Linear solver execution path of the laplacianFoam /flange tutorial
in OpenFOAM-v1906 — a GDB debugging tutorial

(© Hakan Nilsson
September 2019

Contents

1 Introduction 1
2 Starting GDB for laplacianFoam and listing the source code 1
3 Path taken by the TEqgn.solve() function 3

4 Learn more about GDB 11

Listings

fvMatrixSolve.C, line 321 L 5
fvMatrixSolve.C, line 296 L 6
fvMesh.C, line 440 L 6
fvMatrixSolve.C, line 60 e 7
fvScalarMatrix.C, line 152 9
PCG.C, line 219 10

O UL W N =

1 Introduction

It is quite often difficult to know exactly which source code is used when running an OpenFOAM executable.
OpenFOAM is designed to be flexible for the user, which makes the execution highly depending on the user
settings.

This document shows how the debugging tool GDB can be used to show the exact path taken by the
code. It is also a basic tutorial in the use of GDB to debug OpenFOAM. For this to work it is assumed that
the environment for the Debug version of OpenFOAM-v1906 is activated.

Lines starting with $ are manual command line entries, and lines starting with (gdb) are manual entries
when executing GDB. Other lines are terminal output. The most important pieces of code are shown by
listings.

2 Starting GDB for laplacianFoam and listing the source code

We set up the flange case and start GDB with the laplacianFoam solver:

rm —rf $FOAMRUN/ flange

cp —r $FOAM_TUTORIALS/ basic/laplacianFoam/flange $FOAMRUN
cd $FOAMRUN/ flange

ansysToFoam flange.ans —scale 0.001 > log.ansysToFoam 2>&1
gdb laplacianFoam

GNU gdb (Ubuntu 8.1—0Oubuntu3) 8.1.0.20180409 —git

Copyright (C) 2018 Free Software Foundation, Inc.

L L L L P

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type ”"show copying”
and ”"show warranty” for details.

This GDB was configured as ”"x86_64—linux—gnu”.

Type "show configuration” for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type ”help”.

Type ”apropos word” to search for commands related to "word” ...

Reading symbols from laplacianFoam ... done.

At this point GDB is prepared to run the laplacianFoam solver, and it has access to all the code of both
the top-level solver and the OpenFOAM libraries it uses. We can view the top-level code using the list
command (or its short version 1). To make sure that GDB does not exclude any commented header we can
specify the line number (below: 1 1). To repeat the command we can simply press Enter to march through
the top-level code:

(gdb) 1 1

1 Ve

\\ / F ield

|

| OpenFOAM: The Open Source CFD Toolbox
\\ /O peration |

|

Q

\\ / A nd opyright (C) 2004—2011 OpenCFD Ltd.

\\/ M anipulation

| Copyright (C) 2011-2017 OpenFOAM Foundation

= © 00 O Uk Wi

0 License

96 TEqn. solve ();

107 return 0;
108 }

109

110

111 // >k 3k 3k 3k 3k 3k 3k 3k 3k sk skosk sk sk sk sk Sk ko ko k sk sk K 3k ok R >k 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok kR sk sk sk 3k 3k 3k sk sk skoskoskosk sk skoskosk ok ok ok

¥ //

We see that the linear solver is executed by TEqn.solve(), at line 96, so that is where we will start our
journey.
Other ways to list the code are (try them):

e 1 - to march backwards when repeatedly pressing Enter. The default forward command is 1 +.

1 96 to specify which line you want at the center

e 1 80,100 to show the lines 80-100

The number of lines that are shown by the 1 command can be changed by set listsize <count>,
where <count> is the number of lines to be shown.

It should be noted that I have experienced problems listing code using line numbers inside templated classes.
Then it is better to march back an forth using 1 + and 1 -.

3 Path taken by the TEqn.solve() function

We start by setting a breakpoint (b) at the call to the TEqn.solve() function, which tells GDB to stop the
execution at that line, before executing that line. We run laplacianFoam through GDB (run), and we see
that the execution stops at the breakpoint.

(gdb) b laplacianFoam .C:96
Breakpoint 1 at 0x2el100: file laplacianFoam.C, line 96.
(gdb) run

Starting program: /home/oscfd/OpenFOAM/OpenFOAM-v1906/platforms/linux64GeecDPInt32Debug/bin,
[Thread debugging using libthread_db enabled]

Using host libthread_db library ”/lib/x86_64—linux—gnu/libthread_db.so.1”.

1 | I

[\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

[\\ /O peration | Version: v1906 |

| \\ / A nd | Web: www . OpenFOAM . com |

| \\/ M anipulation | |

\ */

Build : 88d188709a—20190806 OPENFOAM=1906 patch=190724

Arch : 7LSB;label=32;scalar=64"

Exec : /home/oscfd /OpenFOAM/OpenFOAM-v1906 / platforms /linux64GccDPInt32Debug/biin /laplacian]
Date : Sep 19 2019

Time 1 14:36:47

Host : oscfd—VirtualBox

PID : 15854

I/0 : uncollated

Case : /home/oscfd /OpenFOAM/ oscfd —v1906 /run/flange

nProcs : 1

trapFpe: Floating point exception trapping enabled (FOAMSIGFPE).

fileModificationChecking : Monitoring run—time modified files using timeStampMaster (fileMc
allowSystemOperations : Allowing user—supplied system call operations

Create time

Create mesh for time = 0

SIMPLE: no convergence criteria found. Calculations will run for 3 steps.
Reading field T

Reading transportProperties

Reading diffusivity DT

No finite volume options present

Calculating temperature distribution

Time = 0.005

Breakpoint 1, main (arge=1, argv=0xT7{ffffffd0c8) at laplacianFoam .C:96
96 TEqn. solve ();

There are several ways to continue the execution. Typing...

e ¢ will simply continue the execution until the next breakpoint or the end of the execution. In our case
it will simply get back to the same location at the next loop, since we only have that breakpoint. You
can try it if you like, since the ¢ command will just bring us back to the point where we will continue
later.

e s will step to the next line of the execution, also entering into functions.
e n will step to the next line of the execution, but not enter into functions (i.e. stay in the same file).

Each of the above commands can be followed by a number to repeat the command that number of times
(e.g. ¢ 2). You can repeat the previous command by just pressing Enter again. If you issued either of the
commands s or n you can use the command c to get back to the breakpoint at the next loop. Now make
sure that you are at the breakpoint, as at the end of the listing above.

We want to figure out where we end up when the solve() function is called, so we type s to step into
the function:

(gdb) s
Foam:: fvMatrix<double >::solve (this=0x7{{fffffc910)

at /home/oscfd /OpenFOAM/OpenFOAM—v1906/src/finiteVolume/InInclude /fvMatrix$S
321 Foam:: SolverPerformance<Type> Foam:: fvMatrix<Type>::solve ()

olve .C:321

We see that we end up at line 321 in fvMatrixSolve.C. If we forget where we are we can type where to
show where we are:

(gdb) where
#0 Foam:: fvMatrix<double >::solve (this=0xT7{ffffffc910)
at /home/oscfd /OpenFOAM/OpenFOAM—v1906/src/finiteVolume/InInclude /fvMatrix$S

#1 0x0000555555582119 in main (argc=1, argv=0x7{f{ffffd0c8) at laplacianFoam .C

We see that we are at line 321 in fvMatrixSolve.C, and we also see that we came there from line 96 in
laplacianFoam.C. This is the call stack, and the numbers to the left are the frame numbers. We can go to
another frame and list the lines:

(gdb) f 1
#1 0x0000555555582119 in main (argc=1, argv=0x7{{{f{ffd0c8)
at laplacianFoam .C:96

96 TEqn. solve ();

(gdb) 1

91 =

92 fvOptions (T)

93 E

94

95 fvOptions.constrain (TEqn);
96 TEqn. solve ();

97 fvOptions. correct (T);
98 }

99

100 #include " write . H”

(gdb) where
#0 Foam:: fvMatrix<double >::solve (this=0xT7f{ffffffc910)

at /home/oscfd /OpenFOAM/OpenFOAM—v1906/src/finiteVolume/lnInclude /fvMatrix$S
#1 0x0000555555582119 in main (argc=1, argv=0x7{{{ffffd0c8)

at laplacianFoam .C:96
(gdb) f 0
#0 Foam:: fvMatrix<double >::solve (this=0xT7{ffffffc910)

at /home/oscfd /OpenFOAM/OpenFOAM—v1906/src/finiteVolume/IlnInclude /fvMatrix$S
321 Foam:: SolverPerformance<Type> Foam:: fvMatrix<Type>::solve ()

(gdb) 1

olve .C:321
:96

olve .C:321

olve .C:321

316 return solve(fvMat_.solverDict ());

317 }

318

319

320 template<class Type>

321 Foam:: SolverPerformance<Type> Foam:: fvMatrix<Type>::solve ()

322 {

323 return this—>solve(solverDict ());

324 }

325

(gdb) where

#0 Foam:: fvMatrix<double >::solve (this=0xT7{ffffffc910)
at /home/oscfd /OpenFOAM/OpenFOAM—-v1906/src/finiteVolume/InInclude/fvMatrixSolve .C:321

#1 0x0000555555582119 in main (argc=1, argv=0x7{{{ffffd0c8)
at laplacianFoam .C:96

We see that the where command gives the same output irrespectively in which frame we are, which means
that we are only moving between frames to look at the code, and that the execution remains at the same
location. We can as well use the commands

e up to move up in the call stack
e down to move down in the call stack

The £ 0 command can as well be used to reset the line that is shown by the command 1.
We issue the command £ 0 and use the command 1 to have a look at the solve () function that is called,
in the listing below.

Listing 1: fvMatrixSolve.C, line 321

320 template<class Type>
321 Foam:: SolverPerformance<Type> Foam:: fvMatrix<Type>::solve ()

322 {
323 return this—>solve(solverDict ());
324)

We see that the solve() function calls another solve function, using the original object TEqn (this) and
the output of a call to a function solverDict (). We are not interested at this point to figure out the details
of the function solverDict (), so we will just step into it and use the command fin to finish that function
call (which also gives a long output, showing the return of that function). After that we are still at line 321
in fvMatrixSolve.C, since the function solve is next to be executed. Then we are interested in where that
function is located, so we step into that function.

(gdb) s 2
Foam:: fvMatrix<double >::solverDict (this=0x7{ffffffc910)
at /home/oscfd /OpenFOAM/OpenFOAM-v1906/src/finiteVolume /InInclude/fvMatrix.C:1013
1013 const Foam:: dictionary& Foam:: fvMatrix<Type>::solverDict () const
(gdb) fin
Run till exit from #0 Foam::fvMatrix<double >::solverDict (this=0x7fffffffc910)
at /home/oscfd /OpenFOAM/OpenFOAM—v1906 /src /finiteVolume/InInclude /fvMatrix .:1013
0x0000555555586d11 in Foam::fvMatrix<double >::solve (this=0x7fffffffc910)
at /home/oscfd /OpenFOAM/OpenFOAM-v1906/src/finiteVolume /InInclude/fvMatrixSolve .C:323
323 return this—>solve(solverDict ());
Value returned is $1 =
(const Foam:: dictionary &) @QO0x555555af24f0: {<Foam::ILList<Foam:: DLListBase|, Foam:: entr
(gdb) s
Foam:: fvMatrix<double >::solve (this=0x7{ffffffc910 , solverControls=...) at /home/oscfd /Open
296 Foam:: SolverPerformance<Type> Foam:: fvMatrix<Type>::solve

295
296
297
298
299
300
301
302

435
436
437
438
439
440
441
442
443

We end up at line 296 in the same file (fvMatrixSolve.C). From the listing below we see that yet another
function solve is called.

Listing 2: fvMatrixSolve.C, line 296

template<class Type>
Foam:: SolverPerformance<Type> Foam:: fvMatrix<Type>::solve

(

)
{

}

We step a line in the current file (n), so that we are at line 301. Then we make a step (s), going into functions,
realizing that we end up in the mesh() function that we are not interested in, so we finish that function by
the fin command and again step into the next function call.

const dictionary& solverControls

return psi_.mesh().solve(xthis, solverControls);

(gdb) n
301 return psi-.mesh().solve(*xthis, solverControls);
(gdb) s
Foam:: DimensionedField<double, Foam::volMesh >::mesh (this=0x7f{ffffffc350)
at /home/oscfd /OpenFOAM/OpenFOAM—-v1906/src /OpenFOAM/InInclude /DimensionedF
42 return mesh_;
(gdb) fin
Run till exit from #0 Foam::DimensionedField<double, Foam::volMesh >::mesh (thi
at /home/oscfd /OpenFOAM/OpenFOAM—v1906 /src /OpenFOAM/InInclude /DimensionedF
0x000055555558bab5 in Foam::fvMatrix<double >::solve (this=0x7fffffffc910 , solve
at /home/oscfd /OpenFOAM/OpenFOAM—v1906/src/finiteVolume/InInclude /fvMatrix$S
301 return psi-.mesh().solve(xthis, solverControls);
Value returned is $2 =
(const Foam:: GeoMesh<Foam:: fvMesh >::Mesh &) @0x555555a32b40: {<Foam:: polyMesh
(gdb) s
Foam:: fvMesh:: solve (this=0x555555a32b40, m=..., dict=...) at fvMesh/fvMesh.C:4
440 {

eldI .H:42

s=0xT7Iffffff
eldI .H:42
rControls =.
olve.C:301

= {<Foam::

10

We end up at line 440 in fvMesh.C. We see below that we are now about to call a function named
solveSegregatedOrCoupled.
Listing 3: fvMesh.C, line 440

Foam:: SolverPerformance<Foam:: scalar> Foam:: fvMesh:: solve

(

fvMatrix<scalar>& m,
const dictionary& dict
) const

{

return m.solveSegregatedOrCoupled (dict);

}

We step into that function to figure out where it is located and where next to go.

(gdb) s 2

Foam:: fvMatrix<double >::solveSegregatedOrCoupled (this=0x7{ffffffc910 , solverCqg
at InInclude/fvMatrixSolve.C:60

60 Foam:: SolverPerformance<Type> Foam:: fvMatrix<Type>::solveSegregatedOrCouple

ntrols=...)

We end up at line 60 in fvMatrixSolve.C. The listing below shows that the kind of solver that will be used
is either segregated of coupled, see line 92. We need to figure out which one will be used in our case.

Listing 4: fvMatrixSolve.C, line 60

59 template<class Type>

60 Foam:: SolverPerformance<Type> Foam:: fvMatrix<Type>::solveSegregatedOrCoupled
61 (

62 const dictionary& solverControls

63)

64 {

65 word regionName ;

66 if (psi-.mesh().name() != polyMesh:: defaultRegion)
67 {

68 regionName = psi_.mesh().name() + 7 ::";
69

70 addProfiling (solve , ”fvMatrix:: solve.” + regionName + psi_.name());
71

72 if (debug)

73

74 Info . masterStream (this —>mesh ().comm())

75 << 7fvMatrix<Type>::solveSegregatedOrCoupled”
76 " (const dictionary& solverControls) K

7 7solving fvMatrix<Type>"

78 << endl;

79 }

80

81 label maxIter = —1;

82 if (solverControls.readIfPresent (” maxIter”, maxIter))
83 {

84 if (maxIter = 0)

85

86 return SolverPerformance<Type>();

87 }

88 }

89

90 word type(solverControls.lookupOrDefault<word>("type”, "segregated”));
91

92 if (type = 7segregated”)

93 {

94 return solveSegregated (solverControls);

95 }

96 else if (type = ”"coupled”)

97 {

98 return solveCoupled (solverControls);

99 }

100 else

101 {

102 FatallOErrorInFunction (solverControls)

103 << 7Unknown type 7 << type

104 << 7; currently supported solver types are segregated and coupled”
105 << exit (FatallOError);

106

107 return SolverPerformance<Type>();

108 }

109 }

We set a breakpoint at line 92 and continue to that line. Another way of continuing to line 92 without setting
a breakpoint would be to issue the command u 92, but I had a problem with that in my installation at this
particular point (maybe due to templating, as we will see).

(gdb) b fvMatrixSolve.C:92
Breakpoint 2 at 0x7ffff63922b6: fvMatrixSolve.C:92. (4 locations)
(gdb) ¢
Continuing .
Breakpoint 2, Foam::fvMatrix<double >::solveSegregatedOrCoupled (this=0x7fffffffc/910 , solver
at InInclude/fvMatrixSolve.C:92
92 if (type = ”segregated”)
Now we have two breakpoints, so let’s examine the breakpoints we have and delete the newly created one (if
you like you can keep it to easily get back to this location):
(gdb) i b
Num Type Disp Enb Address What
1 breakpoint keep y 0x0000555555582100 in main(int , charxx)
at laplacianFoam .C:96
breakpoint already hit 3 times
2 breakpoint keep y <MULTIPLE>
breakpoint already hit 1 time
2.1 y 0x00007ffff63922b6 in Foam:: fvMatrix<double >{:solveSegreg
at InInclude/fvMatrixSolve.C:92
2.2 y 0x00007ffff63927ca in Foam:: fvMatrix<Foam:: Vdctor<double:
at InInclude/fvMatrixSolve .C:92
2.3 y 0x00007ffff6392d30 in Foam:: fvMatrix<Foam:: SymmTensor<do
at InInclude/fvMatrixSolve.C:92
2.4 y 0x00007ffff6393296 in Foam:: fvMatrix<Foam:: Tgnsor<double:
at InInclude/fvMatrixSolve .C:92
(gdb) delete 2
(gdb) i b
Num Type Disp Enb Address What
1 breakpoint keep y 0x0000555555582100 in main(int , charxx)
at laplacianFoam .C:96
breakpoint already hit 3 times
We can in particular see that the second breakpoint has four options, depending on the content type of the
fvMatrix (due to templating). That may be the reason for my problem above.
We check (print, or p) the value of the object named type, and see that it is segregated. Then we step
into that particular function.
(gdb) p type
$3 = {<Foam::string> = {<std:: __cxx11l:: basic_string<char, std::char_traits<char[>, std::allo
static null = {<std:: __cxx11l::basic_string<char, std::char_traits<char>, std::allocator
static null = <same as static member of an already seen type>}}, static typeName = 0:
static null = {<Foam::string> = {<std :: __cxx11:: basic_string<char, std::charjtraits <char:
static null = {<std:: __exx11::basic_string<char, std::char_traits<char>, jstd:: allocat
static null = <same as static member of an already seen type>}}, static| typeName =
(gdb) n
94 return solveSegregated (solverControls);
(gdb) s

Foam:: fvMatrix<double >::solveSegregated (this=0x7fffffffc910 ,
at fvMatrices/fvScalarMatrix/fvScalarMatrix.C:152
152 {

solverControls =. .

We end up at line 152 in fvScalarMatrix.C. We see in the listing below (line 172) that there is a call to
a function New of the class solver of the class 1duMatrix (lduMatrix::solver). The solver to be used is
specified by the user, in system/fvSolution. That solver is then used to call yet another solve function at
line 180.

147

Listing 5: fvScalarMatrix.C, line 152

template<>

148 Foam::solverPerformance Foam::fvMatrix<Foam::scalar >::solveSegregated

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

(

const dictionary& solverControls

)

{
if (debug)

Info . masterStream (this —>mesh ().comm())
<< 7fvMatrix<scalar >::solveSegregated”

”(const dictionary& solverControls)

"solving fvMatrix<scalar>"

<< endl;

}

GeometricField<scalar , fvPatchField, volMesh>& psi =
const_cast <GeometricField<scalar , fvPatchField, volMesh>&>(psi_);

scalarField saveDiag(diag());

addBoundaryDiag(diag (), 0)

scalarField totalSource(source._);
addBoundarySource (totalSource , false);

solverPerformance solverPerf = lduMatrix::solver ::New

(
psi.name(),
xthis ,
boundaryCoeffs_ |
internalCoeffs_

psi_.boundaryField ().scalarInterfaces (),

solverControls

)—>solve (psi.primitiveFieldRef (), totalSource);

if (solverPerformance::debug)

solverPerf.print (Info.masterStream (mesh ().comm()));

}

diag () = saveDiag;

psi.correctBoundaryConditions ();

psi.mesh().setSolverPerformance (psi.name(), solverPerf);

return solverPerf;

}

We go there by setting a breakpoint and continuing the execution. Then we make a step and realize that
we end up in operator->() that we are not interested in at the moment, so we finish that function using
the fin command and make the next step. Then we end up in primitiveFieldRef (), so we repeat f£in and

step again.

(gdb) b fvScalarMatrix.C:180
Breakpoint 3 at 0x7ffff676a827:

file fvMatrices/fvScalarMatrix/fvScalarMatrix.(,

line

180.

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

(gdb) ¢
Continuing.

Breakpoint 3, Foam::fvMatrix<double >::solveSegregated (this=0x7{ffffffc910 , solyerControls:
at fvMatrices/fvScalarMatrix/fvScalarMatrix.C:180

180)—>solve (psi.primitiveFieldRef (), totalSource);

(gdb) s

Foam:: autoPtr<Foam::1lduMatrix :: solver >::operator—> (this=0x7{ffffffbb80)
at /home/oscfd /OpenFOAM/OpenFOAM—v1906/src /OpenFOAM/InInclude /autoPtrl .H:216

216 inline Tx Foam::autoPtr<I>::operator —>()

(gdb) fin

Run till exit from #0 Foam::autoPtr<Foam::lduMatrix::solver >::operator—> (thiss0x7{{{ffffb
at /home/oscfd /OpenFOAM/OpenFOAM—v1906/src /OpenFOAM/InInclude /autoPtrI . H:216

0x00007ffff676a833 in Foam:: fvMatrix<double >::solveSegregated (this=0x7{{fffffc910 , solver(
at fvMatrices/fvScalarMatrix/fvScalarMatrix.C:180

180)—>solve (psi.primitiveFieldRef (), totalSource);
Value returned is $4 = (Foam::lduMatrix::solver) 0x555555946¢cc0
(gdb) s

Foam:: GeometricField<double, Foam:: fvPatchField , Foam::volMesh >::primitiveFieldRef (this=0:
at /home/oscfd /OpenFOAM/OpenFOAM—v1906/src /OpenFOAM/InInclude /GeometricField .C:893
893 if (updateAccessTime)
(gdb) fin
Run till exit from #0 Foam:: GeometricField<double, Foam:: fvPatchField , Foam:: vioplMesh >:: pri
at /home/oscfd /OpenFOAM/OpenFOAM—v1906/src /OpenFOAM/InInclude /GeometricField .C:893
0x00007ffff676a851 in Foam::fvMatrix<double >::solveSegregated (this=0x7{ffffffc910 , solver(
at fvMatrices/fvScalarMatrix/fvScalarMatrix.C:180
180)—>solve (psi.primitiveFieldRef (), totalSource);
Value returned is $5 =
(Foam:: DimensionedField<double, Foam::volMesh >::FieldType &) @QOxT7fffffffc430: {<Foam
(gdb) s
Foam::PCG:: solve (this=0x555555946¢cc0, psi_s=..., source=..., cmpt=0 ’\000’) at| matrices/ld
219 {

We finally end up at line 219 in the PCG solver, which is listed below, as stated in system/fvSolution.

Listing 6: PCG.C, line 219

Foam:: solverPerformance Foam::PCG:: solve

(
scalarField& psi_s ,
const scalarField& source,
const direction cmpt
) const
{
PrecisionAdaptor<solveScalar , scalar> tpsi(psi_s);
return scalarSolve
(
tpsi.ref (),
ConstPrecisionAdaptor<solveScalar , scalar >(source)(),
cmpt
);
}

Now we have seen the exact path taken to the solver specified by the user, which concludes the aim of this
tutorial.
At this point we can type quit to quit GDB.

10

4 Learn more about GDB

Search the Internet for additional ways to use GDB. It is for instance possible to show and manipulate values
of variables, and thus influence the execution of the code.

e See http://www.gnu.org/software/gdb

e See https://darkdust.net/files/GDBY%20Cheat’20Sheet . pdf

There are some interfaces to GDB:

— See http://www.gnu.org/software/gdb/links/
— ddd

— emacs

Macros for GDB/OpenFOAM: http://openfoamwiki.net/index.php/Contrib_gdbOF

e eclipse is another alternative (An Integrated Development Environment)
See: http://openfoamwiki.net/index.php/HowTo_Use_OpenFOAM_with_Eclipse

Qt is yet another alternative
See: http://openfoamwiki.net/index.php/HowTo_Use_OpenFOAM_with_QtCreator

11

