
Cite as: Da Luz Moreira, A.: Complex mesh deformations in OpenFOAM: a custom boundary condition

for prescribed mesh motion. In Proceedings of CFD with OpenSource Software, 2022, Edited by Nilsson.

H., http://dx.doi.org/10.17196/OS CFD#YEAR 2022

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Complex mesh deformations in
OpenFOAM: a custom boundary

condition for prescribed mesh motion

Developed for OpenFOAM-v2206
Requires: Python with numpy and scipy (for tutorials)

Author:
André Da Luz Moreira
Linköping University
andre.da.luz.moreira@liu.se

Peer reviewed by:
Jonas Lantz
Yuchen Zhou
Saeed Salehi

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone

through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

January 16, 2023

http://dx.doi.org/10.17196/OS_CFD#YEAR_2022

Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organised with those headers.

The reader will learn:

How to use it:

• How to use deforming dynamic meshes in OpenFOAM.

• How to to prescribe custom deformations interpolated to a boundary in OpenFOAM using the
boundary condition timeVaryingMotionInterpolation.

The theory of it:

• How mesh deformation is calculated in OpenFOAM with Laplacian solvers.

• How arbitrary deformation information may be interpolated into boundary points in different
ways.

How it is implemented:

• How deformable boundaries are implemented in the new boundary condition presented here.

How to modify it:

• How to modify an existing boundary condition for new purposes.

• How to implement different interpolation algorithms to apply motion data values boundary
points.

1

Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• How to run standard documented tutorials in OpenFOAM and modify them.

• Have a basic knowledge of how static and dynamic meshes function in OpenFOAM.

• Know how to compile and use custom libraries and boundary conditions in OpenFOAM.

• Be able to understand how some interpolation techniques work to transfer information from a
provided field into mesh points.

2

Contents

1 Introduction 6

2 Deforming meshes in OpenFOAM 7
2.1 Dynamic meshes and mesh motion in OpenFOAM 7
2.2 Laplace’s equation for mesh deformation . 8
2.3 Motion solvers in fvMotionSolvers . 9

2.3.1 Velocity solvers . 9
2.3.2 Displacement solvers . 12

2.4 Mesh deformation diffusivity in OpenFOAM . 15

3 Description of implemented BC 17
3.1 Compilation of implemented BC . 19
3.2 Usage . 19

3.2.1 Types of input data . 21
3.2.1.1 Unstructured input data . 21
3.2.1.2 Structured input data . 22

3.3 Types of motion interpolation . 23
3.3.1 Nearest value . 23
3.3.2 Inverse distance interpolation . 23
3.3.3 Trilinear interpolation . 24

3.4 Detailed description of BC code . 25
3.4.1 BC constructor . 25
3.4.2 The updateCoeffs function . 25
3.4.3 The checkTable function . 26

3.4.3.1 Initialisation of re-usable parameters 27
3.4.3.2 Reading of motion data files . 27
3.4.3.3 Data interpolation . 27

3.4.4 Implementations of motion interpolation . 27
3.4.4.1 Nearest value . 27
3.4.4.2 Inverse distance interpolation . 28
3.4.4.3 Trilinear interpolation . 29

4 Description of provided tutorials 33
4.1 Deforming airfoil . 33

4.1.1 Creation of geometry and motion data . 34
4.1.2 Airfoil mesh deformation . 35
4.1.3 Batch execution . 36

4.2 Deforming cylinder . 36
4.2.1 Creation of geometry and motion data . 37
4.2.2 Cylinder mesh deformation . 38
4.2.3 Batch execution . 38

3

Contents Contents

A Accompanying files 42
A.1 Contents of myFvMotionSolver . 42
A.2 Contents of tutorials . 42

4

Nomenclature

Acronyms
BC Boundary Condition
CFD Computational Fluid Dynamics
VOF Volume Of Fluids

English symbols
U i Cartesian velocity vector . [m/s]
V i Cartesian arbitrary field vector . [-]
Xi Cartesian coordinates vector . [m]
ii 3D matrix index
li Interpolation factor
mi List index in OpenFOAM
Ni 3D matrix dimension
p Inverse distance exponent term
Vi Arbitrary field value . [-]
wi Inverse distance weight factor
xi Cartesian x-coordinates . [m]
yi Cartesian y-coordinates . [m]
zi Cartesian z-coordinates . [m]

Greek symbols
Γc Cartesian motion diffusivity at cell centres . [m2/s]
∆ Change in quantity/parameter (delta)
Γ Motion diffusivity at cell centres . [m2/s]

Subscripts
0 Initial
c Mesh cell centre parameter
i Arbitrary subscript
p Mesh point parameter
t Time
min Minimum
ref 3D matrix reference point

Other symbols
∇ Vector differential operator (nabla)

5

Chapter 1

Introduction

Deformations of computational fluid dynamic (CFD) meshes are frequently used to simulate flows in
domains with variable geometries. This allows for a multitude of studies where dynamic systems are
more accurately represented. Several types of motion may be used in CFD, so that not only the flow
may be driven by a change in geometry, but also the results of a flow field may be used to compute
an updated geometry or position. A flow driven by a piston in an engine cylinder with positions
known a priori is an example of the first. For the second type, an example would be simulations of
airfoils whose position and angle of attack are changed by the flow.

In most CFD software packages, including OpenFOAM, the existing boundary conditions (BCs)
and utilities intended for mesh deformations are developed with more ”standard” types of motion
in mind. They are easily capable of deforming meshes for rigid body motions in one or more of its
boundaries, as well as for deformations than can be described mathematically. However, complex
and arbitrary deformation of a boundary is not a straightforward task, often requiring that boundary
conditions are developed and customised for each case.

For a generic case of complex mesh deformation, where the motion of the boundary points is
known (e.g. from experiments or measurements) but cannot be described using a mathematical
function, the solution to applying this motion field to a computational mesh is to interpolate the
values into the mesh points. An example of such a case would be simulations of biological flows,
which may be performed using direct measurements of complex and irregular geometries with spatial
and temporal information. These may come from computed tomography scans, magnetic resonance
imaging, high resolution cameras, to mention a few examples.

This, however, is not something readily available in OpenFOAM. The aim of this report is to
describe a generic boundary condition for mesh deformations based on case-specific motion informa-
tion. This is accomplished by interpolating the data, be it from a point cloud or a structured grid,
into the deformable CFD boundaries. This BC should be easily integrated into existing OpenFOAM
code and should be able to take advantage of established dynamic mesh types, motion solvers and
other utilities, without compromises or any loss of functionalities.

To lay the foundations required to understand the function of this boundary condition, a general
explanation of the existing mesh deformation functionalities in OpenFOAM v2206 are presented
in Chapter 2. The developed code is then presented in Chapter 3, where the most important
aspects required for understanding its usage will be explained. Some tutorial cases using this BC
are explained in Chapter 4. These can be used as inspiration for more advanced and complex
deformation cases the user may wish to study.

A complete list of files accompanying is included in Appendix A for easy referencing and prepa-
ration for following the contents of this report.

6

Chapter 2

Deforming meshes in OpenFOAM

The requirements for mesh deformation in OpenFOAM are included in multiple libraries in its source
code, such as dynamicMesh, fvMotionSolvers and dynamicFvMesh. These features are possible in
applications that enable dynamic meshes, such as pimpleFoam, interFoam and rhoPimpleFoam, as
some noteworthy examples.

This chapter includes a brief explanation of how mesh deformation is triggered and controlled
in OpenFOAM during execution. It will start with a generic description of the steps required for
creating a deformation-capable dynamic mesh, followed by a more detailed description of some com-
ponents of the fvMotionSolvers library. The matters discussed are the ones relevant to boundary
motion and mesh deformation. This description aims at building the foundations for the topics
in Chapter 3 and is not intended as a complete overview of this library nor of dynamic meshes in
OpenFOAM.

2.1 Dynamic meshes and mesh motion in OpenFOAM

As an example of the handling of dynamic meshes in OpenFOAM, the source code of the solver
pimpleFoam can be used as an example. The steps described below are not exclusive to this appli-
cation, and are also found in other solvers with dynamic mesh capabilities.

The first step in using dynamic meshes in OpenFOAM is the creation of a dynamicFvMesh object,
performed by including the line #include"createDynamicFvMesh.H" in the case setup. During
this step, the information contained in the dictionary dynamicMeshDict is read, and the specified
dynamicFvMesh type is used. Dynamic meshes allow for multiple advanced features in OpenFOAM.
Some examples are mesh motion, deformation, overset meshes and sliding meshes. An example
dictionary is shown below.

Example dynamicMeshDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2206 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object dynamicMeshDict;

}

// * //

dynamicFvMesh dynamicMotionSolverFvMesh;

7

2.2. Laplace’s equation for mesh deformation Chapter 2. Deforming meshes in OpenFOAM

motionSolverLibs ("libfvMotionSolvers.so");

motionSolver displacementLaplacian;

diffusivity quadratic inverseDistance (boundaryName);

// *** //

OpenFOAM contains multiple types of dynamicFvMesh classes for various types of geometry
or topology changes in meshes, which will not be discussed in detail in this report. For mesh
deformation cases, a mesh of type dynamicMotionSolverFvMesh1seen above can be created. As its
name suggests, this type of dynamic mesh requires an appropriate motion solver to be selected, as
well as the library containing it. The selected motionSolver is responsible for the description of the
dynamic behaviour of the mesh, as well as initialisation of the required fields for the deformation.
The appropriate boundary condition (BC) files are read, verifying that information consistent with
the contents of the dynamic mesh dictionary is found and used.

The fourth input above is not a mandatory requirement for all cases, but is used by motion
solvers based on Laplace’s equation, which need a description of how the deformation diffusivity is
calculated.

The OpenFOAM library containing the utilities for mesh deformations relevant for this report
is fvMotionSolvers, and its source code is located in src/fvMotionSolver. It builds on existing
libraries for dynamic meshes and comprises mainly, but not only, of motion solvers, diffusivity models
and BCs that account for moving boundaries in a mesh and how their deformation is distributed
in this domain in a continuous manner. Additional information on selected types of motionSolver
and diffusivity contained in fvMotionSolvers will be presented in Section 2.3.

Although other tasks specific to dynamic meshes are performed, the most important step is
seen performed when the function update() inside the solution loop for a time step2. For a
dynamicMotionSolverFvMesh, this update moves the mesh points using the output of the func-
tion newPoints() in the base class for all motion solvers motionSolver class. This function is seen
in the code excerpt below.

Function newPoints in src/dynamicMesh/motionSolvers/motionSolver/motionSolver.C

Foam::tmp<Foam::pointField> Foam::motionSolver::newPoints()

{

solve();

return curPoints();

}

The functions solve() and curPoints() are solver-specific, but are originally declared on the base
class motionSolver. This allows access to the correct sub-class at execution through dynamic
binding to the correct function, specific to the chosen solver. These function are responsible for
calculating the displacement information for the mesh’s point according to each solver, and returning
the new point coordinates for the mesh update. The implementation of these two functions will be
discussed in Section 2.3 for the two relevant motion solvers in OpenFOAM using Laplace’s equation.

2.2 Laplace’s equation for mesh deformation

The two motion solvers discussed in this report use Laplace’s equation to determine a mesh defor-
mation field at cell centres and, for this reason, a brief introduction to this topic is given here. The
generalised Laplace equation equation for a deformation field in three dimensions is given by

1Other types of dynamicFvMesh classes allow for more complex mesh motion and deformation combinations. Some
examples are as dynamicMotionSolverListFvMesh, which allows multiple different motion solvers to be selected; and
dynamicMultiMotionSolverFvMesh, for which solvers for separate cellZones in a mesh may be selected. These are
beyond the scope of this report and will not be described.

2The function controlledUpdate() may be used, as is the case in pimpleFoam. This functions ultimately triggers
update()

8

2.3. Motion solvers in fvMotionSolvers Chapter 2. Deforming meshes in OpenFOAM

∇ · (Γc ∇V c) = 0 . (2.1)

The terms Γc and V c are the mesh deformation diffusivity and an arbitrary deformation vector
fields, defined at mesh cell centres. This arbitrary field will depend on the selected Lagrangian
motion solver and can be chosen to be either the cell centres’ displacements or their velocities.
The diffusivity may be specified in different manners, and despite the fact that most models for this
parameter are scalar, the generalised vectorial form Γc will be used. The different types of diffusivity
models in OpenFOAM 2206, selected by the user in dynamicMeshDict, will be shortly presented in
Section 2.4..

Given that appropriate motion boundary conditions are specified for the CFD domain, the so-
lution to this equation is a deformation field in which motion in the whole mesh is calculated to
accommodate these BCs while preserving the mesh validity and quality [1]. Advantages to using
this approach include this equation’s easy and rapid solution, with bounded results for a smooth
non-uniform distribution of V c.

Since the final mesh deformation must be calculated not at cell centres, but at the mesh points,
the main disadvantage of this approach is the need for interpolation. This step will be seen in the
curPoints functions for both motion solvers described in the following section. Studies on this
matter have shown that for complex deformations this results in flipping and degeneration of mesh
cells, as well as problems in corner points belonging to one cell only [1]. These problems are commonly
solved by periodically remeshing the simulation domain, which can be a costly computational task.
Although mesh deformations based on equations defined at points instead of cell centres exist, they
will not be discussed here as these are not implemented in OpenFOAM 2206.

2.3 Motion solvers in fvMotionSolvers

The motion solvers, located in the library sub-folder named fvMotionSolvers, are primarily divided
in two types: displacement and velocity solvers. All of them ultimately determine displacements for
the points in the mesh, but different approaches are used for this, according to the type of mesh
motion selected. Displacement solvers fulfil this task by first calculating a displacement field in the
cell centres of the mesh, which is then interpolated to the all points and then added to their initial
coordinates for an update in position. The velocity solvers, on the other hand, first solve for a
velocity field in the cells, which is interpolated to points, and the points’ displacement is calculated
by the product of this velocity and the simulation time step size.

2.3.1 Velocity solvers

The two mesh velocity solvers available in OpenFOAM as part of fvMotionSolvers are based on
the solution of a mesh velocity field, using Laplace’s equation. These are:

• velocityComponentLaplacian3

Description: Mesh motion solver for an fvMesh. Based on solving the cell-centre Laplacian
for the given component of the motion velocity.

• velocityLaplacian4

Description: Mesh motion solver for an fvMesh. Based on solving the cell-centre Laplacian
for the motion velocity.

As seen in the description text above, copied directly from their header files in the source code,
they are used in quite similar manners to solve the mesh motion and the differences between them
are only related to the description of the cell centres’ velocity field (cellMotionU) as a vector field or
as one of three components of the velocity. This allows for simplifications and faster computations
in cases where the mesh boundaries are only displaced on one direction. For this reason, only

3Located in src/fvMotionSolver/fvMotionSolvers/componentVelocity/componentLaplacian.
4Located in src/fvMotionSolver/fvMotionSolvers/velocity/laplacian.

9

2.3. Motion solvers in fvMotionSolvers Chapter 2. Deforming meshes in OpenFOAM

velocityLaplacian will be described here, as all of the considerations made for it are also applicable
to the more limited velocityComponentLaplacian.

The solver velocityLaplacian is built upon two others: velocityMotionSolver5, from the
dynamic mesh library, and the generalised base class fvMotionSolver6. The first is used to in-
clude references to the mesh through a polyMesh object, access to the information provided by
the user in dynamicMeshDict, while also creating the field pointMotionU during object construc-
tion, which represents the points velocity used for the displacement calculations. The second class,
fvMotionSolver, is the base for all motion solvers in the fvMotionSolvers library and provides
access to the mesh by a fvMesh object (obtained by dynamically casting a polyMesh object)7.

The Laplacian velocity solver complements its dependencies by creating the cell centre velocity
field cellMotionU, along with class members and functions for performing all the necessary steps to
solve the cell velocity distribution equation and deform the mesh according to this equation’s results.
More details are available in the OpenFOAM header file velocityLaplacianFvMotionSolver.H8.

Some noteworthy details of this class are its constructor and the functions curPoints and solve

(see Section 2.1). These will be briefly described here. The function updateMesh, also part of
velocityLaplacian, is important in cases of topology updates, but is beyond the scope of this
report and will not be discussed here.

Constructor for velocityLaplacian object:
As seen in the text excerpt for velocityLaplacian’s constructor9, the Laplacian velocity solver

receives a reference to the mesh through a polyMesh object and through a dictionary (more specifi-
cally, to dynamicMeshDict).

Constructor from velocityLaplacianFvMotionSolver.C

Foam::velocityLaplacianFvMotionSolver::velocityLaplacianFvMotionSolver

(

const polyMesh& mesh,

const IOdictionary& dict

)

:

velocityMotionSolver(mesh, dict, typeName),

fvMotionSolver(mesh),

cellMotionU_

(

IOobject

(

"cellMotionU",

mesh.time().timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::AUTO_WRITE

),

fvMesh_,

dimensionedVector(pointMotionU_.dimensions(), Zero),

cellMotionBoundaryTypes<vector>(pointMotionU_.boundaryField())

),

interpolationPtr_

(

coeffDict().found("interpolation")

? motionInterpolation::New(fvMesh_, coeffDict().lookup("interpolation"))

: motionInterpolation::New(fvMesh_)

),

diffusivityPtr_

(

motionDiffusivity::New(fvMesh_, coeffDict().lookup("diffusivity"))

)

5See contents of src/dynamicMesh/motionSolvers/velocity.
6See contents of src/fvMotionSolver/fvMotionSolvers/fvMotionSolver.
7See the class constructor in fvMotionSolver.C
8Full path: src/fvMotionSolver/fvMotionSolvers/velocity/laplacian/velocityLaplacianFvMotionSolver.H.
9See src/fvMotionSolver/fvMotionSolvers/velocity/laplacian/velocityLaplacianFvMotionSolver.C.

10

2.3. Motion solvers in fvMotionSolvers Chapter 2. Deforming meshes in OpenFOAM

{}

After providing the required inputs for its inheritances, three important objects in this solver are
created. First, the previously mentioned field cellMotionU is initialised or read from the case’s time
folders. Then, an interpolator object is created, which is used for transferring the calculated cell
centre velocities to the mesh points. Finally, a motion diffusivity object is created. The diffusivity
is a key parameter in distributing the deformation in the internal mesh points during the equation
solution process and will be further explained in Section 2.4.

Function solve:
The solve function is responsible for solving an equation for the velocities in the cell centres,

from which deformation is ultimately calculated. This takes the form of Laplace’s equation,
∇ · (Γc ∇U c) = 0 , (2.2)

where U c represents the cell centre velocities, similar to Equation (2.1).
As one may see in the code for this function, it starts with updating some terms, includ-

ing the diffusivity field and the point velocities field at the mesh boundaries using the specified
boundary conditions. It is worth noting that the movePoints function below, inherited from
the velocityMotionSolver class, does not perform any tasks in this case. This may be veri-
fied by inspecting the function code in file velocityMotionSolver.C. The line pointMotionU_

.boundaryFieldRef().updateCoeffs(); will be of importance in Chapter 3 (Section 3.4.2), as it
is responsible for triggering each boundary’s own updateCoeffs function, where the user specified
boundary conditions are updated. Then, after defining the fvOptions object and obtaining the
number of non orthogonal corrector steps defined in the simulation inputs, it goes on to define and
solve the deformation velocity equation.

Function solve in velocityLaplacianFvMotionSolver.C

void Foam::velocityLaplacianFvMotionSolver::solve()

{

// The points have moved so before interpolation update

// the fvMotionSolver accordingly

movePoints(fvMesh_.points());

diffusivityPtr_->correct();

pointMotionU_.boundaryFieldRef().updateCoeffs();

fv::options& fvOptions(fv::options::New(fvMesh_));

const label nNonOrthCorr

(

getOrDefault<label>("nNonOrthogonalCorrectors", 1)

);

for (label i=0; i<nNonOrthCorr; ++i)

{

fvVectorMatrix UEqn

(

fvm::laplacian

(

dimensionedScalar("viscosity", dimViscosity, 1.0)

* diffusivityPtr_->operator()(),

cellMotionU_,

"laplacian(diffusivity,cellMotionU)"

)

==

fvOptions(cellMotionU_)

);

fvOptions.constrain(UEqn);

UEqn.solveSegregatedOrCoupled(UEqn.solverDict());

fvOptions.correct(cellMotionU_);

}

11

2.3. Motion solvers in fvMotionSolvers Chapter 2. Deforming meshes in OpenFOAM

}

Function curPoints:
In curPoints, the point velocities Up are first obtained from the cell centre values U c (calculated

in solve) by using the class’ interpolator object. Then, the updated mesh point coordinates are
calculated as

Xtn = Xtn−1
+ ∆t ·Up , (2.3)

where Xtn and Xtn−1
are the point coordinates at the current and previous simulated times, ∆t

is the time step size. The function ultimately returns these values as a tmp<Foam::pointField>

object used to update the mesh point coordinates, as seen in the following code excerpt.

Function curPoints in velocityLaplacianFvMotionSolver.C

Foam::tmp<Foam::pointField>

Foam::velocityLaplacianFvMotionSolver::curPoints() const

{

interpolationPtr_->interpolate

(

cellMotionU_,

pointMotionU_

);

tmp<pointField> tcurPoints

(

fvMesh_.points()

+ fvMesh_.time().deltaTValue()*pointMotionU_.primitiveField()

);

twoDCorrectPoints(tcurPoints.ref());

return tcurPoints;

}

2.3.2 Displacement solvers

Unlike the velocity solvers, the list of mesh displacement solvers includes options that go beyond the
use of Laplace’s equation for the mesh deformation. The existing motion solvers for displacment in
the fvMotionSolvers library, as of OpenFOAM’s version 2206, are:

• displacementComponentLaplacian10

Description: Mesh motion solver for an fvMesh. Based on solving the cell-centre Laplacian
for the given component of the motion displacement.

• displacementLaplacian11

Description: Mesh motion solver for an fvMesh. Based on solving the cell-centre Laplacian
for the motion displacement.

• displacementSBRStress12

Description: Mesh motion solver for an fvMesh. Based on solving the cell-centre solid-body
rotation stress equations for the motion displacement.

• solidBodyDisplacementLaplacian13

Description: Applies Laplacian displacement solving on top of a transformation of the initial
points using a solid-body motion.

10See contents of src/fvMotionSolver/fvMotionSolvers/componentDisplacement/componentLaplacian.
11See contents of src/fvMotionSolver/fvMotionSolvers/displacement/laplacian.
12See contents of src/fvMotionSolver/fvMotionSolvers/displacement/SBRStress.
13See contents of src/fvMotionSolver/fvMotionSolvers/displacement/solidBodyDisplacementLaplacian.

12

2.3. Motion solvers in fvMotionSolvers Chapter 2. Deforming meshes in OpenFOAM

• surfaceAlignedSBRStress14

Description: Mesh motion solver for an fvMesh. Based on solving the cell-centre solid-body
rotation stress equations for the motion displacement. The model calculates the necessary ro-
tation to align the stl surface with the closest mesh face normals and it calculates the respective
source term for the SBRStress equation.

As their names and descriptions indicate, displacementComponentLaplacian is similar to the
aforementioned Laplacian component solver, while displacementLaplacian is similar in function
the more complete velocityLaplacian. The two SBRStress displacement solvers are based on the
solution of rotation stresses, while solidBodyDisplacementLaplacian is based on deformations
based on rigid body motions. As the aim of this report is to describe a novel boundary condi-
tion used for interpolating arbitrary displacements into a mesh, only the first two solvers will be
described here. As with the cased of the solvers based on mesh deformation velocities, only the
more general displacementLaplacian will be described here. Several similarities exist between
displacementLaplacian and velocityLaplacian, and the reader is referred to 2.3.1 in such cases.

As its velocity counterpart, displacementLaplacian is built from two classes: the general dis-
placement solver displacementMotionSolver15, and fvMotionSolver. The displacement solver is
similar to velocityMotionSolver, providing access to the mesh through a polyMesh object, access
to the dynamicMeshDict dictionary, and more importantly, creates the field pointDisplacement for
the mesh deformation. The Laplacian displacement motion solver class expands these with the cre-
ation of the cell centre displacement field (cellDisplacement), along with members and functions
pertaining to the solution of this field and calculation of updated mesh point coordinates using the
field’s results.

Similar to the description in Section 2.3.1, the relevant constructor and the two functions solve
and curPoints for displacementLaplacian will be discussed here.

Constructor for displacementLaplacian object:
The two available constructors for displacementLaplacian16perform more tasks than the con-

structor for velocityLaplacian, but their main function is similar. Due to the length of these
constructor functions, and the fact that not significant differences exist between them and the con-
structor for velocityLaplacian presented in Section 2.3.1, they will not be included here. The
reader is referred to the source files for detailed inspection of the constructor code.

After providing inputs to the classes from which it is built, the motion field cellDisplacement

is created, as are the interpolator and diffusivity. Two additional optional objects exist for the
solver displacementLaplacian, pointLocation_ and frozenPointsZone_, are used for position
boundary conditions and to fix certain points in place. These two objects will not be discussed here
and the reader is referred to the solver’s source code for additional information.

Function solve:
The solution of the cell displacement field ∆Xc follows a similar process as the one seen in the

previous section for the cell velocities. It uses Laplace’s equation for a displacement distribution,
∇ · (Γ ∇(∆Xc)) = 0. (2.4)

The excerpt from displacementLaplacianFvMotionSolver.C shows that the steps taken are
similar the those seen in the solution of the mesh velocity field in velocityLaplacian. After
updating the diffusivity field and the boundary conditions, the displacement equation is created and
solved. The main difference in this function when compared to the Laplacian velocity solver is that
no corrector steps for mesh non-orthogonality are employed.

Function solve in displacementLaplacianFvMotionSolver.C

void Foam::displacementLaplacianFvMotionSolver::solve()

14See contents of src/fvMotionSolver/fvMotionSolvers/displacement/surfaceAlignedSBRStress.
15See contents of src/dynamicMesh/motionSolvers/displacement/displacement.
16See src/fvMotionSolver/fvMotionSolvers/displacement/laplacian/displacementLaplacianFvMotionSolver.H

and .C.

13

2.3. Motion solvers in fvMotionSolvers Chapter 2. Deforming meshes in OpenFOAM

{

// The points have moved so before interpolation update

// the motionSolver accordingly

movePoints(fvMesh_.points());

diffusivity().correct();

pointDisplacement_.boundaryFieldRef().updateCoeffs();

fv::options& fvOptions(fv::options::New(fvMesh_));

// We explicitly do NOT want to interpolate the motion inbetween

// different regions so bypass all the matrix manipulation.

fvVectorMatrix TEqn

(

fvm::laplacian

(

dimensionedScalar("viscosity", dimViscosity, 1.0)

*diffusivity().operator()(),

cellDisplacement_,

"laplacian(diffusivity,cellDisplacement)"

)

==

fvOptions(cellDisplacement_)

);

fvOptions.constrain(TEqn);

TEqn.solveSegregatedOrCoupled(TEqn.solverDict());

fvOptions.correct(cellDisplacement_);

}

Function curPoints:
The function curPoints shown below, although at a first glance more complicated that the one

in seen for the velocityLaplacian solver, does not present major differences for cases where the
optional pointLocation_ and frozenPointsZone_ are not used.

Function curPoints in displacementLaplacianFvMotionSolver.C

Foam::tmp<Foam::pointField>

Foam::displacementLaplacianFvMotionSolver::curPoints() const

{

interpolationPtr_->interpolate

(

cellDisplacement_,

pointDisplacement_

);

if (pointLocation_)

{

if (debug)

{

// Not shown here for conciseness sake

}

pointLocation_().primitiveFieldRef() =

points0()

+ pointDisplacement_.primitiveField();

pointLocation_().correctBoundaryConditions();

// Implement frozen points

if (frozenPointsZone_ != -1)

{

// Not shown here for conciseness sake

}

twoDCorrectPoints(pointLocation_().primitiveFieldRef());

14

2.4. Mesh deformation diffusivity in OpenFOAM Chapter 2. Deforming meshes in OpenFOAM

return tmp<pointField>(pointLocation_().primitiveField());

}

else

{

tmp<pointField> tcurPoints

(

points0() + pointDisplacement_.primitiveField()

);

pointField& curPoints = tcurPoints.ref();

// Implement frozen points

if (frozenPointsZone_ != -1)

{

// Not shown here for conciseness sake

}

twoDCorrectPoints(curPoints);

return tcurPoints;

}

}

Similar to the previous case, this function begins with the interpolation of the calculated cell-
centred data (∆Xc) to the mesh point locations(∆Xp). The first if-statement in the function
is only used for the aforementioned position boundary conditions. When this type of boundary
condition is not used, the point coordinates are updated using the very straightforward relation

Xtn = Xt0 + ∆Xp. (2.5)

One important aspect for the displacement solver implementation’s is that the returned field is not
calculated based on the mesh points’ previous coordinates, but on their initial coordinates Xt0 .
After calculation, the function returns the coordinates as a tmp<Foam::pointField> object, just as
in velocityLaplacian.

2.4 Mesh deformation diffusivity in OpenFOAM

The selection of an appropriate diffusivity model is critical depending on the type of mesh motion
used. Different models for the diffusivity may be applicable in different cases, and the ones available
in the fvMotionSolvers library are listed below.

• uniformDiffusivity17

Description:

• inverseDistance18

Description: Inverse distance to the given patches motion diffusivity.

• inverseFaceDistance19

Description: Inverse distance to the given patches motion diffusivity.

• inversePointDistance20

Description: Inverse distance to the given patches motion diffusivity.

• inverseVolume21

Description: Inverse cell-volume motion diffusivity.

17See contents of src/fvMotionSolver/motionDiffusivity/uniform.
18See contents of src/fvMotionSolver/motionDiffusivity/inverseDistance.
19See contents of src/fvMotionSolver/motionDiffusivity/inverseFaceDistance.
20See contents of src/fvMotionSolver/motionDiffusivity/inversePointDistance.
21See contents of src/fvMotionSolver/motionDiffusivity/inverseVolume.

15

2.4. Mesh deformation diffusivity in OpenFOAM Chapter 2. Deforming meshes in OpenFOAM

• directional22

Description: Directional finite volume mesh motion diffusivity.

• motionDirectional23

Description: MotionDirectional finite volume mesh motion diffusivity.

• file24

Description: Motion diffusivity read from given file name.

The descriptions included above were copied from the diffusivity models’ source files, and un-
fortunately do not provide detailed information about the models. The 2006 paper by Jasak and
Tuković provide interesting insights about differences between diffusivity models [1], but do not
fully describe the models listed here. For a more accurate understanding of each diffusivity model’s
behaviour, their source code should be analysed. This, however, is beyond the scope of this report,
since the selection of an appropriate diffusivity model should be simulation-specific.

The diffusivity models may also be combined with two available manipulator classes, included in
src/fvMotionSolver/motionDiffusivity/manipulators. The calculated values from the above
models may be modified with a square or an exponential function, by adding a keyword between
the model name (see the example dynamicMeshDict in Section 2.1).

For arbitrary mesh motions the distance based diffusivity models outperform the uniform diffu-
sivity model, as reported by Löner and Yang [2] as well as by Jasak and Tuković [1]. Similar results
were obtained in tests during the preparation of this report, with results showing better mesh qual-
ity, with lower non-orthogonality and skewness, among other indicators. The reader is encouraged
to investigate these by altering the diffusivity parameters in the example tutorial later presented in
Section 4.1. The inverse volume, directional, motion directional and file diffusivity models were
not investigated.

22See contents of src/fvMotionSolver/motionDiffusivity/directional.
23See contents of src/fvMotionSolver/motionDiffusivity/motionDirectional.
24See contents of src/fvMotionSolver/motionDiffusivity/file.

16

Chapter 3

Description of implemented
boundary condition

The boundary condition timeVaryingMotionInterpolation was developed for seamless integration
with the existing library fvMotionSolvers. It has been made by extensive modifications to the
existing BC timeVaryingMappedFixedValue1. The boundary condition can be compiled as part of
a new library that includes all the existing functionalities of fvMotionSolvers using the provided
Make folder and files, named myFvMotionSolvers. The complete list of included files as well as
instructions for compilation are presented in Section 3.1.

This novel BC utilises motion information provided as point coordinates and corresponding mo-
tion data (displacements or velocities), which may or may not vary in time. This motion may be
obtained in different manners, such as experimental measurements, registration of image data, among
others. The flowchart in Figure 3.1 illustrates the overall function of timeVaryingMotionInterpolation.

Figure 3.1: Flowchart for data interpolation in Boundary Condition.

As we may see, for a given simulation time ti, the BC first verifies the time values at which motion
data are available. If the simulation time is the same as one of the available motion information
times, tm,n, the corresponding data are interpolated into the boundary points coordinates and these
values are assigned to the boundary. If ti lies between two available motion data values, tm,n and
tm,n+1, the data are first interpolated in space for these two time values and ultimately interpolated
linearly in time.

1Located in src/fvMotionSolver/pointPatchFields/derived/timeVaryingMappedFixedValue.

17

Chapter 3. Description of implemented BC

Although conceptually simple, the key parts of timeVaryingMotionInterpolation concern dif-
ferent types of input data formats, as well as the different interpolation methods that may be used.
The provided motion data may be of two types: structured or unstructured. Unstructured data
is given by a set of points arbitrarily distributed in space where motion information is provided.
Structured data, on the other hand, is given in the form of a uniformly spaced grid, not requiring a
list of coordinates but instead the information characterising a matrix containing the motion data.
Unstructured and structured data are shown in Figure 3.2 for a two-dimensional example.

(a) Unstructured.

(b) Structured.

Figure 3.2: Examples of motion velocity data for a 2D case.

Figure 3.2a shows the displacement velocity for a deforming airfoil trailing edge, corresponding to the
tutorial for usage of timeVaryingMotionInterpolation, later seen in Section 4.1. showing either
points or a grid with motion information. In Figure 3.2b this same airfoil displacement is shown as a
field in a structured 2D grid. Further information on the use of timeVaryingMotionInterpolation
is included in Section 3.2, with details and examples of the types of motion data files accepted.

The spatial interpolation from the motion data points to the boundary points may be performed
using different techniques. These will first be introduced in Section 3.2, but their methodology
will be explained with more detail in Section 3.3. Finally, in Section 3.4, the boundary condition

18

3.1. Compilation of implemented BC Chapter 3. Description of implemented BC

code is presented in more detail, with some example excerpts from the boundary condition files
timeVaryingMotionInterpolationPointPatchField.H and .C for important tasks, as well as the
implementations for the interpolation types.

This report is not aimed at guiding the reader on choosing between the provided interpolation
methods as this is a problem specific task and will depend on countless factors. However, some
remarks based on previous experience will be made here. As is to be expected, the results of the
data interpolation are highly dependant on the amount of data points provided, their location and
density with regards to the target boundary points, as well as the complexity of the mesh motion
or deformation. These factors, associated with some of the drawbacks of the Lagrangian equation
method presented in Chapter 2, may require that the CFD domain is remeshed multiple times during
the simulation to preserve mesh quality. The two tutorials presented in Chapter 4 should be used
as inspiration and grounds for experimentation on the effects of the input data, interpolation types
and other parameters to the mesh motion results.

One final remark will be made about the aforementioned linear interpolation in time. This is the
simplest interpolation possible between two available data time values, and a smoother mesh motion
could potentially be achieved with a more complex interpolation scheme in time. This, however,
would greatly increase the complexity of the boundary condition and will not be implemented or
investigated here.

3.1 Compilation of implemented boundary condition

The source code provided for the boundary condition timeVaryingMotionInterpolation follows
the folder structure in the original fvMotionSolvers. The scripts containing its code lie in the
folder myFvMotionSolver/pointPatchFields/derived/timeVaryingMotionInterpolation. The
files timeVaryingMotionInterpolationPointPatchFields.H and .C do not contain any relevant
code, but are responsible for correct compilation of the boundary condition and integration with
OpenFOAM. The files timeVaryingMotionInterpolationPointPatchField.H and .C contain the
actual boundary condition code, such as variables, constructors, member functions, etc.

The compilation instructions and dependencies are included in the files Make/files and Make/

options. By running the OpenFOAM compilation command wmake or running the provided script
Allwmake the boundary condition is compiled and the library myFvMotionSolvers is created. This
library may be used by setting its name in the dynamicMeshDict field motionSolverLibs. The
complete folder structure for the library myFvMotionSolvers is shown below, with all files and
sub-folders.

Contents of folder myFvMotionSolver

myFvMotionSolver

|-- Allwclean

|-- Allwmake

|-- Make

| |-- files

| `-- options

`-- pointPatchFields

`-- derived

`-- timeVaryingMotionInterpolation

|-- timeVaryingMotionInterpolationPointPatchField.C

|-- timeVaryingMotionInterpolationPointPatchField.H

|-- timeVaryingMotionInterpolationPointPatchFields.C

`-- timeVaryingMotionInterpolationPointPatchFields.H

3.2 Usage of implemented boundary condition

The usage of timeVaryingMotionInterpolation requires that some parameters are specified in the
correct boundary condition input file, as exemplified here:

19

3.2. Usage Chapter 3. Description of implemented BC

Inputs to boundary condition with default values

boundaryName

{

type timeVaryingMotionInterpolation;

// Optional entries

inputType unstructured;

interpolationType nearest;

inverseDistRadius 0.01;

inputFolderName boundaryName;

intOutsideBounds true;

value $internalField;
}

The entries shown above are used to define the type of motion data, type of interpolation used,
and other parameters. Their default values and possible inputs are listed in Table 3.1 and explained
briefly below.

Table 3.1: Inputs to timeVaryingMotionInterpolation

Field Default Accepted values
inputType unstructured unstructured, structured.
interpolationType nearest nearest, inverseDist, trilinear.
inverseDistRadius - Any float value.
inputFolderName Boundary name. A folder name.
intOutsideBounds true true, false.
value - Any value of the field type.

• inputType

Determines the type of input data provided for the interpolation of the deformation to the mesh
points. All deformation data should be saved in the folder named according to inputFolderName
(see explanation below), with sub-folders for each time value where data are available.

– unstructured: data points with unstructured coordinates (see 3.2.1.1).

– structured: structure input data organised in a 3-dimensional matrix (see 3.2.1.2).

For the unstructured input, there should be a file name points containing the the point coor-
dinates for the data, and a file named after the applicable field (pointMotionU, pointDisplacement,
etc.), containing the available values corresponding to the point coordinates in the time sub-
directories. For the structured input the points files are not needed, but instead a single file
named domainMatrixInfo in inputFolderName is required.

• interpolationType

Specifies how the input data values will be assigned to the boundary points.

– nearest: Applies the nearest value in the input point data to the boundary point location
(see 3.3.1).

– inverseDist: Performs an inverse distance interpolation from the point data to the
boundary point (see 3.3.2).

– trilinear: Performs a trilinear interpolation inside a uniform lattice grid, which is only
applicable for inputType options structured (see 3.3.3).

• inverseDistRadius

A radius value utilised only when the inverseDist interpolation method is selected. If this
method is chosen, this becomes a mandatory input.

20

3.2. Usage Chapter 3. Description of implemented BC

• inputFolderName

The input data to be interpolated to the mesh must be stored in a folder inside constant/

boundaryData/inputFolderName. If a valid value is not provided, the boundary condition
will default to a folder named after the specific boundary. Using a custom folder name may
be useful if the same input files are used for multiple boundaries in the same simulation case.

• intOutsideBounds

Only applicable if inputType set to structured and interpolationType is trilinear. In
case of a structured input, determines how points outside of the input matrix should be treated.
If set to false, the field values outside of the input matrix will be set to zero. Otherwise, values
will be determined for this points based on the linear or bilinear interpolation (see 3.3.3).

• value

Standard OpenFOAM input. If a value is provided the initial field is set to this value on all
points.

The motion interpolation to be used shall be stored in the folder constant/boundaryData/

inputFolderName. Data files for point coordinates and data must be stored in sub-folders named
after the time value, as shown in the examples in Sections 3.2.1.1 and 3.2.1.2.

3.2.1 Types of input data

3.2.1.1 Unstructured input data

If inputType is set to unstructured, the input motion data is assumed to be a point cloud with
no regularity in the points distribution. For this reason, the boundary condition requires that for
each time value where data is available two files should exist. The first, named points, is read by
OpenFOAM as a pointField. The file should start with an integer representing the size of this
pointField, followed by the values of the point coordinates.

Example of file points

// Example points file

N

(

(pX_0 pY_0 pZ_0)

(pX_1 pY_1 pZ_1)

(pX_2 pY_2 pZ_2)

...

(pX_N-1 pY_N-1 pZ_N-1)

)

The second file should be named either pointDisplacement or pointMotionU, according to the
type of motion data provided. The example below shows a formatting similar to that used in the
points file. In case the motion data is provided in one component only, the file shall be adjusted
accordingly.

Example of file pointMotionU or pointDisplacement

// Example motion data file

N

(

(mX_0 mY_0 mZ_0)

(mX_1 mY_1 mZ_1)

(mX_2 mY_2 mZ_2)

...

(mX_N-1 mY_N-1 mZ_N-1)

)

21

3.2. Usage Chapter 3. Description of implemented BC

The file tree below is an example of a case with unstructured deformation data.

Example of folder structure for unstructured deformation displacement data

`-- inputFolderName

|-- 0.0000

| |-- pointDisplacement

| `-- points

|-- 0.0500

| |-- pointDisplacement

| `-- points

|-- 0.1000

| |-- pointDisplacement

| `-- points

...

| |-- 9.9000

| |-- pointDisplacement

| `-- points

`-- 9.9500

|-- pointDisplacement

`-- points

3.2.1.2 Structured input data

For structured deformation data, the boundary condition does not require a points file. Instead,
a file containing information about the structured data matrix is read at the beginning of the
simulation. An example of this input file, which should be named domainMatrixInfo and stored in
constant/boundaryData/inputFolderName, is seen below.

Example of file domainMatrixInfo

// Motion data matrix information.

// Line 1: reference point (x,y,z).

// Line 2: voxels sizing (dx,dy,dz).

// Line 3: matrix dimensions (nx,ny,nz).

3

(

(x_ref y_ref z_ref) // reference point coordinates

(d_X d_Y d_Z) // spacing between matrix voxels

(N_x N_y N_z) // dimensions of the 3-dimensional matrix

)

The first input above is a reference point for the matrix, corresponding to the coordinates of its
first element, (xref, yref, zref). The second input indicates the matrix spacing (or voxel sizes) in each
direction, ∆x, ∆y and ∆z. The last input corresponds to the 3D matrix dimensions, Nx, Ny Nz.

For an arbitrary point in this matrix, characterised by three indices ix,p, iy,p and iz,p, ranging
from 0 to (Nx − 1), (Ny − 1), (Nz − 1), its coordinates xp, yp and zp are

xp = xref + ix,p(∆x)

yp = yref + iy,p(∆y)

zp = zref + iz,p(∆z) .

(3.1)

Since the motion data in the pointDisplacement or pointMotionU files must be provided as
a list to OpenFOAM, an single index mp must be calculated for this point in order to retrieve its
value. For this reason, it is important that the values in the list are sorted correctly, so that ix,p,
iy,p and iz,p may be used to calculate mp as

mp = ix,p + iy,p(Nx) + iz,p(Nx ·Ny) . (3.2)

This equation appears multiple times in timeVaryingMotionInterpolationPointPatchField.C

when retrieving data for structured inputs. Following Equation (3.2) is of importance when the
motion data is processed as a 3D matrix and later converted to a list. Examples of this task are
seen in the tutorials described in Chapter 4 utilising Python and numpy matrices.

22

3.3. Types of motion interpolation Chapter 3. Description of implemented BC

The example folder structure for the deformation data of type structured is seen below, with
the domainMatrixInfo at the root of the inputFolderName folder.

Example of folder structure for structured deformation velocity data

`-- inputFolderName

|-- 0.0000

| `-- pointMotionU

|-- 0.0500

| `-- pointMotionU

|-- 0.1000

| `-- pointMotionU

...

|-- 9.9000

| `-- pointMotionU

|-- 9.9500

| `-- pointMotionU

`-- domainMatrixInfo

3.3 Types of motion interpolation

In this section the three available interpolation types available in timeVaryingMotionInterpolation

will be briefly described. Details about their implementation in the code are later provided in Sec-
tion 3.4.4.

3.3.1 Nearest value

The interpolationType of type nearest is not technically an interpolation method, but works
by directly assigning the value at the closest data point to the boundary points. Although fast in
comparison to the other available methods, the values are assigned to the boundary without any
considerations for how close or far the mesh points are to the data point. This may lead to poor
quality results in cases where a coarse point cloud with motion data is used. This method is useful
when the motion information is provided as a point cloud with sufficient density, so that interpolation
between multiple data points does not alter the results significantly.

In a hypothetical ideal case, no two or more mesh points would use the same data point for
motion information, while no unused data points would exist. For complex motion this may not be
easy of even possible, and the recommended usage of this method corresponds to a point cloud with
spacing similar or smaller to that of the boundary mesh.

3.3.2 Inverse distance interpolation

For the inverseDist option, the interpolation of the data is performed by an averaging weighted by
the inverse of the distance between a given mesh point and the data points within a user specified
maximum distance (inverseDistRadius). For a given mesh point Xp, the distance to all data
points Xi is calculated. All data points whose distance is smaller than inverseDistRadius Rmin

are used to calculate the interpolated value

Vp =

∑n
i=1 wiVi∑n
i=1 wi

for all i where dist(Xp,Xi) ≤ Rmin , (3.3)

where Vi is the field value at each used data point i and wi is the corresponding weight factor

wi =

(
1

dist(Xp,Xi)

)p

. (3.4)

with p being an arbitrary exponent ≥ 1 that affects the weighting and with this the smoothness of
the calculated results. If any point in the motion data coincides with a boundary point’s coordinates
(dist(Xp,Xi) = 0), the value at the data point is directly assigned to the boundary point. Although

23

3.3. Types of motion interpolation Chapter 3. Description of implemented BC

this is unlikely to happen for complex, unstructured meshes, it could occur in structured meshes
using structured motion data sets. This methodology was first described by Shepard and follows the
suggested selection of nearby points using an arbitrary distance criterion [3].

3.3.3 Trilinear interpolation

For a point inside a the three-dimensional matrix in the structured motion data, a value for the
interpolated variable may be calculated by a trilinear interpolation (interpolation along x, y and
z-axes). This can be accomplished with a series of seven linear interpolations using the eight nearest
vertices, as seen in Figure 3.3. The algorithm for the trilinear interpolation presented here follows the
same methodology presented by Kang in Chapter 9 of the book Computational Color Technology [4].

V
000

V
100

V
110

V
111

V
101

V
000

V
011

V
001

V
00

V
10

V
01

V
11

V
0

V
1

V

Figure 3.3: Trilinear interpolation to a point from 8 neighbour values2.

For a point p inside a given voxel with edges values VXXX numbered as seen in Fig. 3.3, the first
four linear interpolations are performed along the x-axis

V00 = V000 (1− lx) + V100lx ,

V10 = V010 (1− lx) + V110lx ,

V01 = V001 (1− lx) + V101lx ,

V11 = V011 (1− lx) + V111lx ,

(3.5)

followed by two interpolations along y
V0 = V00 (1− ly) + V10ly ,

V1 = V01 (1− ly) + V11ly ,
(3.6)

and one along z
V = V0 (1− lz) + V1lz. (3.7)

The interpolation factors lx, ly and lz represent normalised terms for the linear interpolations ranging
from 0 to 1 and calculated as

lx =
xp − x0

x1 − x0
,

ly =
yp − y0
y1 − y0

,

lz =
zp − z0
z1 − z0

,

(3.8)

2Modified from original figure available at https://upload.wikimedia.org/wikipedia/commons/9/97/3D_

interpolation2.svg, licensed under CC BY-SA 3.0.

24

https://upload.wikimedia.org/wikipedia/commons/9/97/3D_interpolation2.svg
https://upload.wikimedia.org/wikipedia/commons/9/97/3D_interpolation2.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

3.4. Detailed description of BC code Chapter 3. Description of implemented BC

where (x0, y0, z0) and (x1, y1, z1) represent the coordinates of points 000 and 111 in the interpolation
lattice, and (xp, yp, zp) represents the point at which data will interpolated.

For a simpler implementation of this method, the interpolations may be grouped differently, with
V calculated as the linear interpolation along z of two bilinear interpolations in x and y performed
on the lower (z = z0) and upper (z = z1) faces of the lattice. This is the approach used in the
implementation of this method, described in Section 3.4.4.3.

3.4 Detailed description of timeVaryingMotionInterpolation’s
code

3.4.1 Constructor for timeVaryingMotionInterpolation

The multiple types of constructors available for the developed boundary condition, detailed in
timeVaryingMotionInterpolationPointPatchField.H, are the same already present in the class
timeVaryingMappedFixedValue. They were adapted to deal with the private data included in
timeVaryingMotionInterpolation, accounting for elements that were either removed from the
original code or added in for the new one. Among these constructors, the one relevant for the
boundary condition initialisation is the one based on a patch, an internal field and a dictionary, with
its declaration seen below.

Constructor declaration for timeVaryingMotionInterpolation

//- Construct from patch, internal field and dictionary

timeVaryingMotionInterpolationPointPatchField

(

const pointPatch&,

const DimensionedField<Type, pointMesh>&,

const dictionary&

);

The relevant code in this function is given in timeVaryingMotionInterpolationPointPatchField.

C and will not be included in this report due to its length. It is responsible for initialisation of the
boundary field values, as well as extraction and verification of the input variables included in the
boundary condition specifications in the case time folders. The compatibility between inputs is also
verified, assuring, for example, that the trilinear interpolation type is not used when unstructured
motion data is provided, or that a valid inverseDistRadius value is given for the inverse distance
interpolation method. The last step in this function is the initialisation of the field values in case
the value parameter is used in the boundary condition specifications.

3.4.2 The updateCoeffs function

As seen in Sections 2.3.1 and 2.3.2, describing the solve function in both velocityLaplacian

and displacementLaplacian, the boundary conditions are updated through a function standardly
named updateCoeffs in OpenFOAM. The contents of this function, are included below, copied from
timeVaryingMotionInterpolationPointPatchField.C

Function updateCoeffs for timeVaryingMotionInterpolation

template<class Type>

void Foam::timeVaryingMotionInterpolationPointPatchField<Type>::updateCoeffs()

{

if (this->updated())

{

return;

}

checkTable();

25

3.4. Detailed description of BC code Chapter 3. Description of implemented BC

// Interpolate between the sampled data

scalar deltaTime = this->db().time().value() - sampleTimes_[startSampleTime_].value();

if (endSampleTime_ == -1 || deltaTime < SMALL)

{

// only start value

if (debug)

{

Pout<< "updateCoeffs : Sampled, non-interpolated values"

<< " from start time:"

<< sampleTimes_[startSampleTime_].name() << nl;

}

this->operator==(startSampledValues_);

}

else

{

scalar start = sampleTimes_[startSampleTime_].value();

scalar end = sampleTimes_[endSampleTime_].value();

scalar s = (this->db().time().value()-start)/(end-start);

if (debug)

{

Pout<< "updateCoeffs : Sampled, interpolated values"

<< " between start time:"

<< sampleTimes_[startSampleTime_].name()

<< " and end time:" << sampleTimes_[endSampleTime_].name()

<< " with weight:" << s << endl;

}

this->operator==((1-s)*startSampledValues_ + s*endSampledValues_);

}

if (debug)

{

Pout<< "updateCoeffs : set fixedValue to min:" << gMin(*this)

<< " max:" << gMax(*this)

<< " avg:" << gAverage(*this) << endl;

}

fixedValuePointPatchField<Type>::updateCoeffs();

}

When called, this function first determines whether a boundary condition update is required. If so,
the member function checkTable is called, updating the values the variables startSampledValues_
and endSampledValues_. These represent the motion data at the available time folder that are
smaller and larger than the simulation time, respectively. Finally, the simulation time value is
compared to the available motion data at time sampleTimes_[startSampleTime_].value() in the
time folders of the motion data. If the simulation time overlaps with a motion data time, or if
it is larger than the last available data time, the values of startSampledValues_ are assigned
to the boundary points. In case the simulation time lies between two available data times, the
values interpolated in space are linearly interpolated in time, in ((1-s)*startSampledValues_

+s*endSampledValues_). The final step of this function consists in calling the updateCoeffs func-
tion in the class fixedValuePointPatchField<Type>, which will not be discussed further here.

3.4.3 The checkTable function

The function checkTable in timeVaryingMotionInterpolation is responsile for reading all the
motion data in constant/boundaryData/inputFolderName, as well as determining which interpo-
lation function to use based on inputs. It will be described here in a general manner and the reader
is referred to timeVaryingMotionInterpolationPointPatchField.C for deeper inspection.

26

3.4. Detailed description of BC code Chapter 3. Description of implemented BC

3.4.3.1 Initialisation of re-usable parameters

During the first time checkTable is used this function initialises some relevant variables and in-
spects the contents of folder inputFolderName for the available time sub-folders. This is per-
formed by the code following the if-statement if(startSampleTime_==-1&&endSampleTime_==

-1). If the inputType is set to unstructured, the only task performed is the initialisation of
the member variable sampleTimes_ by inspection of data folder contents. If, instead, inputType
is structured, the file domainMatrixInfo will be read for extraction of the structured matrix
information. Additionally, for structured data where the trilinear option is not chosen for
interpolationType, a pointField representing all points in the structured data matrices is assigned
to startSamplePoints_ using Equation (3.1). This is required for the nearest and inverseDist

methods, which for structured data are less efficient than the trilinear method.

3.4.3.2 Reading of motion data files

The next steps in checkTable are related to loading the provided motion data relevant for the
simulation time step. This is performed by defining the data times prior and after the simulaion
time, assigning their values to startSampleData_ and endSampleData_, respectively.

To determine which data time folders will be read, the function findTime is used. Its main
purpose it to determine the two time values in sampleTimes_ nearest to the simulation time value,
to determine the motion data files which should be read and used in the data interpolation. This
function and the other time-related function timeNames are static members of the OpenFOAM class
pointToPointPlanarInterpolation, allowing them to be invoked without an instance of this class.

Once the data times between which the simulation time lies are known, the necessary files are read
and the values are assigned to startSampleData_ and endSampleData_. For unstructured data,
files containing the point coordinates are read and values are assigned to the startSamplePoints_

and endSamplePoints_. In case the simulation time becomes greater than the last available data
time, the variables endSampleData_, endSamplePoints_ and endSampledValues_ are instead cleared
during this step, as they are no longer used.

3.4.3.3 Data interpolation

The last step in this function is defining the variable interpolateEnd and calling the appropri-
ate interpolation function. The Boolean interpolateEnd determines whether data from both
startSampleData_ and endSampleData_ should be interpolated, or if only startSampleData_

should be used. This is required not only if the simulation time is outside the provided data
time bounds (and the motion data has been cleared), but is also used to accelerate the interpolation
process when the current time matches one of the provided data time values and no interpolation
in time must be performed in updateCoeffs.

The choice of interpolation function is made based on the value of interpolationType. For
all three available options, a reference to the boundary points is provided, as well as the value
of interpolateEnd. The functions applyNearestValues, applyInverseDistanceInterpolation
and applyTrilinearInterpolation are used for the three interpolation methods described in Sec-
tion 3.3 and their implementation will be briefly described in Section 3.4.4.

All three of these functions assign motion values corresponding to the mesh points to the variables
startSampledValues_ and endSampledValues_, used for the final field values in updateCoeffs.

3.4.4 Implementations of motion interpolation

3.4.4.1 Nearest value

This method, as described in Section 3.3.1, is implemented in the function applyNearestValues,
which utilises OpenFOAM’s existing class pointToPointPlanarInterpolation to create interpo-
lator objects. Despite the fact that this class’ original purpose is to perform interpolation from one

27

3.4. Detailed description of BC code Chapter 3. Description of implemented BC

set of unstructured points to another using 2D Delaunay triangulation3, it can conveniently be used
for the nearest value assignment if constructed as seen in the example code below.

Example pointToPointPlanarInterpolation object for nearest value

// Create a generic interpolator pointer

autoPtr<pointToPointPlanarInterpolation> interpPtr;

interpPtr.reset

(

new pointToPointPlanarInterpolation

(

sourcePoints, // [sourcePoints] Source points

meshPts, // [destPoints] Target points

0, // [perturb] Perturbation (not used for nearest)

true // [nearestOnly]

)

);

valuesAtMeshPoints = interpPtr().interpolate(sourceData);

The creation of a pointer for this interpolator instead of an instance of this class, seen above, allows
for simpler code and less usage of memory. By resetting this pointer with sourcePoints as either
startSamplePoints_ or endSamplePoints_, it may be used to calculate values at the mesh points
for the corresponding sourceData values.

3.4.4.2 Inverse distance interpolation

The function applyInverseDistanceInterpolation is used to interpolate motion data to boundary
points using the inverse distance method. This function does not contain the actual interpolation
code, but is responsible for calling the appropriate version another function called inverseDistance

for the existing motion data values based on the data type (structured or unstructured) and the
provided value of interpolateEnd.

Two version of inverseDistance exist in the code for different data types, built by overloading
it with different inputs. The more general case of this function uses the boundary point coor-
dinates, the motion data coordinates and the motion data values to return a Foam::tmp<Foam::

Field<Type>> containing the motion data values interpolated to the mesh points. This first ver-
sion is used for unstructured motion data or whenever interpolateEnd is false in structured

motion data. The second version of inverseDistance does not return any values and is used to
assign values directly to both startSampledValues_ and endSampledValues_ with structured

motion data when interpolateEnd is true. In this case the function takes advantage of the fact
that only one set of motion data points exists in structured data to accelerate the process. As
the relevant aspects of these two functions do not differ significantly, only the first will be dis-
cussed here and the differences between the two implementations may be observed in detail in
timeVaryingMotionInterpolationPointPatchField.C.

As seen in the following code excerpt, the distances to all motion data points is calculated for
each point in the boundary. This task is performed by using the SortableList<scalar> object
named distSorted. This class is updated at each mesh point and sorts its values while storing
the original indices corresponding to the source array. This way, a for-loop can quickly calculate
the inverse distance terms going through the distance values from closest for farthest to a bound-
ary point, interrupting the loop as soon as the first distance greater than inverseDistRadius is
found. During this loop the variables interpNum and interpDen represent the numerator and
denominator in Equation (3.3). As seen in the variable pointInvD below, the implementation
of the inverse distance method presented used an exponent p = 1 for simplicity. The case for
dist(Xp,Xi) = 0 is covered using the if-statement if(pointD<SMALL) seen below. The final value
for the motion data at each mesh point is given by interpNum/interpDen at the end. In the
case seen below the Foam::tmp<Foam::Field<Type>> returned by inverseDistance is assigned by
applyInverseDistanceInterpolation to the correct variable.

3See src/meshTools/triSurface/triSurfaceTools/pointToPointPlanarInterpolation.H.

28

3.4. Detailed description of BC code Chapter 3. Description of implemented BC

Function inverseDistance

template<class Type>

Foam::tmp<Foam::Field<Type>> Foam::timeVaryingMotionInterpolationPointPatchField<Type>::

inverseDistance

(

const pointField& meshPts,

const pointField samplePoints,

const Field<Type> sampleData

) const

{

tmp<Field<Type>> tfld(new Field<Type>(meshPts.size()));

Field<Type>& fld = tfld.ref();

// A sortable list for distances from mesh to point data

SortableList<scalar> distSorted(samplePoints.size());

forAll(meshPts, pp)

{

// Assign new values to SortableList and sort it

distSorted = mag(meshPts[pp]-samplePoints);

distSorted.sort();

Type interpNum(Zero);

scalar interpDen(Zero);

forAll(distSorted,jj)

{

scalar pointD = distSorted[jj];

if (pointD>inverseDistRadius_)

{

break;

}

label pointI = distSorted.indices()[jj];

if (pointD < SMALL)

{

interpNum = sampleData[pointI];

interpDen = 1.0;

break;

}

scalar pointInvD = 1/(pointD);

interpNum += pointInvD * sampleData[pointI];

interpDen += pointInvD;

}

if (interpDen == 0)

{

fld[pp] = Type(Zero);

}

else

{

fld[pp] = interpNum/interpDen;

}

}

return tfld;

}

3.4.4.3 Trilinear interpolation

As mentioned in Section 3.3.3, timeVaryingMotionInterpolation uses the trilinear interpola-
tion as a linear interpolation along z of two bilinear interpolations in x and y. This is accom-
plished by using the three member functions linearInterpolation, bilinearInterpolation and

29

3.4. Detailed description of BC code Chapter 3. Description of implemented BC

trilinearInterpolation described here.
The first, linearInterpolation, receives two values and the normalised linear factor for the

scaling of these values (lx, ly or lz). It may be used for any linear interpolation between two values
and is the base for the calculations returned for the other two function.

Function linearInterpolation

template<class Type>

Type Foam::timeVaryingMotionInterpolationPointPatchField<Type>::linearInterpolation

(

const Type& edgeVal0,

const Type& edgeVal1,

const scalar& lf

)

{

return edgeVal0*(1-lf)+edgeVal1*lf;

}

bilinearInterpolation performs a similar task to linearInterpolation, but in two dimensions.
As seen below, it performs two linear interpolations using the first of two interpolation factors,
and ultimatelly returns a linear interpolation between these using the second factor. This bilinear
interpolation may be performed along any face of a chosen voxel and can be conveniently used to
interpolate data to mesh points whose coordinates lie outside of the domains of the motion data
matrix.

Function bilinearInterpolation

template<class Type>

Type Foam::timeVaryingMotionInterpolationPointPatchField<Type>::bilinearInterpolation

(

const Type& edgeVal00,

const Type& edgeVal10,

const Type& edgeVal01,

const Type& edgeVal11,

const scalar& lf1,

const scalar& lf2

)

{

Type linA = linearInterpolation(edgeVal00,edgeVal10,lf1);

Type linB = linearInterpolation(edgeVal01,edgeVal11,lf1);

return linearInterpolation(linA,linB,lf2);

}

Finally, the function trinearInterpolation makes use of the previous two to calculate the final
interpolated value. It performs two bilinear interpolations using the first two factors, and ultimately
returns a linear interpolation between these.

30

3.4. Detailed description of BC code Chapter 3. Description of implemented BC

Function trilinearInterpolation

template<class Type>

Type Foam::timeVaryingMotionInterpolationPointPatchField<Type>::trilinearInterpolation

(

const Type& edgeVal000,

const Type& edgeVal100,

const Type& edgeVal010,

const Type& edgeVal110,

const Type& edgeVal001,

const Type& edgeVal101,

const Type& edgeVal011,

const Type& edgeVal111,

const scalar& lf1,

const scalar& lf2,

const scalar& lf3

)

{

// First bilinear interpolation

Type biLinA = bilinearInterpolation

(

edgeVal000,

edgeVal100,

edgeVal010,

edgeVal110,

lf1,

lf2

);

// Second bilinear interpolation

Type biLinB = bilinearInterpolation

(

edgeVal000,

edgeVal100,

edgeVal010,

edgeVal110,

lf1,

lf2

);

// Interpolate linearly between the two previous

return linearInterpolation(biLinA,biLinB,lf3);

}

Although the implementation of trilinearInterpolation does not require the interpolations to
be performed in any order of the Cartesian axes, its usage is only performed in the same sequence
described in Section 3.3.3, so that lf1, lf2 and lf3 are in fact lx, ly and lz.

These functions are called by the main interpolation function applyTrilinearInterpolation,
which determines the position of mesh points within the structured point grid and provides the
inputs to the required functions. Due to its length and repetitiveness, the code for the function
applyTrilinearInterpolation will not be presented. The reader may refer to the provided file
timeVaryingMotionInterpolationPointPatchField.C for details.

The first part of applyTrilinearInterpolation comprises of initialising variables used through-
out the function and verifying if the input data is three-dimensional or not. In case a 2D or 1D
dataset is provided, data are interpolated to all mesh points, even if intOutsideBounds_ is false.
It then proceeds to evaluate values for each point in the boundary mesh.

The indices corresponding to point P000 in Figure 3.3 (iX, iY, iZ in the code) are obtained as
ix,000 = (xp − xref)/∆x ,

iy,000 = (yp − yref)/∆y ,

iz,000 = (yp − zref)/∆z .

(3.9)

If the calculated indices are within a 3D matrix’ bounds, the trilinearInterpolation function
is called after the indices for the remainign points in Figure 3.3 are determined and lx, ly, lz are
calculated.

31

3.4. Detailed description of BC code Chapter 3. Description of implemented BC

If the conditions for trilinearInterpolation are not fulfilled, the next step is verifying whether
any further calculations are needed and, if so, which method to use. If the motion data is not three-
dimensional or if intOutsideBounds_=true, the values ix,000, iy,000 and iz,000 are compared to the
matrix dimensions to determine the mesh point’s position with regards to the data matrix. One of
the three options below is employed for any point p outside of the matrix bounds, depending on this
verification:

1. If only one of the indices is outside the 3D matrix bounds, a bilinear interoplation is used
(Figure 3.4a).

2. If two of the indices are outside the 3D matrix bounds, a linear interoplation is used (Fig-
ure 3.4b).

3. If all indices are outside the 3D matrix bounds, no interpolation is used and the value of the
nearest edge is assigned (Figure 3.4c).

This options are illustrated in Figure 3.4 the regions in green, blue and red represent possible
locations for a mesh point with regards to the three-dimensional matrix region, shown in grey.

(a) Bilinear. (b) Linear interpolation. (c) Direct value assignment.

Figure 3.4: Exception cases in the trilinear interpolation function.

32

Chapter 4

Description of provided tutorials

In this chapter the two provided tutorials will be briefly introduced. The purpose of these tutorials
is the demonstration of the boundary condition timeVaryingMotionInterpolation for mesh defor-
mation fields in OpenFOAM. Their settings were intended for faster computations, not at accurate
simulations of the flow. It should be noted that adjustments had to be made to the time step sizes
in both cases to guarantee that the mesh deformation fields were well distributed in the mesh. Al-
though not presented here, the reader is encouraged to investigate the effects of different simulation
time steps in the results and mesh quality.

The provided tutorials folder contains the scripts and folders shown below.

Contents of folder tutorials

tutorials

|-- Allclean_airfoil

|-- Allclean_deformingCylinder

|-- Allrun_airfoil

|-- Allrun_deformingCylinder

|-- airfoil

|-- deformingCylinder

|-- supportFunctions.py

`-- supportFunctions.sh

The folders airfoil and deformingCylinder contain the base-cases for the two example tutori-
als. The scripts Allrun_airfoil, Allrun_deformingCylinder, Allclean_airfoil and Allclean_

deformingCylinder may be used for batch running the tutorials with multiple deformation settings,
as well as removing all the simulation data. The automation of tasks in the first two of these scripts
depends on the functions included in supportFunctions.sh. The tutorials also require the addi-
tional file supportFunctions.py, which contains functions used for exporting the data in a format
compatible with the descriptions in Section 3.2.1, as well as function for part of the geometrical
calculations.

4.1 Deforming airfoil

The first case that exemplifies the use of timeVaryingMotionInterpolation is a deforming two-
dimensional airfoil. Although a simple case at a first glance, the difficulties in mesh deformation
cases become evident once tests with this tutorial are performed. All data required for executing
the simulations are included in the provided airfoil folder, with contents seen below.

Clean folder structure for airfoil tutorial

airfoil

|-- 0_orig

| |-- U

| |-- nuTilda

| |-- nut

33

4.1. Deforming airfoil Chapter 4. Description of provided tutorials

| |-- p

| |-- pointDisplacement

| `-- pointMotionU

|-- Allclean

|-- Allrun

|-- Allrun_prepare

|-- README

|-- constant

| |-- dynamicMeshDict

| |-- transportProperties

| `-- turbulenceProperties

|-- createNaca4dig.py

|-- curiosityFluidsAirfoilMesher.py

`-- system

|-- controlDict

|-- fvSchemes

`-- fvSolution

4.1.1 Creation of geometry and motion data

This tutorial utilises two provided Python scripts to generate the geometry information for a NACA
4-digit airfoil, following information and instructions from the book Theory of Wing Sections, In-
cluding a Summary of Airfoil Data by Abbot [5].

The geometrical and motion parameters are created by the script createNaca4dig.py. The
Inputs section of this file is shown below.

Inputs to airfoil tutorial in createNaca4dig.py

===

%% Import dependencies

===

import numpy as np

import sys

import scipy.optimize as optimize

appending the tutorials root for support functions

sys.path.append('../')
import supportFunctions as sF

===

%% Input values

===

Define a NACA 4 digit's parameters

mm = 2 # Maximum camber (percentage of chord)

pp = 4 # Location of maximum thickness (tenths of chord)

tt = 12 # Maximum thickness (percentage of chord)

DEFORMATION PARAMETERS

defPeri = 20 # Period for the deformation motion [s]

defAmpl = 0.1 # Amplitude for the motion

(this is used to modify the camber equation for the aifoil)

SIMULATION TIME PARAMETERS

staTime = 0 # Start time [s]

endTime = defPeri + staTime # End time (better if >= defPeri+staTime)

DISCRETISATION PARAMETERS

discAir = 200 # Discretisation of the airfoil surface

discTim = 81 # Discretisation of the time for a full motion period

STRUCTURED OUTPUT PARAMETERS (only used when structuredData is True)

structData = True

structDisX = 101 # Discretisation in X

structDisY = 51 # Discretisation in Y

The first portion of the inputs is used to determine the NACA code of the selected airfoil. For
ease of use, the parameters for the commonly used NACA 2412 airfoil have been provided. The

34

4.1. Deforming airfoil Chapter 4. Description of provided tutorials

following parameters refer to the motion of the airfoil’s trailing edge computed using a modified
version of the standard NACA camber equation. By changing the y-coordinate of the trailing edge
point in this equation, the airfoil shape is altered. The script guarantees that the length of the
airfoil is maintained. The discretisation parameters are used for spatial and time subdivisions.
Another relevant parameter is the Boolean variable structData, which determines if the output
motion data is structured or unstructured. If set to True, the motion data originally calculated
at points is interpolated to a two-dimensional uniform grid. The parameter exportVelocities

is also of interest, as it determines whether the motion data will be exported as displacements
(pointDisplacement files) or velocities (pointMotionU files). Last, the Boolean compData does
not alter the output values, but if enabled applies compression to the exported file, thus reducing
their size. When executed, createNaca4dig.py exports a geometry file for the chosen airfoil called
naca4digit, saved to the case folder containing the x and y-coordinates of the airfoil surface. The
motion data is exported to the path set in the outputPath variable.

The second provided Python script, curiosityFluidsAirfoilMesher.py1, was published and
described in the website curiosityFluids [6]. It is used to read the file naca4digit and create a
blockMeshDict with instructions for a structured mesh around this airfoil.

The example mesh for the NACA 2412 airfoil created with blockMesh for this tutorial is shown
in Figure 4.1.

Figure 4.1: Trilinear interpolation to a point from 8 neighbour values.

The steps described here, including execution of Python scripts and the mesh creation generation,
were automated in the provided file Allrun_prepare.

4.1.2 Airfoil mesh deformation

The deformation of the mesh may be accomplished separately with the utility moveDynamicMesh or
while performing the flow calculations with pimpleFoam. The motion solver in dynamicMeshDict

must be adjusted to displacementLaplacian or velocityLaplacian depending on the choice of

1Available at https://github.com/curiosityFluids/curiosityFluidsAirfoilMesher and licensed under GNU
General Public License v3.0.

35

https://github.com/curiosityFluids/curiosityFluidsAirfoilMesher
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html

4.2. Deforming cylinder Chapter 4. Description of provided tutorials

motion data type in createNaca4dig.py. For ease of use, the Allrun file provided executes all
tasks required. Detail images of the mesh in four different instances are shown in Figure 4.2.
Figure 4.2a shows the initial mesh as well as the points created by createNaca4dig.py, seen in red.
The following three figures show the same mesh and points during and at the end of simulations,
illustrating the maintenance of the mesh quality throughout the deformation process.

(a) Detail of original mesh. (b) Detail of intermediate deformed mesh.

(c) Detail of intermediate deformed mesh. (d) Detail of final deformed mesh.

Figure 4.2: Example mesh deformation for the airfoil tutorial.

4.1.3 Batch execution

The provided script Allrun_airfoil may be used to create multiple copies of the base airfoil case
and execute them with different settings for the data file types (unstructured/structured), types of
interpolation and types of data (velocity or displacement).

4.2 Deforming cylinder

The second provided tutorial is based on the deformation of a cylindrical vessel in a axisymmetric
manner. The points on the side of the cylinder are displaced radially in a sinusoidal motion in time.
All required files are included in the base case folder, are seen below.

Clean folder structure for deformingCylinder tutorial

deformingCylinder

|-- 0_orig

| |-- U

| |-- alpha.water

| |-- p_rgh

| |-- pointDisplacement

| `-- pointMotionU

|-- Allclean

|-- Allrun

|-- Allrun_prepare

|-- README

36

4.2. Deforming cylinder Chapter 4. Description of provided tutorials

|-- constant

| |-- dynamicMeshDict

| |-- g

| |-- transportProperties

| `-- turbulenceProperties

|-- createMotion.py

`-- system

|-- blockMeshDict.m4

|-- controlDict

|-- decomposeParDict

|-- fvSchemes

|-- fvSolution

`-- setFieldsDict

4.2.1 Creation of geometry and motion data

The motion information for the simulations is created by the script createMotion.py, with inputs
seen below.

Inputs to deformingCylinder tutorial in createMotion.py

===

%% Import dependencies

===

import numpy as np

import sys

from scipy.stats import norm

appending the tutorials root for support functions

sys.path.append('../')
import supportFunctions as sF

===

%% Input values

===

GEOMETRICAL PAARAMETERS (MATCHING CFD MESH)

cylRadius_ini = 0.5 # Cylinder radius [m]

cylHeight_sta = 0.0 # Minimum height value (Z axis) [m]

cylHeight_end = 1.0 # Maximum height value (Z axis) [m]

SIMULATION TIMES VALUES

timeVal_sta = 0.0 # Initial deformation time []

timeVal_end = 20.0 # Final deformation time [s]

DEFORMATION SHAPE PARAMETER

deform_StDev = 0.2 # Normal distribution curve std dev. [m]

deform_Ampli = 0.05 # Cylinder deformation amplitude [m]

deformPeriod = 3.0 # Cylinder deformation period [s]

deformStartT = 0

The deformation is based on a normal distribution curve with a mean in the

middle of the cylinder height. The bell shape width in the height direction

determined by the standard deviation value "deform_StDev".

The deformation oscillates in time using a sinus function with period

"deformPeriod" and amplitue "deform_Ampli" representing the displacement at

the peak of the normal distribution curve.

DISCRETISATION VALUES

cylHeight_dis = 51 # Discretisation in cylinder height

cylAngles_dis = 100 # Discretisation in cylinder angle coordinate

deforTime_dis = 61 # Discretisation in time

Displacements or velocities?

exportVelocities = True # If false, displacement values are exported

The script requires geometrical and motion information that must be compatible with the simulation
settings in the OpenFOAM dictionaries. The deformation of the cylinder’s sides is performed using
the shape of a normal distribution curve varying in time. Changes to the parameters deform_StDev

37

4.2. Deforming cylinder Chapter 4. Description of provided tutorials

and deform_Ampli affect the shape of the normal distribution curve and the deformation ampli-
tude, respectively. The period of the deformation motion may be adjusted using the parameter
deformPeriod. The same variables as in the airfoil tutorial are used to define whether displace-
ment of velocity information is created, to define if the data will be interpolated to a uniform grid
or output as a point cloud, as well as determining if compression will be applied to the files. In
case structured data is exported, the motion of the cylinder’s surface is interpolated to a three
dimensional uniform grid.

Execution of createMotion.py will output the necessary motion data to the correct path. The
cylinder mesh may be generated using the blockMesh utility. The provided blockMeshDict.m4 script
should be used to create a blockMeshDict, and should be changed in case the geometry information
in createMotion.py is altered. As in the airfoil tutorial, all steps described here may be executed
by running the Allrun_prepare script from the deformingCylinder case. Examples of the original
and deformed meshes for this case are shown in Figures 4.3a and 4.3b.

(a) Initial cylinder mesh and points. (b) Deformed cylinder mesh and
points.

Figure 4.3: Cylinder mesh and point at initial and deformed conditions.

4.2.2 Cylinder mesh deformation

The mesh motion for the deformingCylinder may be performed either by moveDynamicMesh or
running the flow simulations with the Volume Of Fluids (VOF) solver interFoam, which may be
run using the script Allrun inside the case folder. The settings for the type of motion solver in
dynamicMeshDict must be compatible with the type of motion data exported. If interFoam is used,
the cylinder is treated as a vessel partially filled with liquid, so that the deformations affect the
level of this liquid inside the container. Figure 4.4 shows slices of the cylindrical mesh in different
instants, to illustrate the deformation’s effects to the mesh.

4.2.3 Batch execution

The script Allrun_deformingCylinder may be used to create multiple copies of the base deformingCylinder
case and execute them with different settings for the data file types (unstructured/structured), type
of interpolation and types of data (velocity or displacement).

38

4.2. Deforming cylinder Chapter 4. Description of provided tutorials

(a) Initial mesh and points. (b) Deformed mesh and points. (c) Deformed mesh and points.

Figure 4.4: Example mesh deformation for the deforming cylinder.

39

Bibliography

[1] H. Jasak and Z. Tukovic, “Automatic mesh motion for the unstructured finite volume method,”
Transactions of FAMENA, vol. 30, no. 2, pp. 1–20, 2006.

[2] R. Löhner and C. Yang, “Improved ALE mesh velocities for moving bodies,” Communications
in Numerical Methods in Engineering, vol. 12, no. 10, pp. 599–608, 1996.

[3] D. Shepard, “A two-dimensional interpolation function for irregularly-spaced data,” in Proceed-
ings of the 1968 23rd ACM National Conference, ACM ’68, (New York, NY, USA), pp. 517–524,
Association for Computing Machinery, Jan. 1968.

[4] Kang and H. R, Computational Color Technology. Bellingham, Wash: SPIE Publications, May
2006.

[5] I. H. Abbott and A. E. V. Doenhoff, Theory of Wing Sections, Including a Summary of Airfoil
Data. Dover Publications, Jan. 1959.

[6] curiosityFluids, “Automatic Airfoil C-Grid Generation for OpenFOAM – Rev 1.”
https://curiosityfluids.com/2019/04/22/automatic-airfoil-cmesh-generation-for-openfoam-
rev-1/, Apr. 2019.

40

Study questions

How to use it:

• How can dynamic meshes be used for arbitrary deformation in OpenFOAM with different
types of motion and motion solvers?

• How can we prescribe information from a deformation field into a CFD mesh?

The theory of it:

• How are deformations to a dynamic mesh accomplished in OpenFOAM?

• How are mesh deformation calculated in OpenFOAM with Laplacian solvers?

• How can arbitrary mesh deformations be interpolated from data points to mesh points?

How it is implemented:

• How is the calculation of boundary points motion implemented in timeVaryingMotionInterpolation?

How to modify it:

• How can the provided boundary condition code be modified or expanded?

• How can a new interpolation algorithm be integrated into timeVaryingMotionInterpolation?

41

Appendix A

Accompanying files

The acompanying files to this report are included in two main folders, myFvMotionSolver and
tutorials. Their contents are included below for easy referencing:

A.1 Contents of myFvMotionSolver

This folder contains the boundary developed condition code and instructions to compile it as part of
a library named myFvMotionSolvers, which also includes all the items from the original OpenFOAM
fvMotionSolvers.

Contents of folder myFvMotionSolver

myFvMotionSolver

|-- Allwclean

|-- Allwmake

|-- Make

| |-- files

| `-- options

`-- pointPatchFields

`-- derived

`-- timeVaryingMotionInterpolation

|-- timeVaryingMotionInterpolationPointPatchField.C

|-- timeVaryingMotionInterpolationPointPatchField.H

|-- timeVaryingMotionInterpolationPointPatchFields.C

`-- timeVaryingMotionInterpolationPointPatchFields.H

A.2 Contents of tutorials

The tutorials folder contains all the required files for the testing of the timeVaryingMotionInterpolation
boundary condition. The two folders airfoil and deformingCylinder are base cases which may
be run independently or with multiple different settings using the provided Allrun_airfoil and
Allrun_deformingCylinder scripts.

Contents of folder myFvMotionSolver

tutorials

|-- Allclean_airfoil

|-- Allclean_deformingCylinder

|-- Allrun_airfoil

|-- Allrun_deformingCylinder

|-- airfoil

| |-- 0_orig

| | |-- U

| | |-- nuTilda

| | |-- nut

42

A.2. Contents of tutorials Appendix A. Accompanying files

| | |-- p

| | |-- pointDisplacement

| | `-- pointMotionU

| |-- Allclean

| |-- Allrun

| |-- Allrun_prepare

| |-- README

| |-- constant

| | |-- dynamicMeshDict

| | |-- transportProperties

| | `-- turbulenceProperties

| |-- createNaca4dig.py

| |-- curiosityFluidsAirfoilMesher.py

| `-- system

| |-- controlDict

| |-- fvSchemes

| `-- fvSolution

|-- deformingCylinder

| |-- 0_orig

| | |-- U

| | |-- alpha.water

| | |-- p_rgh

| | |-- pointDisplacement

| | `-- pointMotionU

| |-- Allclean

| |-- Allrun

| |-- Allrun_prepare

| |-- README

| |-- constant

| | |-- dynamicMeshDict

| | |-- g

| | |-- transportProperties

| | `-- turbulenceProperties

| |-- createMotion.py

| `-- system

| |-- blockMeshDict.m4

| |-- controlDict

| |-- decomposeParDict

| |-- fvSchemes

| |-- fvSolution

| `-- setFieldsDict

|-- supportFunctions.py

`-- supportFunctions.sh

43

	Introduction
	Deforming meshes in OpenFOAM
	Dynamic meshes and mesh motion in OpenFOAM
	Laplace's equation for mesh deformation
	Motion solvers in fvMotionSolvers
	Velocity solvers
	Displacement solvers

	Mesh deformation diffusivity in OpenFOAM

	Description of implemented BC
	Compilation of implemented BC
	Usage
	Types of input data
	Unstructured input data
	Structured input data

	Types of motion interpolation
	Nearest value
	Inverse distance interpolation
	Trilinear interpolation

	Detailed description of BC code
	BC constructor
	The updateCoeffs function
	The checkTable function
	Initialisation of re-usable parameters
	Reading of motion data files
	Data interpolation

	Implementations of motion interpolation
	Nearest value
	Inverse distance interpolation
	Trilinear interpolation

	Description of provided tutorials
	Deforming airfoil
	Creation of geometry and motion data
	Airfoil mesh deformation
	Batch execution

	Deforming cylinder
	Creation of geometry and motion data
	Cylinder mesh deformation
	Batch execution

	Accompanying files
	Contents of myFvMotionSolver
	Contents of tutorials

