*----------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

location "0";

object T;

}

// * //

dimensions [0 0 0 1 0 0 0];

internalField uniform 313.15;

boundaryField

{

floor

{

type fixedValue;

value uniform 320.65;

}

ceiling

{

type fixedValue;

value uniform 305.65;

}

fixedWalls

{

23

CHAPTER 3. TUTORIAL B: A RAYLEIGH-BÉNARD CONVECTION TEST CASE

type zeroGradient;

}

frontAndBack

{

type empty;

}

}

// *** //

3.3.2 Create dummy variables for post-processing

The non-dimensional dummy variables are required to calculate the Nusselt number during the
calculation.

cp 0/U 0/nonDimU

cp 0/nonDimU 0/nusseltOne

cp 0/nonDimU 0/nusseltTwo

cp 0/nonDimU 0/nusseltTotal

sed -i s/"uniform (0 0 0)"/"uniform 0"/g 0/nusselt*

sed -i s/"noSlip"/"zeroGradient"/g 0/nusselt*

sed -i s/volVector/volScalar/g 0/n*

sed -i s/volScalar/volVector/g 0/nonDimU

cp 0/nusseltOne 0/nonDimRho

cp 0/T 0/nonDimT

sed -i s/"uniform 320.65"/"uniform 0.5"/g 0/nonDimT

sed -i s/"uniform 305.65"/"uniform -0.5"/g 0/nonDimT

sed -i s/"uniform 313.15"/"uniform 0"/g 0/nonDimT

The dimensions in all the non-dimensional files (that is nonDimRho, nonDimT, nonDimU, nussel-
tOne, nusseltTotal and nusseltTwo) need to be dimensionless. That means editing line 18 in all files
to be as follows

dimensions [0 0 0 0 0 0 0];

3.4 Thermophysical And Flow Properties

There is no turbulence model in a Direct Numerical Simulation, therefore the simulationType is set
to laminar. For clarity this is not an indication of a laminar flow, but an indication of the absence
of subgrid scale modelling.

sed -i s/"RAS"/"laminar"/g constant/turbulenceProperties

The equation of state is already set to perfectGas so no changes are required to the thermophysical-
Properties file.

3.4.1 Create flowProperties

Create and open the flowProperties file as follows

24

CHAPTER 3. TUTORIAL B: A RAYLEIGH-BÉNARD CONVECTION TEST CASE

vim constant/flowProperties

The following is required for the post-processing of the Rayleigh-Bénard convection in a cube. The
purpose of the file is to set reference values for the specific case, these values are then used to
dynamically calculate the Nusselt number as outlined in (2.2) and (2.3).

Listing 3.2: flowProperties

/*--------------------------------*- C++ -*----------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object flowProperties;

}

// * //

// Reference temperature

TRef 313.15;

// Reference temperature

deltaTRef 15;

// Reference density

rhoRef 1.1272;

// Reference freefall velocity (beta*deltaT*g*H)^0.5

URef 0.1441;

// Reference Rayleigh

RaRef 1e5;

// Reference Pr

PrRef 0.712;

// *** //

3.4.2 Create hRef

A reference height is needed by the solver to non-dimensionalize the temperature gradient term used
in the dynamic calculation of Nu, see line 33 of listing in (2.3). The template for the file is copied
from a fireFoam tutorial as follows

cp $FOAM_TUTORIALS/combustion/fireFoam/LES/smallPoolFire3D/constant/hRef constant/

Lines 18 - 19 should then be updated to the following

Listing 3.3: hRef

dimensions [0 1 0 0 0 0 0];

25

CHAPTER 3. TUTORIAL B: A RAYLEIGH-BÉNARD CONVECTION TEST CASE

value 0.0442;

3.5 Modify system/ files

As well as the usual files that require udpating (blockMeshDict, controlDict, fvSchemes, fvSolution)
we introduce here some functionObjects that allow for dynamic calculation of the Nusselt number
in the domain as well as some time averaging techniques for the velocity.

3.5.1 Modify blockMeshDict

Many changes are required to blockMeshDict, which is opened with the following command.

vim system/blockMeshDict

Ensure that the scale, vertice locations, mesh refinement and boundary names are updated.

Listing 3.4: blockMeshDict

/*--------------------------------*- C++ -*----------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// * //

scale 0.0221;

vertices

(

(-1 -1 -0.001)

(1 -1 -0.001)

(1 1 -0.001)

(-1 1 -0.001)

(-1 -1 0.001)

(1 -1 0.001)

(1 1 0.001)

(-1 1 0.001)

);

blocks

(

hex (0 1 2 3 4 5 6 7) (32 32 1) simpleGrading (1 1 1)

);

boundary

(

floor

{

26

CHAPTER 3. TUTORIAL B: A RAYLEIGH-BÉNARD CONVECTION TEST CASE

type wall;

faces

(

(1 5 4 0)

);

}

ceiling

{

type wall;

faces

(

(3 7 6 2)

);

}

fixedWalls

{

type wall;

faces

(

(0 4 7 3)

(2 6 5 1)

);

}

frontAndBack

{

type empty;

faces

(

(0 3 2 1)

(4 5 6 7)

);

}

);

edges

(

);

mergePatchPairs

(

);

// *** //

3.5.2 Modify finite volume files

In fvSchemes we introduce second-order time integration (backward) and divergence (Gauss linear)
schemes.

27

CHAPTER 3. TUTORIAL B: A RAYLEIGH-BÉNARD CONVECTION TEST CASE

sed -i s/" default Euler"/" default backward"/g

system/fvSchemes↪→

sed -i s/" div(phi,U) Gauss upwind"/" div(phi,U) Gauss linear"/g

system/fvSchemes↪→

sed -i s/" div(phi,h) Gauss upwind"/" div(phi,h) Gauss linear"/g

system/fvSchemes↪→

In fvSolution, 3 corrector steps are required in the PISO algorithm to reduce the time discretization
errors to second order. See [12] and [13] for further details.

sed -i '/ pRefCell 0/d' system/fvSolution

sed -i '/ pRefValue 1e5/d' system/fvSolution

sed -i s/p_rgh/pd/g system/fvSolution

sed -i s/" nCorrectors 2"/" nCorrectors 3"/g system/fvSolution

Further, it is recommended that the tolerance for the pd field is reduced to at least 1e-9 and the
relTol to 0.001.

pd

{

solver GAMG;

tolerance 1e-9;

relTol 0.001;

smoother GaussSeidel;

};

pdFinal

{

$pd;

tolerance 1e-9;

relTol 0;

};

}

3.5.3 Modify controlDict

Many changes are required to controlDict, which is opened with the following command.

vim system/controlDict

Within controlDict we update the endTime, deltaT, writeControl, writeInterval and maxCo. We
further add the line associated with sampleControls (line 46) and then add a series of functions
that allow us to time and area-average the velocity and the Nusselt number in the cube (lines 48
- 110). First, the functionObject fieldAverage, time-averages the Nusselt number volScalarFields
over a set time period (lines 50 - 87), then line 109 includes the fieldTransfer file, which transfers
to volScalarFields to surfaces and thus handles the area-averaging. The volume-averaging of the
time-averaged fields is carried out in lines 89 - 106.

Listing 3.5: controlDict

FoamFile

{

28

CHAPTER 3. TUTORIAL B: A RAYLEIGH-BÉNARD CONVECTION TEST CASE

version 2.0;

format ascii;

class dictionary;

location "system";

object controlDict;

}

// * //

application lowMachBuoyantPimpleFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 60;

deltaT 1e-2;

writeControl adjustableRunTime;

writeInterval 5;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

adjustTimeStep yes;

maxCo 0.1;

#include "sampleControls"

functions

{

fieldAverage1

{

type fieldAverage;

libs ("libfieldFunctionObjects.so");

timeStart 30;

timeEnd 60;

writeControl writeTime;

29

CHAPTER 3. TUTORIAL B: A RAYLEIGH-BÉNARD CONVECTION TEST CASE

fields

(

nonDimU

{

mean on;

prime2Mean on; //RMS

base time;

}

nusseltTotal

{

mean on;

prime2Mean off;

base time;

}

nusseltOne

{

mean on;

prime2Mean off;

base time;

}

nusseltTwo

{

mean on;

prime2Mean off;

base time;

}

);

}

volAverageNusseltField

{

type volFieldValue;

libs ("libfieldFunctionObjects.so");

log true;

timeStart 30;

timeEnd 60;

writeControl writeTime;

writeFields true;

regionType all;

operation volAverage;

fields

(

nusseltOneMean

nusseltTwoMean

nusseltTotalMean

);

}

// #include "cuttingPlaneNusseltWalls"

#include "fieldTransfer"

}

30

CHAPTER 3. TUTORIAL B: A RAYLEIGH-BÉNARD CONVECTION TEST CASE

3.5.4 Copy sampling files

The sampleControl file is copied from another tutorial.

cp $FOAM_TUTORIALS/incompressible/simpleFoam/squareBend/system/sampleControls system/

The file should be edited to have a timeStart and timeEnd in line with the options selected in
controlDict.

Listing 3.6: sampleControl

__surfaceFieldValue

{

type surfaceFieldValue;

libs ("libfieldFunctionObjects.so");

timeStart 30;

timeEnd 60;

log on;

enabled true;

writeControl timeStep;

writeInterval 1;

writeFields false;

surfaceFormat vtk;

writeArea true;

}

3.5.5 Create fieldTransfer

The fieldTransfer file allows for the volFields, which were created as dummy variables in the sim-
ulation, to be transferred to a surfaceField. In this instance we interpolate the values of Nusselt
number to slices made in the vertical axes of the domain.

vim fieldTransfer

Listing 3.7: fieldTransfer

// *** //

// Transcribe volume fields to surfaces.

fieldTransfer

{

type surfMeshes;

libs ("libsampling.so");

log true;

timeStart 30;

timeEnd 60;

writeControl none;

31

CHAPTER 3. TUTORIAL B: A RAYLEIGH-BÉNARD CONVECTION TEST CASE

createOnRead true;

executeControl timeStep;

executeInterval 1;

fields (nusseltTotalMean nusseltOneMean nusseltTwoMean);

surfaces

(

middle

{

type plane;

source cells;

planeType pointAndNormal;

pointAndNormalDict

{

point (0 0 0);

normal (0 1 0);

}

interpolate false;

}

top

{

type plane;

source cells;

planeType pointAndNormal;

pointAndNormalDict

{

point (0 0.0116485 0); //2 X boundary layer

normal (0 1 0);

}

interpolate false;

}

bottom

{

type plane;

source cells;

planeType pointAndNormal;

pointAndNormalDict

{

point (0 -0.0116485 0);

normal (0 1 0);

}

interpolate false;

}

veryTop

{

type plane;

source cells;

planeType pointAndNormal;

pointAndNormalDict

{

point (0 0.0168742 0); // 1 X boundary layer

normal (0 1 0);

}

32

CHAPTER 3. TUTORIAL B: A RAYLEIGH-BÉNARD CONVECTION TEST CASE

interpolate false;

}

veryBottom

{

type plane;

source cells;

planeType pointAndNormal;

pointAndNormalDict

{

point (0 -0.0168742 0);

normal (0 1 0);

}

interpolate false;

}

);

}

areaAveragePlaneMiddle

{

${__surfaceFieldValue}

regionType surface;

name middle;

operation areaAverage;

fields (nusseltOneMean nusseltTwoMean nusseltTotalMean);

}

areaAveragePlaneTop

{

${__surfaceFieldValue}

regionType surface;

name top;

operation areaAverage;

fields (nusseltOneMean nusseltTwoMean nusseltTotalMean);

}

areaAveragePlaneBottom

{

${__surfaceFieldValue}

regionType surface;

name bottom;

operation areaAverage;

fields (nusseltOneMean nusseltTwoMean nusseltTotalMean);

}

areaAveragePlaneVeryTop

{

${__surfaceFieldValue}

regionType surface;

name veryTop;

33

CHAPTER 3. TUTORIAL B: A RAYLEIGH-BÉNARD CONVECTION TEST CASE

operation areaAverage;

fields (nusseltOneMean nusseltTwoMean nusseltTotalMean);

}

areaAveragePlaneVeryBottom

{

${__surfaceFieldValue}

regionType surface;

name veryBottom;

operation areaAverage;

fields (nusseltOneMean nusseltTwoMean nusseltTotalMean);

}

3.6 Run test case

From inside the case directory the Allrun script can be run.

./Allrun

3.7 Analysis and Results

One of the features of the Rayleigh-Bénard Convection flow is that the area (and time) averaged
Nusselt number in the cube given by Equation (3.1) is constant in the y-axes once a steady state
has been reached. Further, the volume (and time) averaged Nusselt number, hereon referred to as
global Nusselt Number, calculated from Equation (3.1) should also be equal to this value. To assess
this we took slices at 5 different heights in the cell; in the middle, at one boundary layer height from
the horizontal walls and at twice the boundary layer height from the horizontal walls. By looking
in the surfaceFieldValue.dat files of the relevant slices we can assess whether the above is true; an
example command is given by

tail -1 postProcessing/areaAveragePlaneVeryBottom/0/surfaceFieldValue.dat

Slice Nucomp1 Nucomp2 Nutot

Very top 1.87 -2.06 3.93

Top 3.61 -0.23 3.84

Middle 3.85 0.03 3.82

Bottom 3.59 -0.24 3.84

Very Bottom 1.83 -2.09 3.92

Global 2.86 -1 3.86

Table 3.1: Nu summary

34

CHAPTER 3. TUTORIAL B: A RAYLEIGH-BÉNARD CONVECTION TEST CASE

This is not a validation exercise for the solver, the purpose of the tutorial is to show proof of concept,
as such we can only make observations with the caveat that more work needs to be done for a fully
validated solver. However, the Nusselt summary table suggests that the solution has reached a
statistically steady state as the total Nu is almost constant up and down the square domain.

One further observation is the different contributions to the total Nusselt number from the two
components. It can be seen that in the bulk of the flow the convective component 1 is dominant and
the reverse is true as we approach the boundary layers where the diffusive component 2 takes over.
A further qualitative observation is the typical nature of the time-averaged LSC velocity vector field
which is observed by looking at the nonDimUMean field from the final time-step (in paraview use
filters → cell-centres then filters → glyph).

35

Chapter 4

Study questions

1. What are the main differences between buoyantPimpleFoam and the low-Mach number equiv-
ilant explained in this document ?

2. How is continuity enforced in the transient variable density low-Mach-number PISO algorithm?

3. How can the algorithm presented be further devoloped so that the temperature (and hence
density) correction step is included in the transient PISO algorithm ?

4. What function object can we use to calculate the Nusselt number at the hot and cold walls
during the simulation ?

It is noted here that the function objects outlined in this tutorial are particularly useful for
turbulent (hence chaotic) simulations which do not tend to a steady state. As such the advanced
user is encouraged to increase the Rayleigh number and to model the same case in 3D.

36

Chapter 5

Hints and tricks

During the course of creating this tutorials many problems have been encountered. The following
are a summary of tips and tricks that may help the user should they carry out a similar task.

1. More than just adding robustness, the hydrodynamic pressure field is essential for this solver.
In their reactingLMFoam solver, Nogenmyr et Al [7] treat buoyancy as a volumetric source
term in the momentum equation and this produces no velocity field when combined with the
other changes outlined here.

2. The pressure used in the constrainHbyA function in the pEqn.H must be the thermodynamic
pressure, which is not immediately obvious from the buoyantPimpleFoam code.

3. The implicit addition and explicit extraction of ∂(ψ pd)
∂t in the pressure poisson equation [8] is

necessary but not always sufficient to stablize the solution of the pressure Poisson equation.
The tolerances and relTol may need to be reduced in fvSolution.

4. The equationOfState used in the thermophysicalProperties dictionary plays an important role.
With this solver it is suggested to use the perfectGas even when p0 is equal to pref (i.e. even
in an open domain). This is because the use of incompressiblePerfectGas equation of state
does correctly set p0 to pref , however it also sets ψ, and consequently the ddt(psi)*p term, to
zero in the the PISO loop.

37

Bibliography

[1] G. Ahlers, S. Grossman, and D. Lohse. “Heat transfer and large scale dynamics in turbulent
Rayleigh Benard convection”. In: Rev. Mod. Phys 81.00 (2009).

[2] Ferziger J. and Peric H. Computational Methods for Fluid Dynamics. Springer-Verlag Berlin
Heidelberg, 2002.

[3] P.J. Oliviera and R.I. Issa. “An improved PISO algorithm for the computation of buoyancy
driven flows”. In: Numer. Heat Tr. Bfund 40.473-493 (2001).

[4] B. Lessani and M.V. Papalexandris. “Time accurate calculation of variable density flows with
strong temperature gradients and combustion”. In: J. Comput. Phys. 212.218-246 (2006).

[5] H. Jasak. “Error Analysis and Estimation for the Finite Volume Method with Applications to
Fluid Flows”. PhD thesis. Imperial College, 1996.

[6] I. Demirdzic, M. Peric, and Z Lilek. “A colocated finite volume method for predicting flows at
all speeds”. In: Int. J. Num. Meth. Fluids 16.1029-1050 (1993).

[7] Nogenmyr, K.J. and Chan, C.K. and Duwig, C. Finite rate chemistry effects and combus-
tor liner heat transfer studies in a framework of LES of turbulent flames. http://web.

student.chalmers.se/groups/ofw5/Presentations/KarlJohanNogenmyrSlidesOFW5.pdf.
Accessed: 27-11-2018.

[8] Souvandy-Tabarracci, D. and Lamorlette, A. and Morvan, D. Modele de propagation d’un feu
de foret en low Mach number. http://docs.gdrfeux.univ-lorraine.fr/Balma/M2P2_1.
pdf. Accessed: 27-11-2018.

[9] O. Shishkina and C. Wagner. “Local heat fluxes in turbulent Rayleigh Benard convection”.
In: Phys. Fluids 19.085107 (2009).

[10] R. Stevens, R. Verzicco, and D. Lohse. “Radial boundary layer structure and Nusselt number
in Rayleigh Benard convection”. In: J. Fluid Mech. 643.495-507 (2010).

[11] O. Shiskina et al. “Boundary layer structure in turbulent thermal convection and its conse-
quences for the required numerical resolution”. In: New J. Phys. 12.07502 (2010).

[12] R.I. Issa. “Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting”.
In: J. Comp. Phys. 62.40-65 (1985).

[13] Churchfield, M. BuoyantBoussinesqPisoFoam. https://openfoamwiki.net/index.php/

BuoyantBoussinesqPisoFoam. Accessed: 27-11-2018.

38

