
Cite as: Salajeghe, R.: Developing a solver to model the photopolymerization process. In Proceedings of

CFD with OpenSource Software, 2022, Edited by Nilsson. H.,

http://dx.doi.org/10.17196/OS CFD#YEAR 2022

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Developing a solver to model the
photopolymerization process

Developed for OpenFOAM-v2112

Author:
Roozbeh Salajeghe
Technical University of Denmark
roosa@dtu.dk

Peer reviewed by:
Rafael Becker Meier

Saeed Salehi

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone
through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

January 15, 2023

http://dx.doi.org/10.17196/OS_CFD#YEAR_2022

Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• how to use the reactingFoam solver.

The theory of it:

• the theory of free radical photopolymerization

How it is implemented:

• presenting the implementation of chemical reactions in the solver

How to modify it:

• how to create a new library from scratch to implement the necessary functions for the pho-
topolymerization model

• how to modify an exising solver and tailor it for the photopolymerization process.

• how to define light intensity field for a single beam

1

Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• How to run standard document tutorials like damBreak tutorial.

• Fundamentals of Computational Methods for Fluid Dynamics, Book by J. H. Ferziger and M.
Peric

• How to customize a solver and do top-level application programming.

2

Contents

1 Introduction 4
1.1 Background and motivation . 4

2 Theory 5
2.1 Describing the physics . 5

3 Tutorials 9
3.1 Explanation of a tutorial case for reactingFoam . 9

3.1.1 Geometry and boundary conditions . 9
3.1.2 System directory . 9
3.1.3 Constant directory . 10
3.1.4 0 directory . 11
3.1.5 Results . 11

4 Implementation of the original solver and relevant libraries 13

5 reactingCureFoam 19
5.1 photoPolymerization library . 19

5.1.1 photoCure class . 19
5.1.2 cureReaction class . 23

5.2 reactingCureFoam solver . 27
5.3 Setting up a tutorial case . 32

A Developed codes 43
A.1 reactingCureFoam solver . 43
A.2 Constant dictionaries . 49

3

Chapter 1

Introduction

1.1 Background and motivation

Additive manufacturing is a developing field with lots of potentials. One of the main categories of
this promising field is the UV-based additive manufacturing. In this category, UV (or near-UV) light
is used to cure the resin. Resin is composed of monomers, oligomers, and a photo-initiator. When
it is irradiated by UV light, a chain of reactions will start in the resin that connects the monomers
together to form polymers. As a result of this process, the viscosity and density inside the liquid
resin will build up, turning it into a gel or a solid.

Different UV-based additive manufacturing methods are used in the industry. In this project,
the stereolithography (SLA) method is modeled. SLA is the oldest additive manufacturing method,
and different theoretical and numerical models have been developed for it. Here, the framework
described in Tang’s PhD thesis [1] will be followed . In this PhD thesis the fluid flow is neglected.
However, in some cases that the cure-induced volume shrinkage of the material is important to
be considered, the fluid motion should be modeled. Additionally, fluid flow plays a pivotal role in
other vat polymerization methods, such as volumetric additive manufacturing (VAM). Hence, in this
tutorial, the convection terms will be kept in the equations though the velocity would be zero for
the sake of comparison with the results of [1].

In OpenFOAM, there is no separate solver that solves the reactions and the relevant species
transport equations inside a flowing fluid. All the current solvers capable of solving a reacting system
are built on top of the combustion models. So, a user who does not have a background in combustion
might find them overwhelming. Additionally, a simple modification to one of the classes that are used
by the solver may be formidable due to the complicated inheritance structure that is implemented in
combustion models. Here, after discussing the shortcomings of the current reactingFoamSolver to
model the phtopolymerization process, a new library and solver are developed to model this process.

4

Chapter 2

Theory

In this chapter, the theory of the photopolymerization process is explained, and the reactions and
their formulations are described.

2.1 Describing the physics

When exposed to UV light, photo-initiators decompose to free radicals (Eq. (2.1)). The free radicals
react with monomers and turn them into monomeric radicals (Eq. (2.2)). These two chemical
reactions are usually categorized within the initiation stage. Then, in a stage called propagation,
monomeric radicals increase their chain length by reacting with other monomers (Eq. (2.3)) to form
macroradicals until the termination stage, in which two macroradicals react with each other to form
an inert product 1 (Eq. (2.4)). In Eq. (2.1)- (2.4), PI, R∗, M, P∗

n, and Mn+m, respectively, stand
for photo-initiator, free radical, monomer, macroradical of length n, and inert polymer of length
(n+m).

PI
kd−−→ R∗ (2.1)

M + R∗ ki−−→ P∗
1 (2.2)

P∗
n +M

kp−−→ P∗
n+1 (2.3)

P∗
n + P∗

m
kt−−→ Mn+m (2.4)

UV light, which initiates the photopolymerization process, can be applied to the resin in different
ways. In the stereolithography (SLA) process that is investigated here, a laser scans through the
surface of the resin according to a horizontal slice of a predefined geometry and cures each point to
form a complete layer. A platform, on top of which the layers are made, moves downwards after
the formation of the layer to let some resin come to the surface and make it ready for a new layer.
Considering a laser scanning a straight line on the surface of the resin, the cured profile would be a
parabolic cylinder, shown in Figure 2.1a, provided that the intensity decay in the resin follows the
Beer-Lambert law, and a Gaussian beam is applied [2]. When the laser velocity is constant, all the
sections that are away from the start and end point of the laser will experience similar conditions,
and it suffices to model the photopolymerization in this section as a representative of all sections.
Also, since the cure profile is symmetric about the xz plane, it is possible to model only half of
the curing section, shown in Figure 2.1b, in which Cd is the cure depth and w0 is the beam radius.
Note that since the cure depth is not known in advance, it should be adjusted after running some
simulations. For the described section of the geometry, the intensity can be defined as

1When one inert product is resulted, it is called combination mechanism. Other mechanisms for termination are
also possible, but for the current material which is an acrylate, combination is dominant

5

2.1. Describing the physics Chapter 2. Theory

(a) (b)

Figure 2.1: (a) cured shape in SLA process, (b) Computational domain

I = I0 exp

{
−2(Vs(t− t0))

2 + y2

w2
0

}
exp (−z/Dp)

λ(nm)

1.196× 108
(2.5)

in which I0 is the maximum incident intensity at the surface of the resin, Vs is the velocity of the
laser, w0 is the radius of the beam, Dp is the penetration depth of the light beam in the resin, and
t is time. t0 is the initial time that can be used for adjusting the x-position of the laser relative to
the modeling section.

The rate of the chemical reactions can be described as follows,

Ri = 2.3ϕiϵ[PI]I (2.6)

Rp = kp[P
∗][M] (2.7)

Rt = kt[P
∗]2 (2.8)

In which Ri, Rp, and Rt stand for initiation, propagation, and termination rates, respectively. ϕi

is the initiation quantum yield, ϵ is the absorptivity, and kp and kt are the rate constants for
propagation and termination. The square brackets around a symbol show the concentration of
species; for example, [PI] stands for the concentration of the photo-initiator.

The kinetic constants of reactions are functions of both free volume and conversion degree. The
free volume dependence is described as

kp =
kp0

1 + exp
[
Ap

(
1
f − 1

fcp

)] (2.9)

kt =
kt0

1 +
{
Rrdkp[M]/kt0 + exp

[
At

(
1
f − 1

fct

)]}−1 (2.10)

and the temperature dependence, in Arrhenius format, is

kp0 = AEpe
−Ep
RT (2.11)

kt0 = AEte
−Et
RT (2.12)

In the above set of equations, AEp, AEt, At, and Ap are pre-exponential factors, Ep and Et are
activation energies for propagation and termination, respectively, R is the gas constant, f is the

6

2.1. Describing the physics Chapter 2. Theory

fractional free volume, fcp and fct are critical fractional free volumes for propagation and termina-
tion, respectively, and Rrd is a proportionality constant. The fractional free volume can be expressed
as a function of the conversion degree and glass transition temperatures

f = fMϕM + fp(1− ϕM) (2.13)

fM = 0.025 + αM (T − TgM) (2.14)

fP = 0.025 + αP (T − TgP) (2.15)

ϕM =
1−X

1−X + ρM

ρP
X

(2.16)

In the above equations, α, Tg, and ρ stand for the volumetric coefficient of expansion, glass tran-
sition temperature, and density, respectively, for which the subscripts M and P denote monomer
and polymer properties. fM and fP represent the fractional free volume of pure monomer and
pure polymer, respectively, and the volume fraction of monomer is represented by ϕM . Monomer
conversion, X, measures the percent of the monomer molecules that have been converted,

X =
[M0]− [M]

[M0]
(2.17)

in which, [M0] is the initial concentration of the monomer. The critical fractional free volume that
is used in equations 2.9 and 2.10 can be evaluated for both propagation and termination as

1

fc
=

1

f ref
c

+
E

AR
(
1

T
− 1

T ref
) (2.18)

where f ref
c is the reference fractional free volume at the reference temperature T ref . The relations

for specific heat capacity and density as functions of temperature are

CP,M = 5.6× T (K) + 218.6 (2.19)

CP,P = 9.1× T (K)− 1535.5 (2.20)

CP = CP,M (1−X) + CP,PX (2.21)

ρP =
1200

1 + αP (T − 308)
(2.22)

ρM =
1128

1 + αM (T − 298)
(2.23)

ρ = ρMϕM + ρP (1− ϕM) (2.24)

in which, ρ and Cp are the density and the specific heat capacity, respectively, and the subscripts M
and P represent the properties of monomer and polymer, respectively. The value of other properties
are mentioned in reference [1].

The reactions in a photopolymerization process are exothermic, and the temperature inside the
resin increases as a result of the generated heat. It makes it necessary to also solve the energy
equation to find the temperature field that will affect the properties of the resin. So, to fully
model a photopolymerization process, the continuity, momentum, species transport, and the energy
equations should be solved. 2 It should be noted that the laminar version of the momentum equation

2In this tutorial, the variation of density with temperature is ignored so as to solve the incompressible Navier-Stokes
equations

7

2.1. Describing the physics Chapter 2. Theory

is used here due to the fact that the viscosity of the resins used in photopolymerization are usually
high and the flow is laminar.

∇.U = 0 (2.25)

∂(ρU)

∂t
+∇.(ρUU) = −∇p+∇.(µ∇U) + F (2.26)

∂(ρSi)

∂t
+∇.(ρUSi) = ∇.(Ds∇Si) +R (2.27)

∂(ρCpT)

∂t
+∇.(ρUCpT) = ∇.(k∇T) +QR (2.28)

Here, ρ stands for density, U is the velocity vector, p is the pressure, µ is the viscosity of the fluid,
F is the body force exerted on the fluid, Si stands for the concentration of each one of species, Ds

is the diffusion coefficient of the relevant specie, R is the reaction-based production or consumption
of the specie, h is the enthalpy, and QR stands for the reaction-based heat generation.

8

Chapter 3

Tutorials

3.1 Explanation of a tutorial case for reactingFoam

As described earlier, reactingFoam is a solver capable of solving combustion problems with chemical
reactions. Below is the description of the solver in the source code.

1 //Description

2 //Solver for combustion with chemical reactions.

Since the emphasis of the current tutorial is on the chemical reactions, this topic will be discussed
in more detail here. The case that has been selected for this tutorial is an example that is available
in the tutorials directory. It is recommended that tutorial cases not be executed in their original
directory. Here, it is first copied to the run directory.

cp -r $FOAM_TUTORIALS/combustion/reactingFoam/laminar/counterFlowFlame2D $FOAM_RUN

cd $FOAM_RUN/counterFlowFlame2D

3.1.1 Geometry and boundary conditions

Figure 3.1 shows the geometry and the boundary conditions of the counterFlowFlame2D case. The
fuel composed of methane enters the left boundary with a velocity of 0.1 m/s. Air, consisting
of 23% oxygen and 77% nitrogen, enters the right boundary with the same velocity. The top and
bottom boundaries are set as outlet, in which the inletOutlet boundary condition is specified. The
boundaries perpendicular to the z-direction are set to empty to make the simulation two-dimensional.

3.1.2 System directory

The system directory consists of blockMeshDict, controlDict, fvSchemes, fvSolution, and a file
named FOBilgerMixtureFraction. In the blockMeshDict file, the setting for the two-dimensional
mesh is set. At the end of the controlDict file, the file FOBilgerMixtureFraction is included inside
the functions subdictionary. In this file, a functionObject with the name BilgerMixtureFraction
is called. According to the source code of this functionObject, it calculates the Bilger mixture-
fraction field based on the elemental composition of the mixture.

In the fvSchemes and fvSolution files, only the terms used for the chemical reactions will be
explained. In the solver, the same convection scheme is used for both energy and species transport
equations. This scheme is set to limitedLinear for the current case.

1 div(phi,Yi_h) Gauss limitedLinear 1;

The PBiCGStab solver with DILU preconditioner and the absolute tolerance of 1e-6 is used to
solve the matrix equation of the mass fractoins of the species.

9

3.1. Explanation of a tutorial case for reactingFoam Chapter 3. Tutorials

Figure 3.1: Geometry and boundaries of counterFlowFlame2D case

1 "(U|h|k|epsilon)"

2 {

3 solver PBiCGStab;

4 preconditioner DILU;

5 tolerance 1e-6;

6 relTol 0.1;

7 }

8

9 "(U|h|k|epsilon)Final"

10 {

11 $U;
12 relTol 0;

13 }

14

15 Yi

16 {

17 $hFinal;
18 }

3.1.3 Constant directory

In the constant directory, turbulence model, reactions, and thermophysical model and properties are
defined. The flow regime is set to laminar in the turbulenceProperties file.

In the thermophysicalProperties file, which is already explained in previous reports of the
course [3], the thermophysical settings of the mixture are set. The transport properties of the
system, namely ν, κ, and α are calculated according to the sutherland equation, which requires
two constants As and Ts to evaluate the transport properties as a function of temperature. These
two constants are defined inside the transport sub-dictionary for each specie. The janaf model is
used to calculate the specific heat value (Cp) as a function of temperature according to the following
equation,

cp = R ((((a4T + a3)T + a2)T + a1)T + a0) (3.1)

in which T is temperature, and a0 to a4 are some constants that should be given as input to the model.
To evaluate the enthalpy and entropy, the model uses two other constants, a5 and a6, that should
also be specified. The janaf model requires all these constants to be defined at two temperature

10

3.1. Explanation of a tutorial case for reactingFoam Chapter 3. Tutorials

ranges. The first set of constants, for the temperature range between Tcommon and Thigh, are defined
in front of highCpCoeffs keyword. The second set of constants, defined in front of lowCpCoeffs,
identifies the corresponding factors between the temperatures Tlow and Tcommon. The keywords
should be defined inside the thermodynamics sub-dictionary for each specie. The inertSpecie key-
word determines the species that does not take part in the reactions and is mandatory to be defined.
At the end of the thermoPhysicalProperties file, the foamChemistryReader class is called to read
the reactions and thermo.compressibleGas files. In the reactions file, the chemical reactions,
the species taking part in chemical reactions, and the elements of the species are defined. In the
thermo.compressibleGas file, the thermophysical constants of different species are specified. The
keywords used in this file are compatible with the models chosen in the thermoPhysicalProperties
file.

3.1.4 0 directory

In the 0 directory, the initial and boundary conditions for different equations are defined. The
boundary conditions of this case are shown in Figure 3.1. Initially, the whole domain is filled with
N2, which is the inert specie. Initial and boundary conditions for each specie are defined in a file
that has the name of that specie. If the file of one of the species involving in the chemical reaction is
not included in the 0 directory, then the solver will use the boundary and initial conditions defined
in the Ydefault file. The alphat file defines the initial and boundary conditions for the turbulent
thermal diffusivity, which is redundant for the current case as the flow is laminar.

3.1.5 Results

Figure 3.2 shows the results of this tutorial case. In the first row of the figure, the mass fraction of
CH4, the fuel, is shown. The fuel enters from the left boundary and it burns as soon as it reaches
oxygen that is entering from the right boundary. Comparing the variables shown in Figure 3.2
at t = 0.25 s and t = 0.5 s reveals minimal change between these two moments, implying that
the problem reaches steady-state around t = 0.25 s. Oxygen is also burnt instantly as it reaches
the combustion zone, in which its mass fraction declines to zero as depicted in the second row of
Figure 3.2. In the third and fourth rows of the figure, the mass fraction of CO2, and the heat
generation rate are shown, respectively. At t = 0.05 s the combustion reactions have just started
and the mass fraction of CO2 and the generated heat are quite small compared to the later times.
The other two snapshots for each of these variables depict the steady-state condition.

11

3.1. Explanation of a tutorial case for reactingFoam Chapter 3. Tutorials

(a) CH4 mass fraction at t=0.05s (b) CH4 mass fraction at t=0.25s (c) CH4 mass fraction at t=0.5s

(d) O2 mass fraction at t=0.05s (e) O2 mass fraction at t=0.25s (f) O2 mass fraction at t=0.5s

(g) CO2 mass fraction at t=0.05s (h) CO2 mass fraction at t=0.25s (i) CO2 mass fraction at t=0.5s

(j) heat generation rate at
t=0.05s

(k) heat generation rate at
t=0.25s

(l) heat generation rate at t=0.5s

Figure 3.2: Results of the tutorial case counterFlowFlame2D.

12

Chapter 4

Implementation of the original
solver and relevant libraries

Some description about the reactingFoam solver implementation has already been discussed in
previous reports [4]. The focus of the current tutorial is on the chemical reactions, so the parts
of the reactingFoam solver or parts of the libraries that it uses that are related to the chemical
reactions are more highlighted. The other parts will be briefly pointed out.

The solver is located in the $FOAM_SOLVERS/combustion/reactingFoam directory. In this direc-
tory, several files and folders exist. Other than the Make directory that is responsible for the compila-
tion of the reactingFoam solver, other folders are related to some other solvers that use some of the
files of the current solver. The main file of the reactingFoam solver is the reactingFoam.C, in which
some other files including the ones inside the current directory are called. In the createFields file,
which is included in the line 66 of the main file, most variables are defined and initialized. Inside
the createFields.H file, a pointer of the type psiReactionThermo is created that points to an
object of a class that is specified by the user in the thermophysicalProperties file. This object
is responsible for the changes in the thermophysical properties. A reference of that object is then
saved in a variable named thermo.

1 Info<< "Reading thermophysical properties\n" << endl;

2 autoPtr<psiReactionThermo> pThermo(psiReactionThermo::New(mesh));

3 psiReactionThermo& thermo = pThermo();

4 thermo.validate(args.executable(), "h", "e");

Another variable with the name composition is used to save a reference of the composition of the
mixture.

1 basicSpecieMixture& composition = thermo.composition();

2 PtrList<volScalarField>& Y = composition.Y();

To see what the function composition() returns, one of the derived classes of basicThermo
should be examined to see how the function is implemented. In the counterFlowFlame2D tutorial
explained in the previous chapter, hePsiThermo is specified for the type of the thermophysical model.
The function composition is not defined inside the hePsiThermo class, so this function should be
searched in its base class. In heThermo, the definition of composition function is given as below.

1 //- Return the composition of the mixture

2 virtual typename MixtureType::basicMixtureType&

3 composition()

4 {

5 return *this;

6 }

It can be seen that here a pointer to the class is returned. At the beginning of the definition of the
heThermo class, it can be seen that this class is a sub-class of the mixture type that will be specified

13

Chapter 4. Implementation of the original solver and relevant libraries

by the user in the thermophysicalProperties dictionary. Accordingly, what happens here is that
the composition function returns an object of the heThermo class, which is inherited from a mixture
type class, and have access to its functions.

In the next line of the createFields file of the reactingFoam solver, a variable named Y saves
a reference of the Y() function that is called on the composition variable.

1 PtrList<volScalarField>& Y = composition.Y();

The function Y is defined inside the basicMultiComponentMixture class, and returns a pointer list
of the mass fractions of the species, Y_.

1 inline Foam::PtrList<Foam::volScalarField>&

2 Foam::basicMultiComponentMixture::Y()

3 {

4 return Y_;

5 }

Then, after initiating the main variables of the model, namely ρ, U , and p, the turbulence model
is instantiated in the createFields file. Afterwards, a pointer with the name reaction of the type
CombustionModel is defined.

1 autoPtr<CombustionModel<psiReactionThermo>> reaction

2 (

3 CombustionModel<psiReactionThermo>::New(thermo, turbulence())

4);

This pointer will point to an object that will be defined during the run time based on the settings
in the combustionProperties file. Before proceeding any further, the structure and functions of
the combustion models that are relevant for a chemical reaction modeling will be discussed. In
Figure 4.1, the hierarchy of the combustion models are shown. The green rectangles are abstract
classes that cannot instantiate any object. However, it should be noted that a pointer of abstract
classes can be created.

Figure 4.1: Inheritance structure of the combustion models

After some exploration through these classes, it is found out that the laminar combustion model
is a suitable one for simulating the reactions without any extra term related to combustion physics.
Herein, whenever a function of the reaction object is used, that function inside the laminar com-
bustion model will be discussed.

At the end of the createFields.H file, a new field variable with the name Qdot is defined that
stores the reaction-induced heat generation. If a file exists in the time directory, this variable will
be initialized based on the file. Otherwise, it would be assigned a value of zero at this stage.

14

Chapter 4. Implementation of the original solver and relevant libraries

1 volScalarField Qdot

2 (

3 IOobject

4 (

5 "Qdot",

6 runTime.timeName(),

7 mesh,

8 IOobject::READ_IF_PRESENT,

9 IOobject::AUTO_WRITE

10),

11 mesh,

12 dimensionedScalar(dimEnergy/dimVolume/dimTime, Zero)

13);

A general overview of the rest of the reactingFoam.C file has been given in reference [4]. Since
this tutorial focuses on the reactions, some parts of the solver are skipped and the contents of YEqn.H
will be explained. At the beginning of this file, a new convection scheme is defined to be used for the
convection of the species in the species transport equations and the convection of enthalpy/internal
energy in the energy equation.

1 tmp<fv::convectionScheme<scalar>> mvConvection

2 (

3 fv::convectionScheme<scalar>::New

4 (

5 mesh,

6 fields,

7 phi,

8 mesh.divScheme("div(phi,Yi_h)")

9)

10);

In the above piece of code, the divergence scheme that is defined in front of the div(phi,Yi_h)

keyword, in the divSchemes dictionary inside the fvSchemes file, will be read and chosen as the
convection scheme. In the next line, a function with the name correct is called. In the laminar

combustion model this function is defined as below.

1 template<class ReactionThermo>

2 void Foam::combustionModels::laminar<ReactionThermo>::correct()

3 {

4 if (this->active())

5 {

6 if (integrateReactionRate_)

7 {

8 if (fv::localEulerDdt::enabled(this->mesh()))

9 {

10 const scalarField& rDeltaT =

11 fv::localEulerDdt::localRDeltaT(this->mesh());

12

13 scalar maxTime;

14 if (this->coeffs().readIfPresent("maxIntegrationTime", maxTime))

15 {

16 this->chemistryPtr_->solve

17 (

18 min(1.0/rDeltaT, maxTime)()

19);

20 }

21 else

22 {

23 this->chemistryPtr_->solve((1.0/rDeltaT)());

24 }

25 }

26 else

27 {

28 this->chemistryPtr_->solve(this->mesh().time().deltaTValue());

29 }

30 }

15

Chapter 4. Implementation of the original solver and relevant libraries

31 else

32 {

33 this->chemistryPtr_->calculate();

34 }

35 }

36 }

Here, chemistryPtr_ is a pointer of type BasicChemistryModel defined in chemistryCombustion

class, which is a base class of the current class, i.e., laminar. At the beginning of the above code,
it checks if the active switch inside the combustionProperties is set to on or off. In case it is
on, it executes the code inside the brackets. Otherwise, this function will do nothing. Inside the
brackets, it is checked if the Boolean variable integrateReactionRate_ is set to on or not. This
variable, which is on by default and can be changed by the user inside combustionProperties file,
specifies whether the reaction rate should be integrated over a time step or not. In case it is off, the
calculate function of the chemistryPtr_ is called. Otherwise, the solve function with different
arguments will be called based on whether the local time stepping is active or not. Both functions
calculate() and solve() are implemented inside the StandardChemistryModel class, a derived
class of the BasicChemistryModel. calculate() is responsible for evaluating the reaction rates,
and solve() function solves the reaction system at each time step. These functions will not be
explained in more detail.

The next line in the file YEqn.H assigns the value of the reaction heat generation to the Qdot

variable that was previously defined.

1 Qdot = reaction->Qdot();

Inside the laminar combustion model, the function Qdot is defined as below,

1 template<class ReactionThermo>

2 Foam::tmp<Foam::volScalarField>

3 Foam::combustionModels::laminar<ReactionThermo>::Qdot() const

4 {

5 ...

6

7 if (this->active())

8 {

9 tQdot.ref() = this->chemistryPtr_->Qdot();

10 }

11

12 return tQdot;

13 }

in which the Qdot function of the chemistryPtr_ is called. This new Qdot function is defined inside
the standardChemistryModel class as below.

1 template<class ReactionThermo, class ThermoType>

2 Foam::tmp<Foam::volScalarField>

3 Foam::StandardChemistryModel<ReactionThermo, ThermoType>::Qdot() const

4 {

5 ...

6

7 if (this->chemistry_)

8 {

9 scalarField& Qdot = tQdot.ref();

10

11 forAll(Y_, i)

12 {

13 forAll(Qdot, celli)

14 {

15 const scalar hi = specieThermo_[i].Hc();

16 Qdot[celli] -= hi*RR_[i][celli];

17 }

18 }

19 }

20

16

Chapter 4. Implementation of the original solver and relevant libraries

21 return tQdot;

22 }

First, it checks if the chemistry switch inside the chemistryProperties file is on. Then it calculates
the heat of all reactions based on the following formula,

Q̇released = −(
∑

products

Hf Ṙ−
∑

reactants

Hf Ṙ) (4.1)

in whichHf is the enthalpy of formation, and Ṙ is the production or consumption rate of each species.
In the above piece of code, Hc() returns the enthalpy of each species that is calculated differently
based on the thermodynamic model chosen by the user. RR_ is the signed rate of production or
consumption for each specie, positive for production and negative for consumption.

Getting back to reactingFoam solver, the variable Qdot that is evaluated in the YEqn.H file will
be later used as a source term in the energy equation inside the EEqn.H file. The next line inside
the YEqn.H file creates a volScalarField variable with the value of zero.

1 volScalarField Yt(0.0*Y[0]);

This variable will be used later to calculate the mass fraction of the inert specie. Then, a forAll

loop is done over all the species to solve a transport equation for each one.

1 forAll(Y, i)

2 {

3 if (i != inertIndex && composition.active(i))

4 {

5 volScalarField& Yi = Y[i];

6

7 fvScalarMatrix YiEqn

8 (

9 fvm::ddt(rho, Yi)

10 + mvConvection->fvmDiv(phi, Yi)

11 - fvm::laplacian(turbulence->muEff(), Yi)

12 ==

13 reaction->R(Yi)

14 + fvOptions(rho, Yi)

15);

16

17 YiEqn.relax();

18

19 fvOptions.constrain(YiEqn);

20

21 YiEqn.solve(mesh.solver("Yi"));

22

23 fvOptions.correct(Yi);

24

25 Yi.max(0.0);

26 Yt += Yi;

27 }

28 }

At the beginning of this loop, it is checked if the species is not the inert species, and is active.
Then, an object of the fvScalarMatrix class is created in which the transport equation of each specie
is discretized. It should be noted that the previously created convection scheme, mvConvection is
used here. Two terms are used as the source terms for this equation, fvOptions that enables the
user to add source terms through a file with the same name without modifying the solver, and
R function that is called through the reaction pointer. As described previously, reaction is a
pointer of the type CombutionModel that is pointing at an object created during run time, which
is a derived class of CombutionModel class. Here, laminar class is assumed to be the selected one,
since it is a proper combustion model for modeling chemical reactions. Accordingly, the R function
inside laminar class is shown below.

1 template<class ReactionThermo>

17

Chapter 4. Implementation of the original solver and relevant libraries

2 Foam::tmp<Foam::fvScalarMatrix>

3 Foam::combustionModels::laminar<ReactionThermo>::R(volScalarField& Y) const

4 {

5 tmp<fvScalarMatrix> tSu(new fvScalarMatrix(Y, dimMass/dimTime));

6

7 fvScalarMatrix& Su = tSu.ref();

8

9 if (this->active())

10 {

11 const label specieI =

12 this->thermo().composition().species()[Y.member()];

13

14 Su += this->chemistryPtr_->RR(specieI);

15 }

16

17 return tSu;

18 }

In the above piece of code, it can be seen that first, a tmp pointer of volScalarField variable
is created. After checking the active state of the model, the RR function of the chemistryPtr_

pointer is saved in the variable that is returned at the end of the function. To understand how
the RR() function is implemented, the StandardChemistryModel class should be checked. Inside
this class, it can be seen that RR() function simply returns the RR_ variable, which stores the
production/consumption rate of each species.

1 template<class ReactionThermo, class ThermoType>

2 inline const Foam::DimensionedField<Foam::scalar, Foam::volMesh>&

3 Foam::StandardChemistryModel<ReactionThermo, ThermoType>::RR

4 (

5 const label i

6) const

7 {

8 return RR_[i];

9 }

The RR_ variable, itself, is calculated inside both the calculate() and solve() functions of the
StandardChemistryModel class. Based on the settings that the user has specified in the dictionaries,
one of these functions will be called inside the correct() function, which was called before through
the reaction pointer.

Getting back to the YEqn.H file, the transport equation of each specie is solved after it is formed
and discretized with fvScalarMatrix object, and the mass fraction is added to the Yt variable. After
the forAll loop, the mass fraction of the inert species is evaluated by subtracting the Yt variable
from 1.

1 Y[inertIndex] = scalar(1) - Yt;

which is equivalent to the following equation.

YinertSpecie = 1.0−
i̸=inertSpecie∑

i=0

Yi (4.2)

18

Chapter 5

reactingCureFoam

In this chapter, a new solver, called reactingCureFoam will be implemented to model the photopoly-
merization process. One of the drawbacks of the reactingFoam solver is that it only works based on
the molar mass of the species, and not their molar concentrations. However, the concentrations of
the species are required for different calculations. Whenever the concentration of a species is needed,
it is evaluated by using the molar mass (molecular weight) of the species. In some applications, such
as photopolymerization, when the resin cures, a monomer unit crosslinks with many others. As the
final size of the polymeric chain is not determined, it is not possible to define a molar mass for it. The
reactingFoam solver only accepts the molar mass of the species in the thermoPhysicalProperties
dictionary, and there is no other option to work with the concentrations of the species instead of
the molar mass fractions. Consequently, this solver cannot be used to model the photopolymer-
ization process. On top of that, the reaction rates and the property variation functions related to
photopolymerization cannot be modeled with one of the predefined functionalities that are already
available.

It is possible to modify the libraries that are used by the reactingFoam solver to accommodate
the necessary changes. However, modifying the libraries would be cumbersome in this case since lots
of modification are needed. Accordingly, a new solver based on two new libraries is defined here.

In the three sections that follow, the general overview of the new libraries, new solver, and the
preparation of a case for the solver are discussed. The libraries will be created almost from scratch
and the reader will get a sense of how to build a new library.

5.1 photoPolymerization library

In this library, the property development functions and the reaction constants will be calculated.
Both of the property variation functions and the reaction constants are dependent on the conversion
degree of the photopolymerization and the temperature. The development of these libraries from
scratch is discussed here. Two classes will be defined. The photoCure class that will mainly contain
the mixture properties, and the cureReaction class that is inherited from the photoCure class and
defines functions to calculate the reaction rates.

5.1.1 photoCure class

First, a new folder in the src folder in the user directory is created.

cd $WM_PROJECT_USER_DIR/src

mkdir photoPolymerization

cd photoPolymerization

Then, a header file and a main C++ file in the OpenFOAM format are needed. These two files can
be easily created with the touch command, and then copying the header section from other existing

19

5.1. photoPolymerization library Chapter 5. reactingCureFoam

classes. Here, an existing class will be copied to keep the header section. Since the contents of the
class will be deleted, there is no difference between different classes. Here, viscosityModel class is
used.

cp -r $FOAM_SRC/transportModels/incompressible/viscosityModels/viscosityModel ./

mv viscosityModel photoCure

cd photoCure

rm viscosityModelNew.C

mv viscosityModel.H photoCure.H

mv viscosityModel.C photoCure.C

The new class is named photoCure. After modifying the header section (renaming and adding a
description), the other parts should be deleted in both files. Inside the photoCure.H the variables
and functions will be declared. In this file, all the declarations should be included between the
following lines.

1 #ifndef photoCure_H

2 #define photoCure_H

3

4 ... Contents of the file

5

6 #endif

This part of the code, prevents the multiple inclusion of a class inside a main cpp file.
First, the protected data and members of the class are declared. Hence, the keyword protected

will be used, and the protected variables will be declared. This class, similar to other classes in
OpenFOAM, should be part of the Foam namespace. It is responsible to read the properties of the
species from a file. Accordingly, a protected variable of type dictionary is declared.

1 const dictionary specieProperties_;

The class also needs access to temperature field, conversion degree field, and the mesh. Conse-
quently, corresponding protected variables are declared.

1 // Temperature field [K]

2 const volScalarField& T_;

3

4 // Conversion degree [dimless]

5 const volScalarField& X_;

6

7 //Storing the mesh

8 const fvMesh& mesh_;

In the next stage, some variables of type dimensionedScalar are declared to store the properties
of the species. Since the number of these variable is quite high, just the declaration of the first one
is shown here. The reader can find the complete file in the Appendix section. For each variable, a
short description is added as a comment to make it easy to understand.

1 //Monomer diffusion coefficient

2 const dimensionedScalar Dm_;

Afterwards, the properties of the mixture are declared as volScalarField variables.

1 // * * * * * * Properties of the mixture * * * * * * *

2

3 volScalarField rho_; // Density of mixture

4

5 volScalarField Cp_; // Specific heat of mixture

6

7 volScalarField mu_; // Viscosity of mixture

8

9 volScalarField kappa_; // Thermal conductivity of mixture

10

11 volScalarField alphat_; // Thermal diffusivity of mixture alpha = kappa/Cp

20

5.1. photoPolymerization library Chapter 5. reactingCureFoam

Subsequently, the public members are declared. Public members include the constructor of
the class and the functions that update the properties of the mixture.

1 // Constructors

2

3 photoCure

4 (

5 const dictionary& specieProperties,

6 const volScalarField& T,

7 const volScalarField& X

8);

The constructor gets a dictionary containing the properties of the species, the temperature field,
and the conversion degree field as arguments. It will be defined in the photoCure.C file.

The other member functions that are declared here are also responsible for calculating and
updating the properties of the mixture.

1 // Member Functions

2

3 //Calculates the Cp value of the species

4 tmp<volScalarField> calcAndGetCpi

5 (

6 const dimensionedScalar Cp0,

7 const dimensionedScalar Cp1,

8 const volScalarField& T

9);

10

11 //Calculates the Cp value of the mixture

12 void calcCp();

13

14 //Calculates the viscosity of the mixture

15 void calcMu();

16

17 //Calculates the density of the mixture

18 void calcRho(const volScalarField& Ym);

19

20 //Calculates the thermal diffusivity of the mixture

21 void calcAlphat();

22

23 //Updates the properties of the mixture

24 virtual void correct();

The description that is provided for each function in the above piece of code describes its responsi-
bility. The functions will be defined in the photoCure.C file. It should be noted that the correct

function is declared as a virtual one, since a function with a similar name is going to be defined in
a derived class, and the concept of polymorphism is going to be utilized.

Next, the access functions are declared and defined. These members are defined to give access to
the properties of the mixture and some properties of the species such as diffusion coefficients. The
declaration and definition of the first access member is shown below. The other ones are similar.

1 tmp<volScalarField> rho() const

2 {

3 return rho_;

4 }

At the end of the photoCure.H file, some pure virtual functions are declared. These functions
will be defined in the derived class.

1 // * * * * Pure virtual functions * * * *

2

3 virtual tmp<volScalarField> Ki() = 0;

4 virtual tmp<volScalarField> Kp() = 0;

5 virtual tmp<volScalarField> Kt() = 0;

6 virtual const dimensionedScalar heat() = 0;

7 virtual const dimensionedScalar fi() = 0;

21

5.1. photoPolymerization library Chapter 5. reactingCureFoam

Based on the classes that have been used inside this file, four header files should be included.
The inclusion should be done before the declaration of the Foam namespace.

1 #ifndef photoCure_H

2 #define photoCure_H

3

4 #include "dictionary.H"

5 #include "fvMesh.H"

6 #include "dimensionedScalar.H"

7 #include "volFields.H"

8

9 // * //

10

11 namespace Foam

The contents of the photoCure.H file have been explained. Now, the photoCure.C file, which con-
tains the definitions of the functions, will be discussed. At the beginning of this file, the photoCure.H
file should be included.

1 #include "photoCure.H"

Then, the constructor is defined.

1 Foam::photoCure::photoCure

2 (

3 const dictionary& specieProperties,

4 const Foam::volScalarField& T,

5 const Foam::volScalarField& X

6)

7 :

8 specieProperties_(specieProperties),

9 T_(T),

10 X_(X),

11 mesh_(T_.mesh()),

12 ...

After the colon, the variables that were previously declared, are initialized. The specieProperties_
dictionary is set to a dictionary variable that is given as an argument to the constructor. The
variables related to the properties of the species are initialized using this dictionary, considering the
structure that is defined for this dictionary to read the values.

1

2 ...

3 Dm_("D", dimViscosity, specieProperties_.subDict("Monomer").subDict("transport")),

4 mu_m_("mu", dimViscosity*dimDensity, specieProperties_.subDict("Monomer").subDict("transport")),

5 kappa_m_("kappa", dimPower/(dimLength*dimTemperature), specieProperties_.subDict("Monomer").

subDict("transport")),

6 ...

Afterwards, the variables of type volScalarField are initialized. Most of these variables are
initialized with the corresponding property value of the monomer. For instance, the density of the
mixture ρ is defined and initialized as below.

1 rho_

2 (

3 IOobject

4 (

5 "rho",

6 mesh_.time().timeName(),

7 mesh_,

8 IOobject::NO_READ,

9 IOobject::AUTO_WRITE

10),

11 mesh_,

12 rho_m_

13),

22

5.1. photoPolymerization library Chapter 5. reactingCureFoam

In the block of the constructor, a function that is named correct is called. This function will be
explained soon. For now, it suffices to mention that it updates and recalculates the fields.

Afterwards, the member functions are defined. First, a function is defined to evaluate the specific
heat capacity of the monomer and polymer based on the temperature. So, this function gets the
temperature and two constants as temperature and calculates the specific heat of the component
according to Eq. 2.19 and 2.20.

1 Foam::tmp<Foam::volScalarField> Foam::photoCure::calcAndGetCpi

2 (

3 const dimensionedScalar Cp0,

4 const dimensionedScalar Cp1,

5 const volScalarField& T

6)

7 {

8 tmp<volScalarField> Cpi = Cp0 + Cp1*T;

9

10 return Cpi;

11 }

Using the function that just described to evaluate the specific heat of the components, the below
function updates the specific heat capacity of the mixture according to Eq. 2.21.

1 void Foam::photoCure::calcCp()

2 {

3

4 const volScalarField& Cp_m = calcAndGetCpi(Cp0_m_, Cp1_m_, T_)();

5 const volScalarField& Cp_p = calcAndGetCpi(Cp0_p_, Cp1_p_, T_)();

6

7 Cp_ = Cp_m*(1 - X_) + Cp_p*X_;

8

9 }

The calcMu function, updates the viscosity of the mixture in a similar fashion. The calcRho function
updates the density field of the mixture, according to Eq. 2.24, based on the volume fraction of
the monomer that is taken as an argument. The temperature-induced change of density has been
disregarded in this tutorial so that an incompressible solver can be used.

1 void Foam::photoCure::calcRho(const volScalarField& Ym)

2 {

3 rho_ = rho_m_*Ym + rho_p_*(1 - Ym);

4 }

At the end, the correct function is defined, which simply calls the other functions to update the
fields. Note that the calcRho function is not called here, since it gets an argument that will be
defined in the derived class. So, this function will also be defined in the derived class.

1 void Foam::photoCure::correct()

2 {

3 calcCp();

4 calcMu();

5 calcAlphat();

6 // The calcRho function will be called in the derived class.

7 }

5.1.2 cureReaction class

As discussed before, the cureReaction class that is inherited from the photoCure class defines the
functionalities of curing reactions. In what follows, it will be explained how to declare and define
this class.

Here, the photoCure class is copied and modified.

cd $WM_PROJECT_USER_DIR/src/photoPolymerization

cp -r photoCure cureReaction

23

5.1. photoPolymerization library Chapter 5. reactingCureFoam

cd cureReaction

mv photoCure.H cureReaction.H

mv photoCure.C cureReaction.C

After modifying the header section of the cureReaction.H file, the header file of the photoCure

class should be included.

1 #ifndef cureReaction_H

2 #define cureReaction_H

3

4 #include "photoCure.H"

5

6 // * //

7

8 namespace Foam

9 ...

In the declaration of the class, it should inherit from the photoCure class.

1 class cureReaction

2 : public photoCure

And then the protected data are declared. Similar to the previous case, a dictionary is responsible
to read the reaction parameters from a file. Monomer concentration is also declared as a reference
variable, and it will be used in some of the calculations. Volume fraction of the monomer, free volume
of the mixture, and the reaction rates are the other variables that are declared as volScalarFields
type. The other variables that are of the type dimensionedScalar store the constant parameters
of the reactions.

In the public section of the file, the functions that evaluate the reaction constants and the access
functions are declared. The access functions, give access to the reaction constants, heat generation
rate, and quantum efficiency of the photo-initiator, as shown below. The other functions will further
be explained later.

1 // * * * * * * Access functions * * * * * * *

2

3 // initiation reaction constant

4 tmp<volScalarField> Ki()

5 {

6 return Ki_;

7 }

8

9 // propagation reaction constant

10 tmp<volScalarField> Kp()

11 {

12 return Kp_;

13 }

14

15 // termination reaction constant

16 tmp<volScalarField> Kt()

17 {

18 return Kt_;

19 }

20

21 // heat generation rate [j/mol]

22 const dimensionedScalar heat()

23 {

24 return heat_;

25 }

26

27 // quantum efficiency of the photoinitiator

28 const dimensionedScalar fi()

29 {

30 return fi_;

31 }

24

5.1. photoPolymerization library Chapter 5. reactingCureFoam

The cureReaction.C file contains the definitions of the members that were previously declared.
After the inclusion of the cureReaction.H at the top of this file, the constructor is defined.

1 Foam::cureReaction::cureReaction

2 (

3 const dictionary& reactionParameters,

4 const dictionary& specieProperties,

5 const Foam::volScalarField& T,

6 const Foam::volScalarField& X,

7 const Foam::volScalarField& M

8)

9 :

10 photoCure(specieProperties, T, X),

11 reactionParameters_(reactionParameters),

12 M_(M),

13 ...

The constructor receives five arguments and pass three of them to the constructor of its base
class, photoCure. The other two arguments, reactionParameters dictionary and the conversion
degree variable are stored in the corresponding variables of the class. Then, the other protected
variables are initialized as before. Similar to photoCure class, in the block of the constructor,
the correct function is called, which corrects and calculates the fields. Its definition will be shown
later.

The calcYm function, calculates and updates the volume fraction of the monomer according to
Eq. (2.16).

1 void Foam::cureReaction::calcYm()

2 {

3 Ym_ = (scalar(1) - X_)/(scalar(1) - X_ + X_*rho_m_/rho_p_);

4

5 //Calling the calcRho function from the base class

6 calcRho(Ym_);

7 }

It can be seen that at the end of this function, the calcRho function that was defined in the base
class is called. The reason is that the density of the mixture is dependent on the monomer volume
fraction that is defined and evaluated in this class. Then, the calcF function is defined, which
evaluates the mixture fraction free volume according to Eq. (2.13)-(2.15).

1 void Foam::cureReaction::calcF()

2 {

3

4 volScalarField fM = 0.025 + alpha_m_*(T_ - Tg_m_);

5

6 volScalarField fP = 0.025 + alpha_p_*(T_ - Tg_p_);

7

8 f_ = fM*Ym_ + fP*(1 - Ym_);

9

10 }

In the next stage, the critical free volume, which will be used in the calculation of the propagation
and termination reaction rates, is defined according to Eq. (2.18).

1 Foam::tmp<Foam::volScalarField>

2 Foam::cureReaction::calcAndGetFc

3 (

4 const dimensionedScalar E,

5 const dimensionedScalar A,

6 const dimensionedScalar TrefR,

7 const dimensionedScalar fcRefR,

8 const volScalarField& T

9)

10 {

11 tmp<volScalarField> fc =

12 fcRefR + (E/(A*Rconst_))*(scalar(1)/T_ - TrefR);

25

5.1. photoPolymerization library Chapter 5. reactingCureFoam

13 fc = scalar(1)/fc;

14

15 return fc;

16 }

Note that in the above piece of code, TrefR and fcRefR are the reciprocals of the reference temper-
ature and the reference critical fractional free volume that were introduced in Eq. (2.18). Then, the
propagation and termination constants are evaluated as per Eq. (2.9)-(2.12).

1 void Foam::cureReaction::calcKp()

2 {

3

4 const volScalarField& fcp =

5 calcAndGetFc(Ep_, Ap_, TrefRp_, fcRefRp_, T_)();

6

7 Kp_ = Aep_*exp(-Ep_/(Rconst_*T_));

8

9 Kp_ /= (scalar(1) + exp(Ap_*(scalar(1)/f_ - scalar(1)/fcp)));

10

11 }

12

13 void Foam::cureReaction::calcKt()

14 {

15

16 const volScalarField& fct =

17 calcAndGetFc(Et_, At_, TrefRt_, fcRefRt_, T_)();

18

19 volScalarField Kt0 = Aet_*exp(-Et_/(Rconst_*T_));

20

21 Kt_ = Kt0;

22

23 Kt_ /= (scalar(1) +

24 scalar(1)/(

25 Rrd_*Kp_*M_/Kt0

26 + exp(-At_*(scalar(1)/f_ - scalar(1)/fct))

27)

28);

29

30 }

It is important to note that no function has been defined to evaluate the initiation constant, Eq.
(2.2). The reason is that this parameter does not change during the simulation, and the value that
was assigned to it in the constructor will remain constant.

1 ...

2 Ki_

3 (

4 IOobject

5 (

6 "Ki",

7 mesh_.time().timeName(),

8 mesh_,

9 IOobject::NO_READ,

10 IOobject::AUTO_WRITE

11),

12 mesh_,

13 2.3*fi_*e_ // Ri = 2.3*fi*e*PI*I

14),

15 ...

Finally, the correct function is defined, which calls the other functions to update the fields. It also
calls the correct function of the base class.

1 void Foam::cureReaction::correct()

2 {

3 photoCure::correct();

4 calcYm();

26

5.2. reactingCureFoam solver Chapter 5. reactingCureFoam

5 calcF();

6 calcKp();

7 calcKt();

8 }

The new classes should be compiled. For the compilation of the current library, the make
directory that contains the files and option files should be created.

cd $WM_PROJECT_USER_DIR/src/photoPolymerization

mkdir Make

cd Make

touch files

touch options

The empty files with the names files and options are created inside the Make directory. In
the files file, we determine the names of the files that should be compiled and the name of the
created library. Here, the photoCure.C and cureReaction.C files should be compiled. The library
is named photoPolymerization.

1 photoCure/photoCure.C

2 cureReaction/cureReaction.C

3

4

5 LIB = $(FOAM_USER_LIBBIN)/libphotoPolymerization

In the optoins file, we specify the directories from which files are included, and the libraries that
are used in our classes. For this library, the finiteVolume library is used.

1 EXE_INC = \

2 -I$(LIB_SRC)/finiteVolume/lnInclude \

3 -I$(LIB_SRC)/meshTools/lnInclude
4

5 LIB_LIBS = \

6 -lfiniteVolume

Finally, the library is compiled by executing the wmake command.

cd ..

wmake

5.2 reactingCureFoam solver

When a resin undergoes the curing process, parts of it that surpass the energy threshold will expe-
rience considerable property changes. So, the total system of the cured and uncured portions of the
resin can be viewed as a two-phase system. In this regard, the interFoam solver is chosen as the
base for the new solver, and the concentrations of the species and the reactions are added to this
solver after some modifications. The first step is to copy the interFoam solver to another directory
to start modifying it. To mimic the structure of the original solvers, it is copied to the solver

directory, which was previously created in the user directory for the solvers that are modified or
generated by the user.

cd $WM_PROJECT_USER_DIR/applications/solvers

cp -r $FOAM_SOLVERS/multiphase/interFoam/ ./

mv interFoam/ reactingCureFoam

At first, the other two solvers, namely interMixingFoam and overInterDyMFoam should be
deleted. Then the files that are not needed by the new solver, rhofs.H and alphaSuSp.H can
be removed. interFoam solver originally reads some files from the VoF folder in the multiphase

directory. All of the lines of the code in which a file related to the alpha-field is included should be

27

5.2. reactingCureFoam solver Chapter 5. reactingCureFoam

deleted, and this step is not shown here. The files interFoam.C and createFields.H are attached
in the Appendix section for comparison. It is important to mention that cureReaction.H file should
be included in the reactingCureFoam before the main function.

1 ...

2 #include "fvcSmooth.H"

3 #include "cureReaction.H" // Added

4

5 // * //

6

7 int main(int argc, char *argv[])

8 ...

In the next stage, a field for the light intensity should be created and defined. It is more desirable
to define the intensity field in the boundary conditions. However, no boundary condition that can
make a field that varies both in time and position. Accordingly, it should be defined in the solver
itself, but it reads a dictionary in the case directory to create the intensity field. The initialization
of the intensity field is done in a new file called createI.H. At the beginning of this file, an object
of the dictionary class is instantiated to read the parameters of the laser.

1 IOdictionary laserSettings

2 (

3 IOobject

4 (

5 "laserSettings",

6 runTime.constant(),

7 mesh,

8 IOobject::MUST_READ_IF_MODIFIED,

9 IOobject::NO_WRITE

10)

11);

12

13 dimensionedScalar Vs("Vs", dimVelocity, laserSettings); //laser scanning velocity

14

15 ...

All the parameters are defined as dimensionedScalar so that they will be dimensionally consistent
when the equations are solved. Then, after creating the intensity field, it is initialized according to
Eq. (2.5) by using the mesh cell center vectors.

1

2 const volVectorField& C = mesh.C();

3 const dimensionedScalar conv("conv", dimEnergy*dimLength/dimMoles, 1.196e8); //conversion constant

4 dimensionedScalar y("y", dimLength, Foam::scalar(0));

5 dimensionedScalar z("z", dimLength, Foam::scalar(0));

6 dimensionedScalar r2("r2", dimLength*dimLength, Foam::scalar(0));

7

8

9 forAll(C, counter)

10 {

11 //const scalar& x = C[counter].component(vector::X);

12 y.value() = C[counter].component(vector::Y);

13 z.value() = C[counter].component(vector::Z);

14 r2 = Vs*Vs*(t-t0)*(t-t0) + y*y;

15 I[counter] = (I0*Foam::exp(-2*r2/(w0*w0))*Foam::exp(-mag(z)/Dp)*lambda/conv).value();

16 }

In a similar fashion, another file with the name initReact.H is created that is responsible for
the initialization of the parameters of the reaction. Similar to before, two dictionary objects are
created to read the species’ properties and the reactions’ parameters. All of the dictionary files are
assumed to be placed in the constant directory of the case. Afterwards, the concentration fields of
monomer (M), photo-initiator (PI), and macro-radical (pDot) are created. The initialization of the
monomer field is shown below as an example.

1 volScalarField M

28

5.2. reactingCureFoam solver Chapter 5. reactingCureFoam

2 (

3 IOobject

4 (

5 "M",

6 runTime.timeName(),

7 mesh,

8 IOobject::MUST_READ,

9 IOobject::AUTO_WRITE

10),

11 mesh

12);

At the next stage, the initial value of the monomer concentration is stored in the variable M0 for the
evaluation of the conversion degree.

1 // Saving the initial concentration of Monomer, M0

2 volScalarField M0(M);

The conversion degree is evaluated based on the change in the monomer concentration.

1 // Defining conversion

2 volScalarField X

3 (

4 IOobject

5 (

6 "X",

7 runTime.timeName(),

8 mesh,

9 IOobject::NO_READ,

10 IOobject::AUTO_WRITE

11),

12 (M0-M)/M0

13);

Using the polymorphism concepts of c++, a pointer with the name reaction of type photoCure is
created that points to an object of type cureReaction.

1 autoPtr<photoCure> reaction

2 (

3 new cureReaction

4 (

5 reactionParameters,

6 specieProperties,

7 T,

8 X,

9 M

10)

11);

Subsequently, the reaction constants are restored in new variables, and the reaction rates are defined.

1 Info<< "* * * * * * * * \n";

2 Info<< "Initializing reaction rates \n" << endl;

3

4 const volScalarField& Ki = reaction -> Ki()();

5 const volScalarField& Kp = reaction -> Kp()();

6 const volScalarField& Kt = reaction -> Kt()();

7

8 const dimensionedScalar& fi = reaction -> fi();

9

10 //reaction rates

11 volScalarField Ri = Ki*PI*I; // Initiation reaction rate

12 volScalarField Rp = Kp*pDot*M; // Propagation reaction rate

13 volScalarField Rt = Kt*pDot*pDot; // Termination reaction rate

In the createFields.H file, temperature field is defined as a volScalarField after the definition
of the velocity field, and the new files are added after the definition of temperature field.

29

5.2. reactingCureFoam solver Chapter 5. reactingCureFoam

1 Info<< "Reading field T\n" << endl;

2 volScalarField T

3 (

4 IOobject

5 (

6 "T",

7 runTime.timeName(),

8 mesh,

9 IOobject::MUST_READ,

10 IOobject::AUTO_WRITE

11),

12 mesh

13);

14

15

16 //*********************** Creating intensity and reactions ***************************

17 #include "createI.H"

18 #include "initReact.H"

19 //**

Afterwards, the properties of the mixture are restored in new variables.

1 const volScalarField& rho = reaction -> rho();

2 const volScalarField& mu = reaction -> mu();

3 const volScalarField& Cp = reaction -> Cp();

4 const volScalarField& kappa = reaction -> kappa();

5 const volScalarField& Alph = reaction -> alphat();

6 const dimensionedScalar& Dm = reaction -> Dm();

7 const dimensionedScalar& Dr = reaction -> Dr();

8 const dimensionedScalar& Ds = reaction -> Ds();

9 const dimensionedScalar& heat = reaction -> heat();

According to Tang [1], the main source of heat generation in photopolymerization is the prop-
agation reaction. So, the rate of heat generation can be defined as the product of enthalpy of
propagatoin and the reaction rate of propagation as defined below.

1 //***** Heat generation rate ******

2 Info<< "Creating field Qdot\n" << endl;

3 volScalarField Qdot

4 (

5 IOobject

6 (

7 "Qdot",

8 runTime.timeName(),

9 mesh,

10 IOobject::NO_READ,

11 IOobject::AUTO_WRITE

12),

13 Rp*heat

14);

As the intensity is a function of time, it should be updated in the reactingCureFoam file at
each time step. Accordingly, a file that is named calcI.H is included in the solver just after the
calculation of the time step.

1 ...

2 ++runTime;

3

4 Info<< "Time = " << runTime.timeName() << nl << endl;

5

6 //****************** Updating intensity********************

7 #include "calcI.H"

8 //***

9

10 // --- Pressure-velocity PIMPLE corrector loop

11 while (pimple.loop())

12 ...

30

5.2. reactingCureFoam solver Chapter 5. reactingCureFoam

and the calcI.H file contains

1 t.value() = runTime.timeOutputValue();

2

3 forAll(C, counter)

4 {

5 y.value() = C[counter].component(vector::Y);

6 z.value() = C[counter].component(vector::Z);

7 r2 = Vs*Vs*(t-t0)*(t-t0) + y*y;

8 I[counter] = (I0*Foam::exp(-2*r2/(w0*w0))*Foam::exp(-mag(z)/Dp)*lambda/conv).value();

9 }

In the main file, the equations for specie transport equations and temperature can be added after
the predictor step of the momentum equation, i.e., after UEqn.H.

1 #include "UEqn.H"

2 //********* Specie transport and Temperature Eqs***********

3 #include "CEqn.H"

4 #include "EEqn.H"

5

6 #include "updateR.H"

7 //***

In the CEqn.H file, the specie transport equations for monomer, radical, and photo-initiator are
solved. As an example, the monomer transport equation is shown below. To see the complete list
of equations in this file, refer to the attached files.

1 // ******** Monomer equation ********

2 tmp<fvScalarMatrix> tMEqn

3 (

4 fvm::ddt(rho, M) + fvm::div(rhoPhi, M)

5 - fvm::laplacian(rho*Dm, M)

6 ==

7 -rho*Rp

8);

9 fvScalarMatrix& MEqn = tMEqn.ref();

10 MEqn.solve();

In the EEqn.H file the energy equation is solved to find the temperature field within the domain.

1 {

2 Info<< "Solving the energy equation\n" << endl;

3

4

5

6 tmp<fvScalarMatrix> tEEqn

7 (

8 fvm::ddt(rho, T) + fvm::div(rhoPhi, T)

9 - fvm::laplacian(Alph, T)

10 ==

11 Qdot/Cp + fvOptions(rho, T)

12);

13

14 fvScalarMatrix& EEqn = tEEqn.ref();

15

16

17 EEqn.relax();

18

19 fvOptions.constrain(EEqn);

20

21 EEqn.solve();

22

23 fvOptions.correct(T);

24

25 }

31

5.3. Setting up a tutorial case Chapter 5. reactingCureFoam

After solving the energy and the transport equations, the reaction rates and the heat generation
field should be updated. This is done by including the updateR.H file, in which the mentioned fields
are updated.

1 reaction -> correct();

2

3 Ri = Ki*PI*I;

4 Rp = Kp*pDot*M;

5 Rt = Kt*pDot*pDot;

6

7 Qdot = Rp*heat;

After completing the modifications in the solver, it should be compiled. Accordingly, the new library
should be added to the options file in the Make directory. The lines that should be modified are
shown below. Also, note that some lines related to the two-phase flow can be deleted. Please refer
to the attached files to see the whole contents of this file.

1 EXE_INC = \

2 ...

3 -I$(LIB_SRC)/TurbulenceModels/phaseIncompressible/lnInclude \

4 -I../photoPolymerization/lnInclude

5

6 EXE_LIBS = \

7 ...

8 -lincompressibleTurbulenceModels \

9 -L$(FOAM_USER_LIBBIN) \

10 -lphotoPolymerization

In the files file, the name of the file that should be compiled and the name of the solver that is
generated are specified.

1 reactingCureFoam.C

2

3 EXE = $(FOAM_USER_APPBIN)/reactingCureFoam

Compile the solver by executing the wmake command.

5.3 Setting up a tutorial case

The case is set up based on the simulation that is done in Tang’s PhD thesis [1]. As described
previously in Chapter 2 and shown in Figure 3.1, a symmetric 2D simulation can represent the
photopolymerization process taking place in a SLA setup, in which the resin obeys the Beer-Lambert
law, and the beam is Gaussian. Figure 5.1 shows the geometry and the boundary conditions of the
case. In this figure, B stands for the concentration of each one of the species or the temperature,
and Bi shows the initial state of the corresponding variable. It can be seen that the left and bottom
boundaries are considered far enough so that the values of the concentrations and temperature are
equal to the initial field. For the sake of this tutorial, the width and height of the computational
domain are set to 8 mm and 0.7 mm, respectively. Symmetry boundary condition is imposed on the
left boundary and Neumann boundary condition is applied on the top one for the specie transport
and energy equations. Since the fluid is stationary, the velocity for all boundaries is set to zero.
Although the solution of the momentum equation is not important for this benchmark, the solver is
equipped with the incompressible Navier-Stokes equations to be capable of modeling cases in which
there is fluid motion such as platform-induced flows in SLA and DLP or the curing process in VAM.

The initial condition of the variables are based on the statements that are mentioned in the thesis
[1]. It is mentioned that 0.2wt% photoinitiator is added to the resin. Based on the datasheet of the
2,2-dimethoxy-2-phenylacetophenone (DMPA), the photoinitiator, its initial concentration is calcu-
lated to be 8.8 mol/m3. However, in Figure 29b of the thesis, it can be seen that the photoinitiator
concentration starts from 90 mol/m3. Accordingly, the initial photoinitiator concentration is set to
90 mol/m3. Initial monomer concentration is set to 1974 mol/m3 based on the 99.8% mass fraction
that is mentioned in the thesis, and the datasheet of Ethoxylated (4) PentaErythritol (E4PETeA).

32

5.3. Setting up a tutorial case Chapter 5. reactingCureFoam

Figure 5.1: Geometry and the boundary conditions of the case prepared for the new solver.

The initial concentration of other species are initially zero. The temperature is initially set to 300 K.
The initial conditions are summarized in Table 5.1.

Table 5.1: Initial values for concentrations and temperature

Variable [unit] Initial Value
M [mol/m3] 1974
PI [mol/m3] 90

pDot [mol/m3] 0
T [K] 300

The parameters of the laser beam that are taken from Tang’s thesis [1] are shown in Table 5.2.

Table 5.2: laser parameters

Parameter Value unit
Vs 0.0272 m/s

lambda 325 nm
P 0.0288 W
w0 1.1e-4 m
Dp 2.483e-3 m
t0 0.02 s

In Table 5.3, the properties of the species are mentioned. Again, the values are taken from Tang’s
thesis except for the viscosity values. The viscosity of the monomer is taken from its datasheet, and
the viscosity of the polymer is assigned equal to the monomer’s since the flow is stagnant and the
viscosity does not play a role. In the thesis, specific values are not given for the diffusion coefficients
and some ranges are specified. Accordingly, some approximate values that are within the specified
ranges of the thesis are used here. For density, as mentioned before, the temperature dependence
has been ignored so as to use the incompressible formulations. So, the density of monomer and
polymer are evaluated from Eqs. (2.22) and (2.23) at 40 ◦C.

The reaction parameters that are listed in the Table 5.4, except for the ones related to the critical
fractional free volume variable are taken from Table 4 of Tang’s thesis [1]. To calculate the critical

33

5.3. Setting up a tutorial case Chapter 5. reactingCureFoam

Table 5.3: Properties of species

Monomer Polymer
Property Value unit Property Value unit

Dm 1e−14 m2/s - - -
µm 0.15 Pa.s µp 0.15 Pa.s
κm 0.142 W/m/k κp 0.142 W/m/k
Tg,m 205.65 K Tg,p 488.35 K
αm 0.00177 1/K αp 0.00012 1/K

Cp0,m 218.6 J/kg/K Cp0,p -1535.5 J/kg/K
Cp1,m 5.6 J/kg Cp1,p 9.1 J/kg
ρm 1099 kg/m3 ρp 1199 kg/m3

Macroradical Photoinitiator
DpD 1e−16 m2/s DPI 1e−14 m2/s

fractional free volume, as per Eq. (2.18), two constants are needed, fref
c and T ref . The reciprocal of

these two constants are read from Figure 15 of the thesis. In table XX, TrefRp and TrefRt refers to
the reciprocal of reference temperature for propagation and termination, respectively, and fcRefRp

and fcRefRt refer to the reciprocal of the reference critical free volume at the reference temperature
for the propagation and termination, respectively.

Table 5.4: Reaction parameters

Parameter Value unit
Φ 0.6 1
ϵ 19.9 m3/mol/m
h 2.85e5 J/mol

Propagation
Ap 6.1 1
Aep 28.4 m3/mol/s
Ep 1627 J/mol

TrefRp 0.0031 1/K
fcRefRp 6 1

Macroradical
At 6.4 1
Aet 8916 m3/mol/s
Et 2103 J/mol
Rrd 0.013 m3/mol

TrefRt 0.0031 1/K
fcRefRt 6 1

This case can be based on any existing tutorial cases. Here, the counterFlowFlame2D is used.
First, we go to the run directory and copy the tutorial case to the that directory, and rename it.

cd $FOAM_RUN

cp -r $FOAM_TUTORIALS/combustion/reactingFoam/laminar/counterFlowFlame2D/ ./

mv counterFlowFlame2D/ cureCase

In the constant directory, only the four dictionaries g, laserSettings, reactionParameters,
and specieProperties are needed. For this case, gravity is deactivated. In the other dictionaries,
the parameters that are shown in Tables 5.2-5.4 are shown. These dictionaries are also attached to
the Appendix.

34

5.3. Setting up a tutorial case Chapter 5. reactingCureFoam

To show the performance of the new solver, different variables are plotted at point (0 0 -0.001),
which is shown by a red dot in Figure 5.1. In the Tang’s thesis, a similar set of graphs are depicted.
However, he did not exactly determined the point at which the graphs are generated, so the results
of this study show the same behavior, but they do not exactly match his results as the location of
the graphs are different.

Figure 5.2 shows the intensity variation at point (0 0 -0.001) over time. As shown in Table 5.2
by t0, the center of the laser beam reaches this point at t = 0.02 depicted by a peak in Figure 5.2.
Then, the Gaussian beam will continue its way in the x-direction and the intensity at the point
would decay to zero. In Figure 5.3, photoinitiator concentration at the mentioned point is depicted.
Before the beam reaches the point, the photoinitiator concentration is constant at the initial value.
The intensity of the beam triggers a set of reactions described in Eqs. (2.1)-(2.4), in which the
photoinititor will be consumed. Accordingly, a drastic drop in its concentration can be seen in
Figure 5.3. After the pass of the beam, the photoinitiaro concentration is stabilized at a new level.
It can also be seen that the species diffusion coefficients are so small that they do not almost have
any effect on the results.

Figure 5.2: Intensity versus time at point (0,0,-0.001)

Figure 5.4 illustrates the radical concentration variation over time at the point (0 0 -0.001).
Initially, the its concentration is zero in the domain. By laser arrival and the decomposition of the
photoinitiators into radicals, the amount of radicals surges temporarily. The rise in the concentration
of radicals will in turn boost the propagation reaction rate, Eq. (2.7), which will deplete the radicals
almost as fast as they were generated. After the very sharp drop in the radical concentration, it
gradually approaches its initial value of zero.

Figures 5.5 and 5.6, depicting monomer conversion and temperature variations at point (0 0
-0.001) respectively, are shown over the larger time scale of one second. Both the conversion degree
and the temperature experience a sharp rise when the laser reaches the considered point. Then,
the conversion degree continues to gradually increase due to the small number of radicals that are
still present in the considered location. On the other hand, the temperature starts to fall soon
after the disappearance of the laser beam, since the heat loss through diffusion into the surrounding
environment dominates the heat generation from the slow reactions.

Figure 5.7 shows some isovalues or contours of the monomer conversion at t=0.4s. The contours

35

5.3. Setting up a tutorial case Chapter 5. reactingCureFoam

Figure 5.3: Photoinitiator concentration versus time at point (0,0,-0.001)

Figure 5.4: Macroradical concentration versus time at point (0,0,-0.001)

36

5.3. Setting up a tutorial case Chapter 5. reactingCureFoam

Figure 5.5: Conversion degree versus time at point (0,0,-0.001)

Figure 5.6: Temperature versus time at point (0,0,-0.001)

37

5.3. Setting up a tutorial case Chapter 5. reactingCureFoam

of conversion are parabolas that become deeper at lower conversion values. In the figure, it can be
seen that the higher conversion contours are closer to the surface of the resin, which is expected
since the top layers receive higher intensity and experience higher reaction rates.

The monomer conversion, temperature, and density fields are shown in Figure 5.8. The conversion
and density strictly follow the intensity field which decays in the z-direction according to the Beer-
Lambert law. The parts of the domain that have received a higher dose of light intensity would
undergo more reactions to have a higher curing degree. The areas with higher curing degree will
feature a higher density. Temperature field, however, does not follow the same pattern as the energy
from the high-temperature areas will diffuse to the sections with lower energy. As mentioned before,
the right and the bottom boundaries of the domain are assumed to be far so that they are not
influenced by the reactions. Looking at the temperature field suggests that both of these boundaries
(bottom boundary is not shown in this figure), should be further pushed away to have more accurate
results. This task is left for the reader to do.

38

5.3. Setting up a tutorial case Chapter 5. reactingCureFoam

Figure 5.7: Contours of monomer conversion at t=0.4s

39

5.3. Setting up a tutorial case Chapter 5. reactingCureFoam

(a) (b) (c)

Figure 5.8: Monomer conversion (a), temperature (b), and density (c) fields at t=0.4s

40

Bibliography

[1] Y. Tang, Stereolithography cure process modeling. Georgia Institute of Technology, 2005.

[2] P. F. Jacobs, Rapid prototyping & manufacturing: fundamentals of stereolithography. Society of
Manufacturing Engineers, 1992.

[3] D. Hummel, “Modifying buoyantPimpleFoam for the Simulation of Solid-Liquid Phase Change
with Temperature-dependent Thermophysical Properties.” In Proceedings of CFD with Open-
Source Software, 2017, Edited by Nilsson H., http://dx.doi.org/10.17196/OS_CFD#YEAR_

2017.

[4] S. M. Mousavi, “Combination of reactingFoam and chtMultiRegionFoam as a first step to-
ward creating a multiRegionReactingFoam, suitable for solid/gas phase.” In Proceedings of CFD
with OpenSource Software, 2019, Edited by Nilsson H., http://dx.doi.org/10.17196/OS_CFD#
YEAR_2019.

41

http://dx.doi.org/10.17196/OS_CFD#YEAR_2017
http://dx.doi.org/10.17196/OS_CFD#YEAR_2017
http://dx.doi.org/10.17196/OS_CFD#YEAR_2019
http://dx.doi.org/10.17196/OS_CFD#YEAR_2019

Study questions

1. What other ways can be used to read the data form dictionaries?

2. In the libraries defined in this tutorial, dictionary objects are instantiated within the solver
and passed as arguments to the library. How can these objects be instantiated and used inside
the library itself, alternatively?

3. Why are some field variables, such as monomer conversion and temperature, declared as ref-
erence variables inside the classes of this tutorial?

4. Why is not the function calcRho called inside the correct function of the photoCure class?

5. Can you explain the reason of the gradual rise in the monomer conversion in Figure 5.5, when
the intensity is not active in the probed point?

42

Appendix A

Developed codes

A.1 reactingCureFoam solver

reactingCureFoam.C

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | www.openfoam.com

\\/ M anipulation |

Copyright (C) 2011-2017 OpenFOAM Foundation

Copyright (C) 2020 OpenCFD Ltd.

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application

interFoam

Group

grpMultiphaseSolvers

Description

Solver for two incompressible, isothermal immiscible fluids using a VOF

(volume of fluid) phase-fraction based interface capturing approach,

with optional mesh motion and mesh topology changes including adaptive

re-meshing.

---/

#include "fvCFD.H"

#include "dynamicFvMesh.H"

#include "CMULES.H"

#include "EulerDdtScheme.H"

43

A.1. reactingCureFoam solver Appendix A. Developed codes

#include "localEulerDdtScheme.H"

#include "CrankNicolsonDdtScheme.H"

#include "turbulentTransportModel.H"

#include "pimpleControl.H"

#include "fvOptions.H"

#include "CorrectPhi.H"

#include "fvcSmooth.H"

#include "cureReaction.H" // Added

// * //

int main(int argc, char *argv[])

{

argList::addNote

(

"Solver for photoPolymerization process"

);

#include "postProcess.H"

#include "addCheckCaseOptions.H"

#include "setRootCaseLists.H"

#include "createTime.H"

#include "createDynamicFvMesh.H"

#include "initContinuityErrs.H"

#include "createDyMControls.H"

#include "createFields.H"

#include "initCorrectPhi.H"

#include "createUfIfPresent.H"

if (!LTS)

{

#include "CourantNo.H"

#include "setInitialDeltaT.H"

}

// * //

Info<< "\nStarting time loop\n" << endl;

while (runTime.run())

{

#include "readDyMControls.H"

if (LTS)

{

#include "setRDeltaT.H"

}

else

{

#include "CourantNo.H"

#include "setDeltaT.H"

}

++runTime;

Info<< "Time = " << runTime.timeName() << nl << endl;

//****************** Updating intensity********************

#include "calcI.H"

//***

// --- Pressure-velocity PIMPLE corrector loop

while (pimple.loop())

{

if (pimple.firstIter() || moveMeshOuterCorrectors)

{

mesh.update();

44

A.1. reactingCureFoam solver Appendix A. Developed codes

if (mesh.changing())

{

gh = (g & mesh.C()) - ghRef;

ghf = (g & mesh.Cf()) - ghRef;

MRF.update();

if (correctPhi)

{

// Calculate absolute flux

// from the mapped surface velocity

phi = mesh.Sf() & Uf();

#include "correctPhi.H"

// Make the flux relative to the mesh motion

fvc::makeRelative(phi, U);

//mixture.correct();

}

if (checkMeshCourantNo)

{

#include "meshCourantNo.H"

}

}

}

//mixture.correct();

if (pimple.frozenFlow())

{

continue;

}

#include "UEqn.H"

//********* Specie transport and Temperature Eqs***********

#include "CEqn.H"

#include "EEqn.H"

#include "updateR.H"

//***

// --- Pressure corrector loop

while (pimple.correct())

{

#include "pEqn.H"

}

}

runTime.write();

runTime.printExecutionTime(Info);

}

Info<< "End\n" << endl;

return 0;

}

// *** //

45

A.1. reactingCureFoam solver Appendix A. Developed codes

createI.H

Info<< "Reading laserSettings file\n" << endl;

IOdictionary laserSettings

(

IOobject

(

"laserSettings",

runTime.constant(),

mesh,

IOobject::MUST_READ_IF_MODIFIED,

IOobject::NO_WRITE

)

);

dimensionedScalar Vs("Vs", dimVelocity, laserSettings); //laser scanning velocity

dimensionedScalar lambda("lambda", dimLength, laserSettings); //wavelength

dimensionedScalar P("P", dimPower, laserSettings); // laser power

dimensionedScalar w0("w0", dimLength, laserSettings); //beam radius

dimensionedScalar Dp("Dp", dimLength, laserSettings); // Peneteration depth

dimensionedScalar t0("t0", dimTime, laserSettings); // Peneteration depth

dimensionedScalar I0 = 2*P/(constant::mathematical::pi*w0*w0);

dimensionedScalar t("t", dimTime, runTime.timeOutputValue());

Info<< "Creating field I\n" << endl;

volScalarField I

(

IOobject

(

"I",

runTime.timeName(),

mesh,

IOobject::NO_READ, //MUST_READ, //IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh,

dimensionedScalar("I", dimMoles/(dimArea*dimTime), Foam::scalar(0)),

zeroGradientFvPatchScalarField::typeName

);

const volVectorField& C = mesh.C();

const dimensionedScalar conv("conv", dimEnergy*dimLength/dimMoles, 1.196e8); //conversion constant

dimensionedScalar y("y", dimLength, Foam::scalar(0));

dimensionedScalar z("z", dimLength, Foam::scalar(0));

dimensionedScalar r2("r2", dimLength*dimLength, Foam::scalar(0));

forAll(C, counter)

{

//const scalar& x = C[counter].component(vector::X);

y.value() = C[counter].component(vector::Y);

z.value() = C[counter].component(vector::Z);

r2 = Vs*Vs*(t-t0)*(t-t0) + y*y;

I[counter] = (I0*Foam::exp(-2*r2/(w0*w0))*Foam::exp(-mag(z)/Dp)*lambda/conv).value();

}

initReact.H

Info<< "Reading properties of species from specieProperties file\n" << endl;

IOdictionary specieProperties

(

IOobject

(

"specieProperties",

46

A.1. reactingCureFoam solver Appendix A. Developed codes

runTime.constant(),

mesh,

IOobject::MUST_READ_IF_MODIFIED,

IOobject::NO_WRITE

)

);

IOdictionary reactionParameters

(

IOobject

(

"reactionParameters",

runTime.constant(),

mesh,

IOobject::MUST_READ_IF_MODIFIED,

IOobject::NO_WRITE

)

);

// *************************************** Defining the concentrations

Info<< "Reading concentrations\n" << endl;

// Photo-initiator Concentration

volScalarField PI

(

IOobject

(

"PI",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

// Monomer Concentration

volScalarField M

(

IOobject

(

"M",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

// Chain radical

volScalarField pDot

(

IOobject

(

"pDot",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

47

A.1. reactingCureFoam solver Appendix A. Developed codes

// Saving the initial concentration of Monomer, M0

volScalarField M0(M);

// Defining conversion

volScalarField X

(

IOobject

(

"X",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

(M0-M)/M0

);

// *************************************** Defining Reaction rates

Info<< "Initializing reaction class\n" << endl;

autoPtr<photoCure> reaction

(

new cureReaction

(

reactionParameters,

specieProperties,

T,

X,

M

)

);

Info<< "* * * * * * * * \n";

Info<< "Initializing reaction rates \n" << endl;

const volScalarField& Ki = reaction -> Ki()();

const volScalarField& Kp = reaction -> Kp()();

const volScalarField& Kt = reaction -> Kt()();

const dimensionedScalar& fi = reaction -> fi();

//reaction rates

volScalarField Ri = Ki*PI*I; // Initiation reaction rate

volScalarField Rp = Kp*pDot*M; // Propagation reaction rate

volScalarField Rt = Kt*pDot*pDot; // Termination reaction rate

CEqn.H

{

Info<< "Solving the specie equations\n" << endl;

// ******** Monomer equation ********

tmp<fvScalarMatrix> tMEqn

(

fvm::ddt(M) //+ fvm::div(phi, U)

- fvm::laplacian(Dm, M)

==

-Rp

);

fvScalarMatrix& MEqn = tMEqn.ref();

MEqn.solve();

// ******** Macroradical equation ********

tmp<fvScalarMatrix> tpDotEqn

(

fvm::ddt(pDot) //+ fvm::div(phi, U)

48

A.2. Constant dictionaries Appendix A. Developed codes

- fvm::laplacian(Dr, pDot)

==

Ri - Rt

);

fvScalarMatrix& pDotEqn = tpDotEqn.ref();

pDotEqn.solve();

// ******** photo-initiator equation ********

tmp<fvScalarMatrix> tPIEqn

(

fvm::ddt(PI) //+ fvm::div(phi, U)

- fvm::laplacian(Ds, PI)

==

-Ri/fi

);

fvScalarMatrix& PIEqn = tPIEqn.ref();

PIEqn.solve();

// **** Updating the conversion degree ****

X = (M0-M)/M0;

// ******** Updating the reaction rates ********

Ri = 2.3*fi*e*PI*I;

Rp = kp0*pDot*M;

Rt = kt0*pDot*pDot;

}

A.2 Constant dictionaries

laserSettings

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2112 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object laserSettings;

}

// * //

Vs 0.0272; // m/s, Laser scanning velocity

lambda 325; // nm, wavelength

P 0.0288; // W, laser power

w0 1.1e-4; // m, laser beam radius

Dp 2.483e-3; // Beam penetration depth

t0 0; //

//yc 0; // y-pos of the center of the beam

//zc 0.025; // z-pos of the center of the beam

// *** //

reactionParameters

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

49

A.2. Constant dictionaries Appendix A. Developed codes

| \\ / O peration | Version: v2112 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object reactionParameters;

}

// * //

fi 0.6; // quantum efficiency of photo-initiator

e 19.9; // absorptivity of the photo-initiator

heat 2.85e5; // Heat of polymerization J/mol

Ap 6.1;

Aep 28.4;

Ep 1627;

TrefRp 0.0031; // reciprocal of reference temperature

fcRefRp 6; // reciprocal of reference critical free volume

At 6.4;

Aet 8916;

Et 2103;

Rrd 0.013;

TrefRt 0.0031; // reciprocal of reference temperature

fcRefRt 6; // reciprocal of reference critical free volume

// *** //

specieProperties

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2112 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object transportProperties;

}

// * //

Monomer

{

transport

{

D 1e-14; //specie's diffusion coefficient

mu 0.15; // specie's dynamic viscosity

k 0.142; // specie's thermal conductivity

50

A.2. Constant dictionaries Appendix A. Developed codes

}

thermodynamics

{

Tg 205.65; // specie's glass transition temperature

alpha 0.00177; // specie's coefficient of thermal expansion

Cp0 218.6; // Cp = Cp0 + Cp1 * T

Cp1 5.6;

}

equationOfState

{

rho0 1099; // specie's density

}

}

Polymer

{

transport

{

mu 0.15;

k 0.142;

}

thermodynamics

{

Tg 488.35;

alpha 0.00012;

Cp0 -1535.5;

Cp1 9.1;

}

equationOfState

{

rho0 1199;

}

}

Macroradical

{

transport

{

D 1e-16;

}

}

Photoinitiator

{

transport

{

D 1e-14;

}

}

// *** //

51

	Introduction
	Background and motivation

	Theory
	Describing the physics

	Tutorials
	Explanation of a tutorial case for reactingFoam
	Geometry and boundary conditions
	System directory
	Constant directory
	0 directory
	Results

	Implementation of the original solver and relevant libraries
	reactingCureFoam
	photoPolymerization library
	photoCure class
	cureReaction class

	reactingCureFoam solver
	Setting up a tutorial case

	Developed codes
	reactingCureFoam solver
	Constant dictionaries

