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dology Radiati in OpenFOAM

Modelling the radiative heat transfer

The radiative intensity I, is intrinsically 6D
® 3D in space x
® 2D in direction §

® 1D in wavenumber 7

)

SHANGHALI JIAO TONG
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The RTE solver aims to: ‘

® Removing RTE's angular dependency

® Solving the derived equation with given ks, By, osy

The spectral model aims to:
® Mathematical manipulation in 7 space
® Millions' times of RTE evaluation — several times
® Providing Ky, By, osyn for the RTE solver

® Providing weight wy, for each solution

Collecting the results with w;,

RTE
A,
710 || x30 || &2
¥ ¥
Approximation Remove §
O(n) — O(1) dependency
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RTE solver
Discrete Ordinates Method (DOM)

Figure: Discrete Ordinates Method (DOM) !
@ Discretizing in solid angle
@® RTE — several PDEs in 3D
® Using FVM to solve the PDEs

!Modest et al. “The Method of Discrete Ordinates ('S N -Approximation)”

ion \ dology Radiati in OpenFOAM
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Spherical Harmonics Method (PN)
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Figure: Spherical Harmonics Method (PN) 2
@ 2D Fourier expansion” for intensity
® RTE — several PDEs in 3D
® Using FVM to solve the PDEs

’https://en.wikipedia.org/wiki/Spherical_harmonics#/media/File:Sphericalfunctions.svg
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or glg-u |n OpenFOAM
Iing the RTE .
Comparison between two models

Discrete Ordinates Method (DOM)

& Mathematically simple

sl Different Ny and Ny — similar equations

'@ High computational cost (NyNp)

'@ False scattering

Governing equation for DOM

§; - VI(r,8;) = 6(r)Ip(r) — B(r)I(r, §;)

+ 0'17(1‘) Z ij(r’ §j)<I>(r, é.ivéi)‘
7/ =1

Governing equation for PN

s and conclusions
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Spherical Harmonics Method (PN)

L ] Mathematically complex, when N 1
'@ Different N — different equations

1 Low computational cost (N (N + 1)/2)
) Stability issues
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Avoding millions times of RTE evaluation
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Spectral model

® Line-by-line model (LBL): Evaluate RTE at each wavenumber (benchmark model)

® Band model: limited to black walls and non-scattering media
® Global model

® Weighted sum of grey gases model (WSGG): Assume homogeneous mixture
® Full spectrum correlated k-distribution model (FSCK): The state-of-art spectral model
® Spectral-line-based WSGG (SLW): Mathematically identical to the FSCK model !

® Gray gas model: May result in larger errors compared to ignoring radiation

In this study, FSCK is implemented into OpenFOAM's radiation model framework.

1See also: Section 19.11 in Modest et al. “Solution Methods for Nongray Extinction Coefficients”
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Avoding millions times of RTE evaluation

Spectral model in CFD software
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Official implementation Third party implementation
i’ OpenFOAM: gray gas model and band model & A compact radiation model in OpenFOAM 2.2x by
123

Michael Modest's group
& WSGG in OpenFOAM (unknown version) by Sun et al 4.
_ ] & Limited FSCK UDF in Fluent 16.0 by Guo et al °.
WSGG in ANSYS Fluent is not the one commonly g . L | FSCK UDF in Fluent 2022 by Wang et al .

recognized in the radiative heat transfer

& Fluent: gray gas model, band model, WSGG
@& CFX: gray gas model, band model, WSGG

| have access to these codes, which could be used to verify

community. It is a simplified version of the WSGG
. . . impl tation.
model with only 1 times RTE evaluation (works my implementation

not bad for combustion applications).
1Wang et al. “Full-spectrum k-distribution look-up table for nonhomogeneous gas—soot mixtures”
2Ge et al. “Development of high-order PN models for radiative heat transfer in special geometries and boundary conditions”
3Ren et al. “Monte Carlo Simulation for Radiative Transfer in a High-Pressure Industrial Gas Turbine Combustion Chamber”
4Sun et al. “A hybrid non-gray gas radiation heat transfer solver based on OpenFOAM”
5Guo et al. “A full spectrum k-distribution based weighted-sum-of-grey-gases model for oxy-fuel combustion”
6Long et al. “Development and validation of a full-spectrum correlated k-distribution radiation model for CO2-Ho O-CO-soot mixtures in
ANSYS-Fluent”

OSCFD Rad Group
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Outline

How to use it: How it is implemented:
® How to use the radiation model in ® How the radiation model is implemented in
OpenFOAM with a focus on the combustion OpenFOAM.
application. ® How the greyMeanAbsorptionEmission
® How to choose the radiation model in model cooperate with the RTE solver.
OpenFOAM. How to modify it:
The theory of it: ® How to model the non-grey radiative heat
® The theory of radiative heat transfer. transfer in OpenFOAM.

® The theory of the radiative transfer equation
(RTE) solution methods.

® The theory of the spectral models.
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The P1 model

The P1 model: The expansion of radiative intensity

2
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The spherical harmonics can be written as,

-t @RI+ 1)+ m)!
Ylm(e,iﬁ) _ ( ) ( )( ) ezmwplm(cose).
2l 47r(l — m)! It is called as associated Legendre polynomial and is expressed as,
By expanding the intensity into the series of spherical P () = (—1)™ (1= p?)lml/z gntim (62— 1)
harmonics, " 2nn! dpntiml
I ! Two important properties,
a) — m m(a ® Orthogonalities:
I(I‘,S) - Z Z Il (r)yvl (S) 0 for m # I,
1=0 m=—1 1 — 20m _
f_1 PI(N)Pm(H)dM—ﬁ— 2 for m = 1,
. . . 2 1
If only expand to the first order, it can be written as, o . . et
Recursion relation:
) QU+ DpPy(p) = 1P _1(p) + (+ 1) Pra ()
I(r,0,v) = 18+110 cosO—I; sin95in'¢)—[11 sin 6 cos 1.
OSCFD Rad Group
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The P1 model
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The P1 model: Formulation

UNIVERSITY
I(r,0,4) = I§+1I9 cos §—I7 " sin @ sin yhp— I sin f cos 3. Formulation of the P1 model in OpenFOAM
($FOAM_RADIATION/radiationModels/P1/P1.C)
By defining the incident radiation as, 1| void Foam::radiation::nonGreyP1::calculate()
2| {
3 absorptionEmission_->correct(G_, Gg_);
ar) = / I(r,3)dQ, 4
A 5 const dimensionedScalar a0("a0", a_.dimensions(),
ROOTVSMALL) ;
. . 6 0 ooo
the approxiamted RTE can be written as, 7 26l
8 (
4 9 fvm: :laplacian(gamma, G_)
V. (FVG) —aG = —4edT” — E, 10 - fym::Sp(a_, G_)
11 ==
_ 1 . . .. . 12 - 4.0x(e_*physicoChemical: :sigma*powd(T_)) - E_
where T' = TaTooTag S the diffusivity of the equation, 3 D8
a is the absorption coefficient, o5 is the linear ig /o
scattering factor, € is the emission coefficient, andE is 5

the emision coefficient.

OSCFD Rad Group
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The P1 model
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The P1 model: Boundary condition
The boundary condition for the P1 model is the Marshak’s boundary condition. The generalized form is given by,
[ s @ = [ L@@, =12 V),
f-5>0 A-5>0 2

For P1, it is.
_2229 4. v6) + G = 40T,
€

Formulation of the Marshak boundary condition in OpenFOAM

void Foam::radiation::MarshakRadiationFvPatchScalarField::updateCoeffs()

0 oo

// Re-calc reference value

refValue() = 4.0xconstant::physicoChemical::sigma.value()*pow4(Tp);
Il oo

// Set value fraction

valueFraction() = 1.0/(1.0 + gamma*patch().deltaCoeffs()/Ep);

00 ooo

mixedFvPatchScalarField: :updateCoeffs();

HOWWONOUAWNR

o
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The FSCK model

The FSCK model: Procedures

Principles: Transfering the RTE from the wavenumber

SHANGHAI JIAO TONG
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7 space into so-called g space by reordering the P=1 bar, 7 = 1000 K, pure CO; [ 152
absorption coefficient x; based on some laws. *1 Eior
Benefits: Millions times RTE evaluation — at most 32 5 Lo
times. E 41 § —;
How to: By replacing the absorption coefficient with ;E N E ]072 =
the k, and the “emission coefficient” with the k,a, in Ez_ plo =
the RTE, the RTE can be written as, - Flo
14 E 104
RTE(kn,an,Gg,) =0, (n € [1,ng]) ® 71000 2000 3000 4000 3000 ‘0.60 o5 0w o
nlem']

ky, is the k value at each quadrature point, a,, is called kn, an and w, values? i
as non-gray streching coefficient and Gy, is the G Reference volume fraction: xyer = ‘L Jy xdv.
value at each quadrature point. Reference temperature:
Collecting the results from all quadrature points, E(p, T, Tret, Xvef ) Ip(Tret) = ‘l fy (0, T, T, %), (T)dV
G =311, wnGy,, the radiative heat source can be k is a function of p, T, Ticf, x, which can be obtained
written as, by a look-up table 1 or a neural network 2. a can be
V-q= Zn‘il wnV - qq, = ZZ‘I L wn(4maly, — Gg,). derived from k. wy, is only a function of ngq.

1Wang et al. “Efficient full-spectrum correlated-k-distribution look-up table”
2Zhou et al. “A machine learning based full-spectrum correlated k-distribution model for nonhomogeneous gas-soot mixtures”

OSCFD Rad Group
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The FSCK model: Procedures

Principles: Transfering the RTE from the wavenumber
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7 space into so-called g space by reordering the ! P=1 bar, 7' = 1000 K, pure CO; [ 152
absorption coefficient x; based on some laws. *1 Eior
Benefits: Millions times RTE evaluation — at most 32 5 Lo
times. 24l LT
How to: By replacing the absorption coefficient with ;E 5 E ]072 =
the k, and the “emission coefficient” with the k,a, in Ez_ plo =
the RTE, the RTE can be written as, - plo-
11 E 104
RTE(kn, an,Gg,) =0, (n € [1,ng]) ® 71000 2000 3000 4000 3000 ‘o.bo o5 0w o
nlem']

ky, is the k value at each quadrature point, a,, is called kn, an and w, values? i
as non-gray streching coefficient and Gy, is the G Reference volume fraction: xyer = ‘L Jy xdv.
value at each quadrature point. Reference temperature:
Collecting the results from all quadrature points, E(p, T, Tret, Xref ) Ip(Tret) = ‘l fy p, T, T, x)[,(T)dV
G =311, wnGy,, the radiative heat source can be k is a function of p, T, Tief, X, which can be obtained
written as, by a look-up table 1 or a neural network 2. a can be
V-q= Zn‘il wnV - qq, = 22‘1 L wn(4maly, — Gg,). derived from k. wy, is only a function of ngq.

1Wang et al. “Efficient full-spectrum correlated-k-distribution look-up table”
2Zhou et al. “A machine learning based full-spectrum correlated k-distribution model for nonhomogeneous gas-soot mixtures”
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The FSCK model

The FSCK model: Procedures ) e iwoTons
Principles: Transfering the RTE from the wavenumber ,
7 space into so-called g space by reordering the P=1 bar, 7' = 1000 K, pure CO; [ 152
absorption coefficient x; based on some laws. *1 Eior
Benefits: Millions times RTE evaluation — at most 32 5 E oo
times. B4 . 7;
How to: By replacing the absorption coefficient with § N 3 ]072 2
the k, and the “emission coefficient” with the kna, in :;2_ o= =
the RTE, the RTE can be written as, plo?
11 E107*
RTE(kn,an,Gg,,) =0, (n € [1,nq]) o 1000 2000 3000 4000 5000 ‘0.60 025 050 075 100 o
nlem']

ky is the k value at each quadrature point, a,, is called kn, an and w, values? '
as non-gray streching coefficient and Gg,, is the G Reference volume fraction: xyer = ‘L Jy xdv.
value at each quadrature point. Reference temperature:
Collecting the results from all quadrature points, k(p, T, Tret, Xvef ) Io(Trer) = 5 (p, T, T, %) I,(T)dV
G = Z 1 'u]n Gnt the radiative heat source can be k is a function of D, T, T!.“[’. X, WhICh can be obtained
written as, by a look-up table 1 or a neural network 2. a can be
V.qg= quzl wnV - qq, = 22‘1:1 wn (dmaly — Gg,,). derived from k. wy, is only a function of ngq.

1Wang et al. “Efficient full-spectrum correlated-k-distribution look-up table”
2Zhou et al. “A machine learning based full-spectrum correlated k-distribution model for nonhomogeneous gas-soot mixtures”
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The FSCK model

The FSCK model: Procedures
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Principles: Transfering the RTE from the wavenumber ,
7 space into so-called g space by reordering the P=1 bar, 7' = 1000 K, pure CO; [ 152
absorption coefficient x; based on some laws. *1 Eior
Benefits: Millions times RTE evaluation — at most 32 =51 oo
times. B4 L
How to: By replacing the absorption coefficient with § N 3 ]072 %
the k,, and the “emission coefficient” with the kya, in :;27 plo- =
the RTE, the RTE can be written as, Lo~
11 E1074
RTE(kn,an,Gg,) =0, (n € [1,nq]) O 000 200 3000 4000 5000 000 035 050 035 1h0
nlem™] 8
kn is the k value at each quadrature point, a,, is called kn, an and wy, values?
as non-gray streching coefficient and Gyg,, is the G Reference volume fraction: Xyer = % Sy xdv.
value at each quadrature point. Reference temperature:
CoIIecting the results from all quadrature points, k(p, T, Tret, Xref ) Ip(Tret) = % fV k(p, T, T,x)I,(T)dV
G =311, wnGy,, the radiative heat source can be k is a function of p, T', Tief, %, which can be obtained
written as, by a look-up table 1 or a neural network 2. a can be
V.og=3"% waV-qqg, = > nl wy(dnal, — Gg,). derived from k. w,, is only a function of ng.

1Wang et al. “Efficient full-spectrum correlated-k-distribution look-up table”
2Zhou et al. “A machine learning based full-spectrum correlated k-distribution model for nonhomogeneous gas-soot mixtures”
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Basic usage

How to use the OpenFOAM'’s radiation model?

SHANGHALI JIAO TONG
UNIVERSITY

Add fvOptions under constant folder

Add radiationProperties under constant folder

Add boundaryRadiationProperties under constant folder

Setup boundary conditions

OSCFD Rad Group
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Basic usage
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fvOptions

1]/ CH+ M
2( | === | |
31\ F ield | OpenFOAM: The Open Source CFD Toolbox |
411 \\ 0 peration | Version: v2212 |
5| | \N\ 7 A nd | Website: www.openfoam.com |
6| | \\/ M anipulation | |
70\ /
8| FoamFile

9| {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object fvOptions;

14|}

I5( /7 % % % % % x % % % * % *k % *k ¥ k * *x k * k k k Kk *x k ¥ k k kx Kk x k ¥ x * x //
16

17| radiation

18

19 type radiation;

20 1libs (radiationModels);

21

221 // //
23

OSCFD Rad Group



Radiation models in OpenFOAM

00

Basic usage

radiationProperties

— 0 [/ a3xT"(+/-)3 +
radiation on; [ /] adxT~(+/-)4 +
radiationModel P1; 0 // abxT~(+/-)6 +
P1Coeffs );
{ hiTcoeffs //coefss for T > Tcommon
C C[000000O0] O0;
¥ 18.741
// Number of flow iterations per radiation iteration -121.31e3
solverFreq 1; 273.5e6
absorptionEmissionModel greyMeanAbsorptionEmission; -194.05e9
greyMeanAbsorptionEmissionCoeffs 56.31e12
{ -5.8169e15
lookUpTableFileName none; );
EhrrCoeff 0.0;
c02 }
{ H20 // ...
Tcommon 200;  //Common Temp CH& // ...
invTemp true; //Is the polynomio using 02 // ...
inverse temperature. N2 // ...
Tlow 200; //Low Temp 3}
Thigh 2500; //High Temp scatterModel none;
sootModel none;
loTcoeffs //coefss for T < Tcommon transmissivityModel none;
( H
0 // a0 i
0 // alxT i
0 /] a2¥T~(+/-)2  +

OSCFD
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Basic usage
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boundaryRadiationProperties

11/ C++ \
2( | == = | |
301\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
411 \\ / 0 peration | Version: v2212 |
501 A\ 7/ A nd | Website: www.openfoam.com |
6| \\/ M anipulation | |
70\ /
8| FoamFile

9| {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object boundaryRadiationProperties;

14| ¥

15| // % % % % % % % % % % % % % % % % % % % % % % % %k k * %k *k * *k *x ¥ k *x * % x //
16

17| v

18| {

19 type lookup;

20 emissivity ig

21 absorptivity ©s

22|}

23| // //
24
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Radiation models in OpenFOAM
®0000000

Overview
Structure
‘ fv:option ‘
oSSt oToTTTTTTTTTTTTTm T T T i ________________________________
: ‘ Marshak boundary conditions ‘ ‘ radiation ‘ !
| |
‘ | ‘ |
|
| - radiationModel 5 P1 I
| |
| | | ‘
: ‘bou.ndaryRadiationProperties ‘ ‘ absorptionEmissionModel ‘ ! Rest RTE models ‘\
|
|

Inheritance
SLULSAEILSOY

Composition

Subclass grouping

OSCFD Rad Group
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Overview
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)

radiation class

Lo i ® No stand-alone radiation solver

Energy equation in reactingF0AM
P p———— ® Add source term to the energy equation
2| ( . .
3 fvm: :ddt(rho, he) + mvConvection->fvmDiv(phi, he) L Inhe”ts from fV: :Op‘tlon
4 20 ooo
. ® Main work done by radiationModel

o
7 + fvOptions(rho, he)
8|); . .

The constructor of radiation
1| Foam: :fv::radiation::radiation
The definition of radiation 3¢,

1| class radiation g )
g : public fv::option 6 fv::option(sourceName, modelType, dict, mesh)
41 e
5 // Private Data 8 /! L L.
6 /.. 18 ) radiation_ = Foam::radiation::radiationModel: :New(thermo.T());
7|}

OSCFD Rad Group
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Overview

2
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Calling radiationModel class in radiation class

The addSup function in radiation

1| void Foam::fv::radiation::addSup

2| (

3 const volScalarField& rho,

4 fvMatrix<scalar>& eqn,

5 const label fieldi

6])

714

8 const auto& thermo = mesh_.lookupObject<basicThermo>(basicThermo::dictName) ;
9
10 radiation_->correct();
11
12 eqn += radiation_->Sh(thermo, egn.psi());
13|}

® Override addSup in fv::option
® Perform calculation in radiation_->correct ()

® Add source term: radiation_->Sh(...)

OSCFD Rad Group
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Overview

2
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radiationModel class: solving the RTE

RTE is solved when necessary

1| void Foam::radiation::radiationModel: :correct()
2

3 if (!radiation_)

4 {

5 return;

6 }

7

8 if (firstIter_ || (time_.timeIndex() % solverFreq_ == 0))
9 {

10 calculate();

11 firstIter_ = false;

12 ¥

13

14 if (soot_)

15

16 soot_->correct();

17 ¥

18|

® The RTE is solved in the virtual method calculate

® correct only calls calculate when necessary

OSCFD Rad Group
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Overview

2
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Calculating the source term
Enthalpy source term

1| Foam: : tmp<Foam: :fvScalarMatrix> Foam::radiation::radiationModel::Sh
2| (

3 const basicThermo& thermo,

4 const volScalarField& he

5| ) const

6|1

7 const volScalarField Cpv(thermo.Cpv());
8 const volScalarField T3(pow3(T_));

9

10 return

11

12 Ru()

13 - fvm::Sp(4.0%Rp()*T3/Cpv, he)

14 - RpOO*T3*(T_ - 4.0%he/Cpv)

15 )5

16| }

17

e The source term contains T%, which have to be linearized.

® Virtual methods Ru and Rp have to be overrided in the subclass.

OSCFD Rad Group
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Overview

P1 model in OpenFOAM

) SHANGHALI JIAO TONG
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In the P1:calculate method:

@ Get spectral parameter from absorptionEmission_ pointer.
® Define equation parameter I'

® Solve G transport equation

O Calculate radiative heat flux on boundaries

We may find out:

@ It is a pure gray RTE solver.

@ It only solves RTE one times in each iteration.

© It can not even couple with the built-in multi-band spectral model.

OSCFD Rad Group
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Overview

P1::calculate method

void Foam::radiation::P1::calculate()

a_ = absorptionEmission_->a();
e_ = absorptionEmission_->e();
E_ = absorptionEmission_->E();

const volScalarField sigmaEff(scatter_->sigmaEff());

const dimensionedScalar a0("a0", a_.dimensions(),
ROOTVSMALL) ;

// Construct diffusion
const volScalarField gamma

(
IOobject
(
"gammaRad",
G_.mesh() .time() .timeName (),
G_.mesh(),
IOobject: :NO_READ,
IOobject: :NO_WRITE
),
1.0/(3.0%a_ + sigmaEff + a0)
)5

// Solve G transport equation
solve

SCFD

UNIVERSITY

(

fvm: :laplacian(gamma, G_)

- fvm::Sp(a_, G_)

- 4.0%(e_*physicoChemical: :sigma*pow4(T_)) - E_
)

// Calculate radiative heat flux on boundaries.
volScalarField: :Boundary& qrBf = qr_.boundaryFieldRef();
const volScalarField::Boundary& GBf = G_.boundaryField()

const volScalarField::Boundary& gammaBf = gamma.
boundaryField();

forAll (mesh_.boundaryMesh(), patchi)
{
if (!GBf [patchil.coupled())
{
qrBf [patchi] = -gammaBf [patchi]*GBf [patchi].
snGrad() ;
¥
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Overview
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greyMeanAbsorptionEmission class

Absorption coefficient is a function of temperature polynomial

It assumes absorption coefficient equal to the “emission coefficient”

® |t is a pure grey spectral model.

Method for getting absorption coefficient has band index as argument.
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Overview

@ Calculate the reference state for FSCK model.

® Get the k values and the non-grey streching coefficients a for the whole field.
© Solve the RTE based on k values and a values at each quadrature points.

O Collect the results from all quadrature points.

@ Calculate the radiative heat source.
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Obtaining the FSCK parameters

Model by Zhou et al. : In this report:
® |t can predict k values from three MLPs. ® | store the MLP parameters in JSON.
® Each MLP covers a pressure range. ® | use json.hpp 3 to read MLP's parameters.
® MLP takes p, T, Tyef, X as input. ® | write MLP class to perform forward propagation.
® Non-grey streching coefficient a is derived from k. ® | write MLPManager class to manage MLPs.
® Model outputs k for all quadrature points (32). e | write support_func.cpp, which can
® Interpolation is required for less quadrature points. ® |nterpolate k and a to any number of
® Model is hard-coded into Fortran code 2. quadrature points.

® Calculate a from k

Another way to obtain FSCK parameters is by using a o Calculate w

lookup table. While the lookup table for FSCK model is

ca. 12.45 GB, which may largely limit the application of Source code and MLP parameters are stored together
this model. under fsckMLPModel folder. It is compiled by make but
not wmake

1Zhou et al. “A machine learning based full-spectrum correlated k-distribution model for nonhomogeneous gas-soot mixtures”
20: https://github.com/ZY-LHY/Machine_learning_based_FSCK_model_soot
3€): https://github.con/nlohmann/json, Lohmann JSON for Modern C++

OSCFD Rad Group
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fsckMLP class
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Overall, this class does the following things:

® |t stores k and a values for each quadrature points in PtrList<volScalarField>
® |t calculates the reference state.

® |t updates k and a values by calling the MLPManager: :get_prediction

Some aspects are important to be mentioned:

® To ensure only one instance is created and not modify the higher level code, | use
singleton pattern.

® PtrList<volScalarField> needs to be initialized.

® CFD software uses mass fraction, while radiaton models uses volume fraction.
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Initialzing fields for k and a

dimensionedScalar(dimless/dimLength, ROOTVSMALL)
void Foam::radiation::fsckMLP::initKA()

H

{ ai_.set(i, new volScalarField
ki_.setSize(nBands_); (

ai_.setSize(nBands_); I0object

for (label i=0; i<nBands_; i++) (

{ "a" + std::to_string(i),
Info << "Initialzing k and a for band" << i << endl; mesh_.time () .timeName(),
ki_.set(i, new volScalarField mesh-,
¢ . IO0object::NO_READ,

EUObJeCt I0object: :AUTO_WRITE
Vo
"k" + std::to_string(i), mesh_,
mes:_.time().timeName(), dimensionedScalar(dimless/dimLength, ROOTVSMALL)
mesh_, ));
IOobject::NO_READ, }
IOobject::AUTO_WRITE }
),
mesh_,

OSCFD
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Caculating volume fractions
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scalar invWt = 0.0;

scalar xco2_cell, xh2o_cell, xco_cell;
forAll(mixture.Y(), s)

{

invWt += mixture.Y(s) [cellil/mixture.W(s);

xco2_cell = mixture.Y("C02") [cellil/(mixture.W(mixture.species() ["C02"])*invWt);
xh20_cell = mixture.Y("H20") [cellil/(mixture.W(mixture.species() ["H20"])*invWt);
xco_cell = mixture.Y("C0")[celli]/(mixture.W(mixture.species() ["C0"])*invWt);

xco2 = xco2 + xco2_cell * mesh_.cellVolumes() [celli];
xh20 = xh20 + xh20_cell * mesh_.cellVolumes() [cellil;
Xco = xco + xco_cell * mesh_.cellVolumes() [cellil;

XTq = Y;MWmIX/MW

5\
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Update &k and a values

UNIVERSITY
Update k and a for internal field Update k and a for boundaries
forAll(T, celli) forAl1(T.boundaryField(), patchi)
{
500 forAll (T.boundaryField() [patchil, facei)
double a[NqDB]; {
afun(gNgDB, k_Tref.data(), k_T.data(), wNgDB, a); /] ...
double k_new[nBands_], a_new[nBands_];
simple_interp(NgDB, nBands_, gNgDB, k_Tref.data(), gNq, forAll(ai_, bandI)
k_new) ; {
simple_interp(NgDB, nBands_, gNgDB, a, gNq, a_new); ai_[bandI].boundaryFieldRef () [patchi] [facei] =
a_new[bandI];
forAll(ki_, bandI) ki_[bandI].boundaryFieldRef () [patchi] [facei] =
{ k_new [bandI]#*100.0;
ki_[bandI] [celli] = k_new[bandI]*100.0; ¥
ai_[bandI] [celli] = a_new[bandI]; b
} }
}

Key takeaway

Using mesh_.boundary () to iterate through the boundary faces is fine for 3D cases. However, when trying to
set value on empty boundary, it will cause segmentation fault.

OSCFD Rad Group
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nonGreyMeanAbsorptionEmission class

It reads the number of quadrature points from the radiationProperties dict
under constant folder.

It creates £sckMLP instance by providing the number of quadrature points.

It updates reference temperature, k and a values in the correct method.

It returns corresponding k and a values by the index of quadrature points.

OSCFD Rad Group



Methodology Radiati

Modification Validation Discussions and conclusions
0000« 00 )®0 00 0 000 )

nonGreyP1 class
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In the calculate method

@ It calls nonGreyMeanAbsorptionEmission: :correct at the beginning
@ It iterates through each quadrature points

© It solves the RTE just like the original P1 class, but uses k and a values from
nonGreyMeanAbsorptionEmission

O It collects the results by sum up the incident radiation at each quadrature points
with w,,.

OSCFD Rad Group
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Non-grey marshak boundary conditions

There are two grey markshak boundary conditions in OpenFOAM, namely,
® MarshakRadiationFvPatchScalarField class
® MarshakRadiationFixedTemperatureFvPatchScalarField class

To make them become non-grey version, you just need to times non-grey streching factor a on the refValue

fsckMLP* fsck = fsckMLP::getInstance();
const word%& aName_("a" + std::to_string(fsck->getBandI()));

// Nongrey streching factor field
const scalarField& ap =
patch() .lookupPatchField<volScalarField, scalar>(aName_);

// Temperature field
const scalarField& Tp =
patch() .lookupPatchField<volScalarField, scalar>(TName_);

// Re-calc reference value
refValue() = 4.0*constant::physicoChemical::sigma.value()*pow4(Tp)*ap;

OSCFD Rad Group
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Overview

Benchmark code:

® Modest group's radidation models 123 in OpenFOAM 2.2x
® Ren group’s FSCK model # in ANSYS Fluent 2022
Validation cases:

¢ 1D homogeneous slab (compared with Modest’s code)

® 1D non-homogeneous slab (compared with Modest's code)
® 2D homogeneous plate (compared with Tao's code)

¢ 2D non-homogeneous plate (compared with Tao's code)

1Wang et al. “Full-spectrum k-distribution look-up table for nonhomogeneous gas—soot mixtures”

2Ge et al. “Development of high-order PN models for radiative heat transfer in special geometries and boundary conditions”

3Ren et al. “Monte Carlo Simulation for Radiative Transfer in a High-Pressure Industrial Gas Turbine Combustion Chamber”

4Long et al. “Development and validation of a full-spectrum correlated k-distribution radiation model for CO2-H5O-CO-soot mixtures in
ANSYS-Fluent”
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1D homogeneous slab

1 bar, 1200 K, 27.32% COs, 3.477% CO, and 6.298% H5O.

—— Benchmark code, 7;,=300 K
0.3 ®  New code, 7,=300 K
—— Benchmark code, 7;,=600 K
_ 0127 o ®  New code, =600 K
L g
£ s
E = 0.2 4
— 0.10 >
&) = Benchmark code, T;,=600 K D
—— Benchmark code, 7;,=300 K 0.1 1
®  New code, T,=600 K
®  New code, 7,=300 K
T T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
x [m] x [m]

Figure: Incident radiation (left) and radiative heat source (right) for 1D homogeneous slab
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1D validation cases

1D nonhomogeneous slab
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p=1bar, T — (1600exp( w) + 400)

2 2
oo, = 0.15exp (—%) , THy0 = 0.15exp (—%) , zco = 0.075 exp <—%) )
1.50 1 = Symbol for benchmark code —— Symbol for benchmark code
®  Symbol for new code ®  Symbol for new code
1.25 - I p=0.5 bar I =05 bar
—_ B =1 bar o B =1 bar
NE B =2 bar E 14 B =2 bar
E 1.00 4 =20 bar E =20 bar
2 <
>0 A
© 075 - >
0.50 14
T T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00

x [m] x [m]

Figure: Incident radiation (left) and radiative heat source (right) for a 1D non-homogeneous slab at different

pressures.
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2D validation cases

2D homogeneous plate

1bar, 1200K, 30% COs, 20% CO, and 50% H5O with cold black wall

0:5
x [m]

1.0

0.20

0.16

0.12

0.08

G [MW/m?]

—
=

=
=

1.0

0.8 1

0.6 1

0.4 1

0.2 4

0.0
0.0

O.IS
x [m]

1.0

1.2

e
oo

<
=~

0.0

V.q [MW/m?]
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Figure: Incident radiation (left) and radiative heat source (right) for 2D homogeneous enclosure predicted by
the new code
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2D homogeneous plate: Comparison
1.0 ™ 0.20
0.5 7 0.18
016 C %
E 0.6 § § 0.16 4
=044 z =
0.12 ¢y O 0.14 1
0'2 T m— Fluent code
OOPV—J 0.08 01219 e J
0.0 05 1.0 000 025 050 075 1.00
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Figure: Incident radiation for 2D homogeneous enclosure predicted by the in-house UDF code (left) and the
comparison with the new code sampling at the middle white line (right)
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2D validation cases

2D nonhomogeneous plate: Setup

With the profile: ¢(z,y) = max (07 1— w> ‘

T
c=(0.5,0.5) m, r =0.5 m.
® Temperature varies from 0 K to 1200 K.

® 2co, varies from 0 to 0.1.
® ry,o varies from 0 to 0.05.

® rco varies from 0 to 0.03.
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2D nonhomogeneous plate: Results
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Figure: Incident radiation (left) and radiative heat source (right) for 2D nonhomogeneous enclosure predicted by

the new code
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2D nonhomogeneous plate: Comparison
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= Fluent code
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Figure: Incident radiation for 2D nonhomogeneous enclosure predicted by the in-house UDF code (left) and the
comparison with the new code sampling at the middle white line (right)
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Difference between Modest’s code and Tao’s code

Modest’s code

® Modest's code implements the radiation model in a stand-alone library.

® To integrate with solvers, modification on the source code is necessary.

® Radiative heat source is not linearized.

® Modest's code depends on many libraries written in Fortran.

® Modest's code is not open-source.

Tao’s code

® The boundary condition can not be properly treated because of the absence of API.

® The extensibility is largely limited by the UDF interface.
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Iterate through T.boundaryField()

1| forA11(Gg_, bandI)

2| {

3 G_ += Gg_[bandI]*wNq[bandI];

4 forAll (mesh_.boundaryMesh(), patchi)

5 {

6 G_.boundaryFieldRef () [patchi] == G_.boundaryFieldRef ()
[patchi] +

7 Gg_[bandI].boundaryField () [patchi]*wNq[bandI];

8 }

9|}

forAl1(T.boundaryField(), patchi)
{
forAll (T.boundaryField() [patchil], facei)
{
0 ooo

forAll(ai
{

_, bandI)
ai_[bandI].boundaryFieldRef () [patchi] [facei] =
a_new[bandI];
ki_[bandI].boundaryFieldRef () [patchi] [facei] =
k_new [bandI]#*100.0;
¥

A loop through faces may lead to segmentation fault when the boundary is empty.
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Radiative heat loss is not smooth
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1.50 4 = Symbol for benchmark code = Symbol for benchmark code
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Radiative heat loss is not smooth: Possible reason

0 — 4 — 8 12
1 — 5 —09 13
44 2 — 6 — 10 14
3 — 1 11 15
3.
<
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0-
0.0 0.2 0.4 0.6 0.8 1.0
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Figure: Non-grey streching coefficient at different quadrature points
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Conclusions and future work
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Conclusions and future work

Conclusions
® Theory of radiative heat transfer, RTE solvers and spectral models are reviewed.
® A brief tutorial of the usage of OpenFOAM's radiation model is given.
® The guideline for the choice of RTE solver is given.

® A walk-through of OpenFOAM'’s radiation model is given with a focus on the P1 model and the
greyMeanAbsorptionEmission.

® The FSCK model is implemented in the existing OpenFOAM radiation model framework.
Future work

® Predicting k£ and a in a single network.

® Training a smaller network to reduce the computational cost.

® Integrating the FSCK model with the exisiting OpenFOAM's £vDOM model.

® Validating the model with some real cases.

® Comparing with the experiment data.
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