
CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 1

High-level programming of OpenFOAM applications,

and a first glance at C++

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 2

High-level programming of OpenFOAM applications,

and a first glance at C++

Prerequisites

• You are familiar with basic usage of OpenFOAM.

• You are familiar with the directory and file structure of OpenFOAM.

• You have some programming experience.

• You are aware of the wmake command, and how it picks up the instructions for the compi-

lation.

Learning outcomes

• You will get a suggested way of working with your own developments of applications.

• You will understand the very basic parts of a C++/OpenFOAM code.

• You will understand the wmake compilation procedure for applications, and how it is related

to compilation with the g++ compiler and make.

• You will step-by-step from scratch implement and understand the purpose of the most gen-

eral high-level parts of OpenFOAM solvers.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 3

High-level programming of OpenFOAM applications,

and a first glance at C++

Contents

• We will start by setting up a code from the very scratch, and make it compile using the

OpenFOAM procedures.

• We will discuss the fundamental concepts of CFD, and piece-by-piece implement a code

at the very highest level - meaning that we will at this point not know exactly what is

happening at the lower levels, where the actual code is found. We do not have enough

knowledge at the moment to look at the lower levels. That we will get later.

The instructions are inspired by the codes found in $FOAM_APP/test and of course in $FOAM_APP.

See also the Programmers guide, linked to from:

https://www.openfoam.com/documentation/.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 4

A VERY first glance at C++,

from a high-level OpenFOAM perspective

A C++ code must at least have one function, named main():

int main()

{

return 0;

}

The above means that:

• The function takes no arguments (nothing between the brackets)

• The function returns an integer (int)

• The function definition is between the curly brackets

• The returned integer is zero (return 0).

• The code will not give any output to the terminal window.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 5

A VERY first glance at C++,

from a high-level OpenFOAM perspective

Let’s implement and compile this using the OpenFOAM procedures.

• Create a directory for the code, and go there (inspired by the original test directory):

mkdir -p $WM_PROJECT_USER_DIR/applications/myTests/onlyMainFunction

cd $WM_PROJECT_USER_DIR/applications/myTests/onlyMainFunction

• Add the code in the previous slide to onlyMainFunction.C (named as directory)

At this point we can actually compile the code by

g++ onlyMainFunction.C -o Test-onlyMainFunction

Run the code by

./Test-onlyMainFunction

Alternatively, put it in $FOAM_USER_APPBIN, as when compiling OpenFOAM applications

g++ onlyMainFunction.C -o $FOAM_USER_APPBIN/Test-onlyMainFunction

Run the code by

Test-onlyMainFunction

Remember that the $PATH is used to find the executable, but . is not in the $PATH

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 6

A VERY first glance at C++,

from a high-level OpenFOAM perspective

Now we will compile it the OpenFOAM way:

• Clean up

rm Test-onlyMainFunction $FOAM_USER_APPBIN/Test-onlyMainFunction

• Create Make/files with

onlyMainFunction.C

EXE = $(FOAM_USER_APPBIN)/Test-onlyMainFunction

• Create an empty Make/options file:

touch Make/options

• Compile:

wmake

• Run the code by:

Test-onlyMainFunction

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 7

A VERY first glance at C++,

from a high-level OpenFOAM perspective

Have a look at the output in the terminal window from the wmake command:

g++ -std=c++11 -m64 -DOPENFOAM_PLUS=1706 -Dlinux64 -DWM_ARCH_OPTION=64

-DWM_DP -DWM_LABEL_SIZE=32 -Wall -Wextra -Wold-style-cast

-Wnon-virtual-dtor -Wno-unused-parameter -Wno-invalid-offsetof -O3

-DNoRepository -ftemplate-depth-100 -IlnInclude -I.

-I/home/oscfd/OpenFOAM/OpenFOAM-plus/src/OpenFOAM/lnInclude

-I/home/oscfd/OpenFOAM/OpenFOAM-plus/src/OSspecific/POSIX/lnInclude

-fPIC -Xlinker --add-needed -Xlinker --no-as-needed

Make/linux64GccDPInt32Opt/onlyMainFunction.o

-L/home/oscfd/OpenFOAM/OpenFOAM-plus/platforms/linux64GccDPInt32Opt/lib \

-lOpenFOAM -ldl \

-lm -o $FOAM_USER_APPBIN/Test-onlyMainFunction

The difference from when we compiled with g++ directly is that the wmake command added a

lot of flags. They are in fact not needed for this code, but they also don’t hurt.

From where did the flags come?

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 8

Solving PDEs with OpenFOAM

Let’s start building our code by looking at the smallest elements of CFD.

• In CFD we solve partial differential equations (PDEs)

• The PDEs we wish to solve involve derivatives of tensor fields with

respect to time and space

• The PDEs must be discretized in time and space before we solve

them

• We will start by having a look at algebra of tensors in OpenFOAM

at a single point

• We will then have a look at how to generate tensor fields from

tensors, and how to relate those fields to a mesh

• Finally we will see how to discretize the PDEs and how to set

boundary conditions using high-level coding in OpenFOAM

• For further details, see the ProgrammersGuide

(found at https://www.openfoam.com/documentation/)

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 9

Basic tensor classes in OpenFOAM

• OpenFOAM provides pre-defined classes for tensors of rank 0-3:

Rank Common name Basic name Access function

0 Scalar scalar

1 Vector vector x(), y(), z()

2 Tensor tensor xx(), xy(), xz(), ...

A tensor T =





11 12 13

21 22 23

31 32 33



 is defined line-by-line in OpenFOAM:

tensor T(11, 12, 13, 21, 22, 23, 31, 32, 33);

However, we can’t just put this line in the main() function definition, since C++ does not know

what a tensor is. You can try if you like!

We need to declare the tensor class and link to its definition, which is in the shared object file

of the library to which the tensor class belongs.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 10

Basic tensor classes in OpenFOAM

We can find the implementation of the tensor class by

find $FOAM_SRC -name tensor

which gives

$FOAM_SRC/OpenFOAM/primitives/Tensor/tensor

We see that the tensor class belongs to the OpenFOAM library, since it is in the OpenFOAM

directory we find the Make directory - showing that it is the top level of that library. In the

OpenFOAM directory we also find the lnInclude directory, in which there is a link to

$FOAM_SRC/OpenFOAM/primitives/Tensor/tensor/tensor.H

For all declaration files in OpenFOAM you find both a link in an lnInclude directory and the

file itself: find $FOAM_SRC -name tensor.H yields

$FOAM_SRC/OpenFOAM/lnInclude/tensor.H

$FOAM_SRC/OpenFOAM/primitives/Tensor/tensor/tensor.H

That file contains the declaration of the class, and we need to include that file at the header of

our code. We also have to link to the OpenFOAM library, where the compiled definition of the

class can be found.

Let’s implement this...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 11

Basic tensor classes in OpenFOAM

mkdir -p $WM_PROJECT_USER_DIR/applications/myTests/myTensor

cd $WM_PROJECT_USER_DIR/applications/myTests/myTensor

Add the following code to myTensor.C

#include "tensor.H"

using namespace Foam;

int main()

{

tensor T(11, 12, 13, 21, 22, 23, 31, 32, 33);

Info << "T: " << T << endl;

Info << "Txz: " << T.xz() << endl;

return 0;

}

• The first line includes the declaration of the tensor class, so that it can be used below.

• The second line says that we should use the namespace Foam, in which everything in Open-

FOAM is implemented. We will get back to this later.

• The OpenFOAM Info output stream allows us to write to the terminal window, which we

will get back to later. The second Info line uses a call to the access function xz(), which

belongs to the tensor class. This is how you typically call functions of a class.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 12

Basic tensor classes in OpenFOAM
Now we need to set up the Make directory so that wmake finds the tensor.H file and links to

the OpenFOAM library.

Create Make/files with

myTensor.C

EXE = $(FOAM_USER_APPBIN)/Test-myTensor

Create an empty Make/options file:

touch Make/options

Compile:

wmake

Run the code by:

Test-myTensor

MAGIC? How does it find tensor.H and the OpenFOAM library? Have a look again at the

default wmake flags, showing that the compilation is now done in two steps. The first step is for

compilation of the intermediate object file, and the second step is for the linking. In the first

step the flag -I/home/oscfd/OpenFOAM/OpenFOAM-plus/src/OpenFOAM/lnInclude tells

wmake where to find tensor.H. In the second step the flag

-L$WM_PROJECT_DIR/platforms/linux64GccDPInt32Opt/lib tells wmake where the li-

braries can be found, and the flag -lOpenFOAM tells wmake to link to that library. NO MAGIC!

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 13

Algebraic tensor operations in OpenFOAM

• Tensor operations operate on the entire tensor entity instead of a

series of operations on its components

• The OpenFOAM syntax closely mimics the syntax used in written mathematics,

using descriptive functions or symbolic operators

Examples:

Operation Comment Mathematical Description

description in OpenFOAM

Addition a + b a + b

Outer product Rank a, b ≥ 1 ab a * b

Inner product Rank a, b ≥ 1 a · b a & b

Cross product Rank a, b = 1 a × b a ˆ b

Operations exclusive to tensors of rank 2

Transpose T
T T.T()

Determinant detT det(T)

Operations exclusive to scalars

Positive (boolean) s ≥ 0 pos(s)

Hyperbolic arc sine asinh s asinh(s)

Find more examples in the Programmer’s guide

(linked to at https://www.openfoam.com/documentation/)

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 14

Algebraic tensor operations in OpenFOAM
Add the following to our myTensor.C file (before return), compile and run:

// Line to remove copy-paste problem

tensor t1(1, 2, 3, 4, 5, 6, 7, 8, 9);

tensor t2(1, 2, 3, 1, 2, 3, 1, 2, 3);

tensor t3 = t1 + t2;

Info<< t3 << endl;

tensor t4(3,-2,1,-2,2,0,1, 0, 4);

Info<< inv(t4) << endl;

Info<< (inv(t4) & t4) << endl;

Info<< t1.x() << t1.y() << t1.z() << endl;

Info<< t1.T() << endl;

Info<< det(t1) << endl;

scalar s1(0.75);

Info<< pos(s1) << endl;

Info<< Foam::asinh(s1) << endl;

We do not have to add an include line for scalar, since that is done through the tensor.H

file (through Tensor.H -> Vector.H -> VectorSpace.H).

The Foam:: at the final line is because the compiler complained that the function is ambiguous,

i.e. it exists in more than one namespace. Therefore we explicitely say that we want to use the

function that belongs to namespace Foam. It has to be done without using namespace Foam.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 15

A quick note on the tensor class

This slide is actually a bit early since it requires a bit more knowledge, but you can see it as a

teaser... It shows how you can learn what a tensor is and how you can learn more on its usage.

• In tensor.H, Tensor.H is included (located in

$FOAM_SRC/OpenFOAM/primitives/Tensor), which declares the

access functions and operators and includes TensorI.H, where

they are defined. The capital T means that it is a template class.

The capital I means that the file contains inline functions.

• See also vector, symmTensorField, sphericalTensorField

and many other examples.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 16

Dimensional units in OpenFOAM

• OpenFOAM checks the dimensional consistency

Declaration of a tensor with dimensions:

dimensionedTensor sigma

(

"sigma",

dimensionSet(1, -1, -2, 0, 0, 0, 0),

tensor(1e6, 0, 0, 0, 1e6, 0, 0, 0, 1e6)

);

The values of dimensionSet correspond to the powers of each SI unit:
No. Property Unit Symbol

1 Mass kilogram kg

2 Length metre m

3 Time second s

4 Temperature Kelvin K

5 Quantity moles mol

6 Current ampere A

7 Luminous intensity candela cd

sigma then has the dimension
[

kg/ms2
]

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 17

Dimensional units in OpenFOAM

• Add the following to myTensor.C:

Before main():

#include "dimensionedTensor.H"

Before return(0):

dimensionedTensor sigma

(

"sigma",

dimensionSet(1, -1, -2, 0, 0, 0, 0),

tensor(1e6, 0, 0, 0, 1e6, 0, 0, 0, 1e6)

);

Info<< "Sigma: " << sigma << endl;

• Compile, run again, and you will get:

Sigma: sigma [1 -1 -2 0 0 0 0] (1e+06 0 0 0 1e+06 0 0 0 1e+06)

You see that the object sigma belongs to the dimensionedTensor class that

contains both the name, the dimensions and values.

• See $FOAM_SRC/OpenFOAM/dimensionedTypes/dimensionedTensor

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 18

Dimensional units in OpenFOAM

• Try some member functions of the dimensionedTensor class:

Info<< "Sigma name: " << sigma.name() << endl;

Info<< "Sigma dimensions: " << sigma.dimensions() << endl;

Info<< "Sigma value: " << sigma.value() << endl;

• You now also get:

Sigma name: sigma

Sigma dimensions: [1 -1 -2 0 0 0 0]

Sigma value: (1e+06 0 0 0 1e+06 0 0 0 1e+06)

• Extract one of the values:

Info<< "Sigma yy value: " << sigma.value().yy() << endl;

Note here that the value() member function first converts the expression to a

tensor, which has a yy() member function. The dimensionedTensor class

does not have a yy() member function, so it is not possible to do sigma.yy().

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 19

Construction of a tensor field in OpenFOAM

• A tensor field is a list of tensors

• The use of typedef in OpenFOAM yields readable type definitions:

scalarField, vectorField, tensorField, symmTensorField, ...

• Algebraic operations can be performed between different fields,

and between a field and a single tensor, e.g. Field U, scalar 2.0:

U = 2.0 * U;

• Add the following to myTensor.C:

Before main():

#include "tensorField.H"

Before return(0):

tensorField tf1(2, tensor::one);

Info<< "tf1: " << tf1 << endl;

tf1[0] = tensor(1, 2, 3, 4, 5, 6, 7, 8, 9);

Info<< "tf1: " << tf1 << endl;

Info<< "2.0*tf1: " << 2.0*tf1 << endl;

• However, this kind of tensor field is not related to any mesh, and

can therefore not be discretized.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 20

#include "fvCFD.H"

• OpenFOAM uses the finite volume method (fvm) to discretize the PDEs, and there are

many classes in OpenFOAM that are related to fvm.

• OpenFOAM provides the header file fvCFD.H that only includes other header files re-

lated to fvm, including the tensor classes we have discussed. It can therefore be used to

reduce the number of header files. It in fact also ends with using namespace Foam.

• Exchange all the lines before the main() function with:

#include "fvCFD.H"

• That file is located in a sub-directory of $FOAM_SRC/finiteVolume, so add the follow-

ing to Make/options (Note that we do not have to link. Why?):

EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude

The meshTools line is needed for a cyclicAMILduInterface.H file that is included

through fvCFD.H, and obviously includes something from the meshTools library.

• Compile and test!

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 21

Discretization of a tensor field in OpenFOAM

• OpenFOAM uses the finite volume method (fvm) to discretize the PDEs of the

tensor fields on a mesh.

• The tensor fields must thus be related to a mesh.

• The polyMesh class can be used to construct a polyhedral mesh using the mini-

mum information required. I.e. that in <case>/constant/polyMesh

• The fvMesh class extends the polyMesh class to include additional data needed

for the fvm discretization (see test/mesh)

• The geometricField class relates a tensor field to an fvMesh (can also be type-

def volField, surfaceField, pointField)

• A geometricField inherits all the tensor algebra of its corresponding field, has

dimension checking, and can be subjected to specific discretization procedures

We will now investigate a polyMesh, an fvMesh, and a geometricField, but for that we need

a base code...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 22

Base code

• For the base code we are inspired both by $FOAM_APP/test/mesh/Test-mesh.C and

$FOAM_SOLVERS/incompressible/icoFoam/icoFoam.C

• We need a code that starts with (explanations coming later):

<header files>

int main(int argc, char *argv[])

{

#include "setRootCase.H"

#include "createTime.H"

where the <header files> can preferrably be fvCFD.H.

• We use a special functionality to generate a template application:

cd $WM_PROJECT_USER_DIR/applications/myTests

foamNewApp meshAndField

cd meshAndField

wmake

meshAndField

It complains that it can’t find a system/controlDict. We will see why soon.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 23

Base code
The base code (meshAndField.C) contains a commented header, and:

#include "fvCFD.H"

// * //

int main(int argc, char *argv[])

{

#include "setRootCase.H"

#include "createTime.H"

// * //

Info<< nl;

runTime.printExecutionTime(Info);

Info<< "End\n" << endl;

return 0;

}

Some explanations in the coming slides...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 24

Base code

• int argc, char *argv[]

The arguments to the main function are the number of flags and the flags supplied when

running the code.

• setRootCase.H (find it with find $FOAM_SRC -name setRootCase.H)

Not a header file, just a piece of code:

Foam::argList args(argc, argv);

if (!args.checkRootCase())

{

Foam::FatalError.exit();

}

This constructs the object args, and uses it to check that we are running the code in a case

directory. It simply checks if there is an appropriate system/controlDict(!)

• createTime.H (find it with find $FOAM_SRC -name createTime.H)

Not a header file, just a piece of code:

Foam::Info<< "Create time\n" << Foam::endl;

Foam::Time runTime(Foam::Time::controlDictName, args);

This writes some text and constructs the runTime object of the class Time.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 25

Base case
We need a case to run our code (here the cavity case with only four cells):

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity/cavity $FOAM_RUN/cavityFourCells

sed -i s/"20 20 1"/"2 2 1"/g $FOAM_RUN/cavityFourCells/system/blockMeshDict

blockMesh -case $FOAM_RUN/cavityFourCells

meshAndField -case $FOAM_RUN/cavityFourCells

Now we can move on to examine a polyMesh and an fvMesh, following by a geometricField,

in the form of a volScalarField...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 26

Examine a polyMesh

Add after the line with #include "createTime.H" (from test/mesh):

Info<< "Create mesh" << endl;

polyMesh mesh

(

IOobject

(

fvMesh::defaultRegion,

runTime.timeName(),

runTime,

IOobject::MUST_READ

)

);

Info<< "Cell centres" << nl << mesh.cellCentres() << endl;

Info<< "Cell volumes" << nl << mesh.cellVolumes() << endl;

Info<< "Cell face centres" << nl << mesh.faceCentres() << endl;

Compile and run.

Some descriptions follow...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 27

Examine a polyMesh

• polyMesh mesh (...)

An object named mesh is constructed from the polyMesh class. There is only one argument

to the constructor, which is an IOobject. The IOobject itself takes four arguments that are

not obvious. We can make the educated guess that it reads the mesh from

constant/polyMesh. At some point we have to stop figuring out exactly how things are

done. Now we are fine relying on how OpenFOAM reads from files.

• cellCentres()

gives the center of all cells and boundary faces.

• cellVolumes()

gives the volume of all the cells.

• faceCentres()

gives the center of all the faces.

A detailed note is that the above functions are actually inherited from the primitiveMesh

class.

However, a polyMesh only has the very basic information of the mesh...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 28

Examine an fvMesh
An fvMesh builds on top of a polyMesh, and has additional attributes.

• Let us examine an fvMesh:

Start by changing the mesh class from polyMesh to fvMesh in meshAndField.C

sed -i s/'polyMesh mesh'/'fvMesh mesh'/g meshAndField.C

• Compile and run.

• Note that we are using the same member functions as before. They still be-

long to the polyMesh class. However, since the fvMesh class inherits from the

polyMesh class they also belong to the fvMesh class. We will discuss inheritance

more later.

• Add the following after our previous insertion in meshAndField.C, compile and

run again:

Info<< mesh.C() << endl;

Info<< mesh.V() << endl;

Info<< mesh.Cf() << endl;

This could not be done with the polyMesh, since those member functions are

defined in the sub-class fvMesh. They give the corresponding information as

before, but with additional information.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 29

Examine an fvMesh

The construction of the fvMesh is done the same way for all solvers that use a static mesh.

Instead of replicating the call for the fvMesh constructor in all the solvers they just have after

#include "createTime.H" the line (see e.g. icoFoam.C)

#include "createMesh.H"

This is as well not a real header file, but just inserts the code in:

find $FOAM_SRC -name createMesh.H

Clean up your code by doing this, and check that it still works!

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 30

Examine a volScalarField

Now we are at a point where we can start implementing a particular PDE solver. Depend-

ing on the problem at hand we want to solve equations for different fields. I.e. the fields to

be constructed depends on the solver. That is why all the solvers include a local file named

createFields.H. See e.g. the original icoFoam directory:

createFields.H icoFoam.C Make

Inside the main(...) function of icoFoam.C we find:

#include "createFields.H"

This refers to the local file in the same directory, which is found by the compiler thanks to the

compiler flag -I.

Add such a line below #include "createMesh.H", create the file:

touch createFields.H

and we will continue constructing a field in that file.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 31

Examine a volScalarField

We are here inspired by icoFoam/createFields.H, and construct a volScalarField (which

is typedef of a geometricField, and therefore relates to a mesh).

Add in createFields.H:

volScalarField p

(

IOobject

(

"p",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

Info<< p << endl;

Info<< p.boundaryField()[0] << endl;

Compile, run and have a look at the output! Note that the above Info statement is in

createFields.H, which is in the beginning of the execution.

Although we are not interested in all the details here we will still have a quick look...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 32

Examine a volScalarField

volScalarField p(IOobject (...) , mesh);

The object p is constructed as a volScalarField, and the constructor takes two arguments.

• IOobject ("p",runTime.timeName(),mesh,IOobject::MUST_READ,IOobject::AUTO_WRITE)

– The first argument is an internal name p, so that we at the end can ask our object for its

name (i.e. the internal name should be the same as the object name).

– The second argument uses the runTime object to determine which time directory to read

from (according to settings in system/controlDict).

– The third argument states that the volScalarField should be related to the fvMesh

corresponding to our object mesh.

– The fourth argument states that it must be read.

– The fifth argument states that the field should be written in the coming time directories

according to the settings in system/controlDict.

• mesh

If the volScalarField is read from a file, as in this case, you just specify mesh here. I

haven’t been interested in checking the details of this, but I guess it is used to specify the

size and structure of the field. If the volScalarField is NOT read from a file the second

argument can be an existing volScalarField that corresponds to the same mesh.

	High-level programming of OpenFOAM applications, and a first glance at C++
	Tensors, dimensions, tensor fields and mesh classes

