CFD wiTH OPENSOURCE SOFTWARE

A COURSE AT CHALMERS UNIVERSITY OF TECHNOLOGY
TAUGHT BY HAKAN NILSSON

Project work:

Application of dynamic meshes to
potentialFreeSurfaceFoam to solve for
6DOF floating body motions

Developed for OpenFOAM-2.1.x

Peer reviewed by:
TIAN TANG
JELENA ANDRIC

Author:
Guilherme MOURA PAREDES

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like learn some details

similar to the ones presented in the report and in the accompanying files.

November 18, 2012

Contents

[L.1 _Report description|
1.2 Objectives| e e

|2 Theory of moving meshes|

[B_The solver]
3.1 potentialkreeSurtacekFoam|00 Lo
3.2 waveSurfacePressure boundary condition|. oL

4 Including the dynamic mesh|

4.2 potentiallreeSurfacekoam| o o000 oo

E3 Modifying the solver]

4.3.1 Hile structurel e

8.5 Mesh motion solutionl
P.6 Object geometry| L
b.7 Running the casel

[6_Results|

|7 Modifications to the work presented|

[8 _Conclusions|

9 Future workl

ot = NN

N oS

45

46

47

Chapter 1

Introduction

1.1 Report description

This report describes the applications of dynamic mesh capabilities to an OpenFOAM solver, po-
tentialFreeSurfaceFoam, that is only able to compute simulations with static meshes.

The report is divided in nine chapters: Introduction, Theory of moving meshes, The solver,
Including the dynamic mesh, Case set up, Results, Modifications to the work presented, Conclusions
and Future work. The work described was performed on OpenFOAM 2.1.x. The operating system
used was Ubuntu 12.04 and, as such, all commands described are based on Ubuntu Linux.

In this report, the following conventions are used:

e Bold font is used when referring to executable applications;

e Verbatim text is used when referring to command line instructions, written code, or code
variables and fields;

Ttalic text is used when quoting text from references.

e SMALL CAPS is used when referring to OpenFOAM boundary condition types.

List of variables

p - field variable describing the total kinematic pressure in the fluid.

p_gh - field variable describing the component of the total kinematic pressure cause by dynamic
effects.

rho - field variable describing the fluid density.

e U - field variable describing the fluid velocity.

zeta - field variable describing the free surface profile.

p - fluid density.

(¢ - free surface profile.

e () - control volume volume.

e 71 - outward pointing unit normal vector.
e 7’ - position vector.

e ¢ - time.

S - control volume surface.

1.1. REPORT DESCRIPTION CHAPTER 1. INTRODUCTION

e ¢ - fluid velocity.
e T - coordinate vector.

e 4y, - velocity of the control volume boundary.

1.2. OBJECTIVES CHAPTER 1. INTRODUCTION

1.2 Objectives

The main objective of the present work is to modify the original potentialFreeSurfaceFoam
solver, distributed with OpenFOAM from version 2.1.0, in order to be able to use it with dynamic
meshes. The validation of the results of the solver when computing the time history of 6 DOF body
motions will not be a part of the work.

1.3 Motivation

The idea behind the application of dynamic mesh capabilities to potentialFreeSurfaceFoam is
to get a solver that allows the solution of the interaction of six degree of freedom bodies with
fluids with a free surface. Solvers like interDyMFoam already make this possible. However,
such solvers also solve for the dynamics of the air above the free surface, vastly increasing the
computational domain and time. In typical engineering calculations involving surface gravity waves,
the air pressure is approximated as constant and, therefore, can be disregarded. This is very close
to the solution process used by potentialFreeSurfaceFoam, with the free surface being modelled
as a boundary condition, where the the dynamic pressure boundary condition is the special type
WAVESURFACEPRESSURE. Applying dynamic meshes to potentialFreeSurfaceFoam will allow
the interaction of six degree of freedom bodies with free surface fluids to be computed in a much
faster way. This is specially important in design optimization, when several different designs are
tested and the computational time difference between a simplified and complete solver gets more
noticeable. These characteristics are closely related to part of the work to be developed in my PhD
research: studying of mooring systems for floating point absorber wave energy converters. Moorings
or mooring systems are the means by which floating objects are anchored to the sea bottom. The
best known example is the simple anchor line of a small boat. Point absorbers are relatively small
floating devices (when compared to the typical wave length of sea waves), whose working principles
are very diverse, but all aim at converting energy from waves into some usable form, generally
electricity. These floating bodies must be moored to the sea bottom to prevent them from drifting
in the sea.

Chapter 2

Theory of moving meshes

This section will give a brief overview of the theory of moving meshes. The derivations presented
will follow the work of [I].
Mass conservation on a typical engineering flow is expressed by the continuity equation, eq.
0 a(pv
9 90Y) _, (2.1)
ot ox
where ¥ is the flow velocity, & is the position vector, p is the fluid density and ¢ is time. If eq.
[2.1] is integrated in space over a control volume with moving boundaries, the following equation is
obtained:

d dr
= QO— | —.73 7-ndS = 2.2
" de /Sdt ndS—i—/SpU ndS =0 (2.2)

where 2 and S represent, respectively, the volume and the surface of the control volume and 7 the

position of the boundaries. The term

d
< Q
at " d

represents the variation of the mass contained in the control volume. The term

/p17~ﬁdS
g

represents the amount of mass flowing out of the control volume due to the proper flow velocity.
Finally, the term

dr
g dt
represents the mass variation within the control volume due to changes in the control volume limits,

both shape and position.
Setting

-ndS

dr
dt
where vy, is the control volume boundary velocity, we get

=, (2.3)

d
— de—l—/p({)’—v'g)-ﬁdS:O (2.4)

From equation [2.4] its clear that, when dealing with moving meshes, the velocity of the mesh
points, or the relative velocity between the mesh points and the flow, must be taken into account.
This equation explains the need to, in [.3.3] sometimes make the flux relative and sometimes make
it absolute.

Chapter 3

The solver

3.1 potentialFreeSurfaceFoam

According to the description provided at the OpenFOAM website,[2], potentialFreeSurfaceFoam
is “a single phase, incompressible, Navier-Stokes solver that approrimates waves through a wave
height field that evolves in time. The solver can reliably predict the behaviour of a free surface where
the effects of the low density phase, e.g. air, can be neglected and where waves do not break. Its
computational costs is significantly lower than interface-capturing solvers.”. Even though poten-
tialFreeSurfaceFoam solves for a fluid having free surface, in the solution algorithm there is no
actual free surface. The effect of free surface is simulated through boundary conditions and not
through the mapping of different fluid characteristics to the physical domain and solving for the
interactions between them. The boundary condition simulating the free surface is WAVESURFACE-
PRESSURE, described in section The problem is solved in a static grid and the free surface
profile is only known by the values of the vectorField zeta at the free surface patch.

The reference to “potential” in the name “potentialFreeSurfaceFoam” is due to the waves at the
free surface being approximated by a wave height potential. In the interior domain, the solver is
capable of handling different types of turbulence models.

A typical result of the potentialFreeSurfaceFoam solver is displayed in figures and
taken from the “oscillatingBox” tutorial provided in OpenFOAM 2.1.x for potentialFreeSurface-
Foam.

zeta magnitude (m)
0.14408417

0.12

Figure 3.1: Visualization of the results of a modified version of the oscillatingBox tutorial. The mesh is not
deformed, even though there are wave propagating at the free surface.

The free surface profile is represented by the zeta field. As can be seen, the grid shows no
deformation even though there are waves at the free surface with an amplitude of about 10% of the
domain height, 1 m.

A geometric representation of the free surface can be obtained in paraView using the filter

3.2. WAVESURFACEPRESSURE BOUNDARY CONDITION CHAPTER 3. THE SOLVER

zeta magnitude
0.16

0.12
0.08
0.04

0

Figure 3.2: Visualization of the results of a modified version of the oscillatingBox tutorial, with the camera
view from a 45° angle with the horizontal. The waves can be seen as property of the freeSurface patch.

“warp by vector”, to deform the free surface patch. Only the points belonging to the free surface
patch will be displaced.

3.2 waveSurfacePressure boundary condition

The WAVESURFACEPRESSURE boundary condition is applied to boundaries corresponding to the free
surface. It computes the wave height and the pressure change due the free surface profile change.
The change in the free surface profile is calculated by integrating the fluid velocity at the free surface
patch over time. The velocity is determined by equations and

q= % x 7 (3.1)
when the flux is the flow velocity (incompressible flow)
. ¢ .
= 3.2
1= 77 g X 7 (3.2)

when the flux is flow mass flux (compressible and/or multiphase flow), where p is the density of the
fluid, 4 is the velocity, dA is the cell face area and ¢ is the flux. For single phase incompressible
flow, ¢ is equivalent to # and for compressible flow, ¢ is pi.

Even though potentialFreeSurfaceFoam is an incompressible, single phase flow solver, WAVESUR-
FACEPRESSURE can handle both velocity fluxes (incompressible flow) and mass fluxes (generally used
in compressible and/or multiphase flow). Since potentialFreeSurfaceFoam is an incompressible
flow solver and WAVESURFACEPRESSURE can handle both compressible and incompressible flows,
there may be some confusion in the usage of the the terms dynamic pressure and kinematic pres-
sure. Kinematic pressure is always the value obtained by dividing pressure by the fluid density.
Dynamic pressure, however, may refer to either the pressure NOT divided the fluid density or to
the part of the total pressure that is caused by dynamic effects. It is, therefore, possible to talk
about “kinematic dynamic pressure” and “kinematic hydrostatic pressure” and “dynamic dynamic
pressure” and “dynamic hydrostatic pressure”. In this report, since potentialFreeSurfaceFoam
only handles kinematic pressure, all references to dynamic pressure are to the dynamic part of the
total pressure.

The pressure change due to the variation of the free surface position relative to the still water
level, ¢, is computed by

Apc = g¢ (3.3)
velocity fluxes or
Ape = gp¢ (3.4)

for mass fluxes.
The WAVESURFACEPRESSURE boundary condition is applied in the dynamic pressure field bound-
ary condition.

Chapter 4

Including the dynamic mesh

4.1 Procedure

The modification of the potentialFreeSurfaceFoam solver was based on the codes of the inter-
Foam, interDyMFoam (variation of interFoam for dynamic mesh handling), pimpleFoam and
pimpleDyMFoam (variation of pimpleFoam for dynamic mesh handling) solvers.

The interFoam solver has a structure similar to potentialFreeSurfaceFoam in the way the
PISO/PIMPLE loop is executed, making it convenient in the adaptations of the code related to the
pressure equation.

pimpleFoam has an overall structure similar to potentialFreeSurfaceFoam, since both solvers
only solve for single phase fluid domains. Thus it is ideal for the general adaptation of the poten-
tialFreeSurfaceFoam code.

The specific modifications to be made to potentialFreeSurfaceFoam were determined by com-
paring the static and dynamic versions of the code of interFoam and pimpleFoam and finding
the differences between them. Since the only difference between the static and dynamic versions
is the possibility to handle dynamic meshes, all the differences in the source codes must be the
implementation of dynamic meshes.

The modifications to potentialFreeSurfaceFoam can be divided in three different types:

e adding/removing files;
e changing code within specific files;

e changing/setting up cases to comply with the new solver.

The modifications that must be introduced in the original code are not related to solution al-
gorithms, physics or other fundamental aspects. All the changes that must be applied are directly
or indirectly associated with the frame of reference of the flux ¢. In a static mesh solver, the mesh
points do not change position in time. On the other hand, in a dynamic mesh, the points may
move and there is the need to write the flux relative to the cell points. As a first approach, only
files and/or code involving the flux ¢ (phi in the code) need to be adapted when coding dynamic
meshes.

4.2. POTENTIALFREESURFACEFOAM CHAPTER 4. INCLUDING THE DYNAMIC MESH

4.2 potentialFreeSurfaceFoam

In OpenFOAM 2.1.x, the potentialFreeSurfaceFoam solver source code is found in
$FOAM_SOLVERS/incompressible/potentialFreeSurfaceFoam

This folder has the following structure:

potentialFreeSurfaceFoam/
potentialFreeSurfaceFoam.C
potentialFreeSurfaceFoam.dep
createFields.H
UEgn.H
pEan.H
Make/

t options
files

The files potentialFreeSurfaceFoam.C, createFields.H, UEqn.H and pEqn.H contain the source
code of potentialFreeSurfaceFoam. The files in the Make/ directory contain information for the
compiler.

createFields.H contains the code which initializes the fields that will be used within the solver
as, for example, pressure, p, dynamic pressure, p_gh, free surface elevation, zeta, gravitational
acceleration, g, etc. pEqn.H contains the code that will solve the pressure equation in the PIMPLE
algorithm. Ueqn.H contains the code that will solve the velocity equation in the PIMPLE algorithm.
Finally, potentialFreeSurfaceFoam.C contains the code that calls the main OpenFOAM libraries
and structures the sequence in which the different files, libraries, codes and algorithms are used, for
example, the execution of the PIMPLE algorithm that will make use of pEqn.H and Ueqn.H.

On the compiler files, Make/options contains instructions to the compiler on where to look for
libraries and files called in the solver source code and Make/files on where to write the compiled
file of the solver.

The file potentialFreeSurfaceFoam.dep and files contained within other folders in Make/ are
generated when the solver is compiled and are not needed in the development of the new solver.

Both the main solver files and the compiler files will have to be adapted.

4.3 Modifying the solver

In the present section, the actions taken to modify the solver will be described. In some instances,
suggestions of how to execute these actions will be given in the form of terminal commands. As far
as possible, the commands required to preform a specific action will be mentioned in its subsection.
However, there will be occasions when a history of commands from previous sections must have been
executed beforehand, in order for the specific command mentioned to work correctly. Therefore,
to properly follow the description of the modification of the solver, this section should be read
sequentially. In the description of the modifications to the source code, when it is referred that a
specific instruction or code was added to a line, it is assumed that all the code in that line and the
lines below are moved down as much as necessary, except in the cases where the line in question is
empty.

Since the new solver will be able to handle dynamic meshes, from now on it will be named
potentialFreeSurfaceDyMFoam.

4.3.1 File structure

The modifications applied to potentialFreeSurfaceFoam were not executed directly in the code
provided with OpenFOAM 2.1.x, but in a copy stored in a convenient working folder. In what
follows, this folder is assumed to be:

4.3. MODIFYING THE SOLVER CHAPTER 4. INCLUDING THE DYNAMIC MESH

$WM_PROJECT_USER_DIR/applications/solvers/incompressible/potentialFreeSurfaceDyMFoam
This folder was set-up executing the following commands in the terminal window:

cd $WM_PROJECT_DIR

cp -r --parents applications/solvers/incompressible/\
potentialFreeSurfaceFoam $WM_PROJECT_USER_DIR

cd $WM_PROJECT_USER_DIR/applications/solvers/incompressible

mv potentialFreeSurfaceFoam potentialFreeSurfaceDyMFoam

cd potentialFreeSurfaceDyMFoam

4.3.2 Files

The first task in modifying potentialFreeSurfaceFoam is setting up the file structure. Since the
new solver is named potentialFreeSurfaceDyMFoam, the file potentialFreeSurfaceFoam.C
was renamed to potentialFreeSurfaceDyMFoam.C. This was executed with the following command:

mv potentialFreeSurfaceFoam.C potentialFreeSurfaceDyMFoam.C

As explained in[£.2] potentialFreeSurfaceFoam.dep and the any files and folders within Make/
other than files and options are not useful. Therefore, they were deleted. This was performed
with the following command:

wclean

As mentioned in pimpleFoam and pimpleDyMFoam were the basis for the general mod-
ification of potentialFreeSurfaceFoam. The source code for pimpleFoam can be found in

$FOAM_SOLVERS/incompressible/pimpleFoam
and the source code for pimpleDyMFoam can be found in
$FOAM_SOLVERS/incompressible/pimpleFoam/pimpleDymFoam

A comparison between the file structure of pimpleFoam and pimpleDyMFoam (disregarding
the Make/ and SRFPimpleFoam/ directories, as well as the compilation files Al11make and pimpleFoam.dep)
reveals that pimpleDyMFoam has two extra files: correctPhi.H and readControls.H. These files
were copied to the new solver folder:

cp -r $FOAM_SOLVERS/incompressible/pimpleFoam/pimpleDyMFoam/correctPhi.H .
cp -r $FOAM_SOLVERS/incompressible/pimpleFoam/pimpleDyMFoam/readControls.H .

4.3.3 Code

Since there is no reference to the flux ¢ in the UEqn.H file (in the code the flux is represented by
the variable phi), it didn’t require any change. The file createFields.H has a reference to phi.
However, it is only to create the field and not to manipulate it. Therefore, this file didn’t require
any changes related to the way the flux is treated. It will required some other changes though, to
be shown in detail in but these are not related to the dynamic meshes.

The modifications to the potentialFreeSurfaceDyMFoam.C were mostly the declaration of header
files and pieces of code that handle dynamic meshes in OpenFOAM.

Comparing potentialFreeSurfaceDyMFoam.C with pimpleFoam.C, the only differences between
the two codes are just after the definition of the main function, in the order in which the different
header files are declared and the position of pimpleControl pimple(mesh):

10

4.3. MODIFYING THE SOLVER CHAPTER 4. INCLUDING THE DYNAMIC MESH

pimpleFoam.C

int main(int argc, char *argv[])

{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"
#include "initContinuityErrs.H"

pimpleControl pimple(mesh);

potentialFreeSurfaceFoam.C

int main(int argc, char *argv[])
{

#include "setRootCase.H"

#include "createTime.H"
#include "createMesh.H"

pimpleControl pimple(mesh);

#include "createFields.H"
#include "initContinuityErrs.H"

Since both potentialFreeSurfaceDyMFoam.C and pimpleFoam.C have a very similar structure,
the only changes required to potentialFreeSurfaceDyMFoam.C were the ones that occur between

pimpleFoam.C and pimpleDyMFoam.C:

e in line 40 it was added
#include "dynamicFvMesh.H"
e in line 51, the code
#include "createMesh.H"
was replaced by
#include "createDynamicFvMesh.H"
e in line 64, the code
#include "readTimeControls.H"
was moved to line 52, after
#include "createDynamicFvMesh.H"

declared in the step above.

e in line 64 it was added
#include "readControls.H"
e in lines 66 and 67 it was added

// Make the fluxes absolute
fvc: :makeAbsolute(phi, U);

e in line 73 it was added
mesh.update() ;
if (mesh.changing() && correctPhi)

{

#include "correctPhi.H"

}

11

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

4.3. MODIFYING THE SOLVER CHAPTER 4. INCLUDING THE DYNAMIC MESH

// Make the fluxes relative to the mesh motion
fvc: :makeRelative(phi, U);

if (mesh.changing() && checkMeshCourantNo)
{

#include "meshCourantNo.H"

}

The final code of the potentialFreeSurfaceDyMFoam.C file is the following

potentialFreeSurfaceDyMFoam.C

|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
License

This file is part of OpenFOAM.

OpenF0AM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application
potentialFreeSurfaceFoam

Description
Incompressible Navier-Stokes solver with inclusion of a wave height field
to enable single-phase free-surface approximations
Wave height field, zeta, used by pressure boundary conditions

Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.

*k———=— - - - - ————x/

#include "fvCFD.H"

#include "singlePhaseTransportModel.H"
#include "turbulenceModel.H"

#include "dynamicFvMesh.H"

#include "pimpleControl.H"

#include "IObasicSourceList.H"

// % %k % % %)k % % % % % % % % % % % %k % % % %k % * % % %k % % % * % % *x *x x *x //

int main(int argc, char *argv[])

12

47

48

49

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

96

97

98

99

100

103

104

105

4.3. MODIFYING THE SOLVER

#include "setRootCase.H"

#include "createTime.H"

#include "createDynamicFvMesh.H"
#include "readTimeControls.H"
pimpleControl pimple(mesh);

#include "createFields.H"
#include "initContinuityErrs.H"

[/ % % %k % % k% % %k % % % % %k % %k % * % % % *k *k % %k % %k %k * X % %k % *x *x *x [/

Info<< "\nStarting time loop\n" << endl;

while (runTime.run())

{

#include "readControls.H"
#include "CourantNo.H"

// Make the fluxes absolute
fvc: :makeAbsolute(phi, U);
#include "setDeltaT.H"

runTime++;

Info<< "Time = " << runTime.timeName() << nl << endl;
mesh.update();

if (mesh.changing() && correctPhi)

{

#include "correctPhi.H"

// Make the fluxes relative to the mesh motion
fvc: :makeRelative(phi, U);

if (mesh.changing() && checkMeshCourantNo)
{

#include "meshCourantNo.H"

}
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
#include "UEqn.H"
// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence->correct () ;
}
}

13

CHAPTER 4. INCLUDING THE DYNAMIC MESH

[I

4.3. MODIFYING THE SOLVER

CHAPTER 4. INCLUDING THE DYNAMIC MESH

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;
}

Info<< "End\n" << endl;

return O;

[/ FEkok koK ok ook ok ok ok sk ok ok ok K o ok ok oK K K ok ok oK K K ok ok ok K K s ok ok ok ok sk ok ok ok K ok ok K K ok ok K Kok ok kR ok sk kR kokkkkkokkk [/ /

In the pEqn.H file, the modifications made were setting the flux phi to be referenced to an
absolute initial mesh or relative to a moving, deforming mesh.

The changes were the following:

e in lines 11 to 14, the code

phi = (fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rAU, U, phi);

adjustPhi(phi, U, p_gh);

was replaced by

phi = (fvc::interpolate(U) & mesh.Sf());

if (ddtPhiCorr)

{
phi += fvc::ddtPhiCorr(rAU,
}
if (p.needReference())
{
fvc: :makeRelative(phi, U);
adjustPhi(phi, U, p);
fvc: :makeAbsolute(phi, U);
}

e in line 48, the following code was added:

// Make the fluxes relative to the mesh motion

fvc: :makeRelative(phi, U);

The final code is the following:

volScalarField rAU(1.0/UEqn().A());

surfaceScalarField rAUf (rAU.name() + ’f’, fvc::interpolate(rAU));

U = rAU*(UEqn() == sources(U)) () .HQ);

U, phi);

pEgn.H

14

4.3. MODIFYING THE SOLVER CHAPTER 4. INCLUDING THE DYNAMIC MESH

if (pimple.nCorrPISO() <= 1)
{
UEqn.clear();

}
phi = (fvc::interpolate(U) & mesh.Sf());

if (ddtPhiCorr)

{
phi += fvc::ddtPhiCorr(rAU, U, phi);
}
if (p.needReference())
{
fvc: :makeRelative(phi, U);
adjustPhi(phi, U, p);
fvc: :makeAbsolute(phi, U);
}

// Non-orthogonal pressure corrector loop
while (pimple.correctNonOrthogonal())

{
fvScalarMatrix p_ghEqn
(
fvm::laplacian(rAUf, p_gh) == fvc::div(phi)
)3
p_ghEqn.setReference (p_ghRefCell, p_ghRefValue);
p_ghEgn.solve(mesh.solver(p_gh.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phi -= p_ghEqn.flux();
}
}

#include "continuityErrs.H"

// Explicitly relax pressure for momentum corrector
p_-gh.relax();

// Make the fluxes relative to the mesh motion
fvc: :makeRelative(phi, U);

p = p_gh + (g & (mesh.C() + zeta - refLevel));
U -= rAU*fvc::grad(p_gh);

U.correctBoundaryConditions();
sources.correct (U);

The last source code file that needed to be modified was correctPhi.H. The basic structure is well
suited for potentialFreeSurfaceDyMFoam, but pimpleDyMFoam computes total pressure, p
and potentialFreeSurfaceFoam computes dynamic pressure, p_gh. The instances of variable p
in correctPhi.H had to be modified to p_gh. However, since there are several commands that use
the letter p in the correctPhi.H file, a simple “find and replace all” command was not appropriate.

15

© W N e w oA W N =

-
(=]

[
.

4.3. MODIFYING THE SOLVER CHAPTER 4. INCLUDING THE DYNAMIC MESH

The change was performed manually, case by case. p was replaced by p_gh in

line 27 p.boundaryField()... for p_gh.boundaryField()...

line 31 forAll(p.boundaryField()... for forAll(p_gh.boundaryField()...
line 33 if (p.boundaryField()... for if (p_gh.boundaryField()...

line 50 ..."pcorr", p.dimensions()... for ..."pcorr", p_gh.dimensions()...

line 61 ...setReference(pRefCell, pRefValue) for ...setReference(p_ghRefCell, p_ghRefValue);

There was a total of six occurrences in five lines that had be changed.

In pimpleFoam and pimpleDyMFoam, in the PIMPLE loop, the variable rAU is computed
at the cell centres. In the case of potentialFreeSurfaceFoam, however, after determining the
variable rAU at the cell centres, this variable is interpolated and computed at the cell faces, rAUf.
It is this new variable that is used in the PIMPLE loop. The name of the variable rAU at the
correctPhi.H file was, therefore, changed to rAUf:

e in line 58:
fvm: :laplacian(rAU, pcorr) == fvc::div(phi)
was changed to
fvm::laplacian(rAUf, pcorr) == fvc::div(phi)

The variable rAUf is not used in either pimpleFoam or pimpleDyMFoam, so it is not declared
in these solvers. Also, the declaration of rAUf in potentialFreeSurfaceDyMFoam occurs after
the call to correctPhi.H. This means that there will be a compilation error if the variable is not
declared before the call to correctPhi.H or in correctPhi.H itself. The correctPhi.H file from
interDyMFoam, has the same use of rAUf as potentialFreeSurfaceFoam and can be found in:

$WM_PROJECT_DIR/applications/solvers/multiphase/interFoam/interDyMFoam

Reviewing this file, it can be seen that after the creation of the pcorr volScalarField, the variable
rAUf is declared in line 33:

dimensionedScalar rAUf("(1|A(U))", dimTime/rho.dimensions(), 1.0);

Unlike interFoam or interDyMFoam, potentialFreeSurfaceFoam works with kinematic
pressure, so the variable rAUf created for potentialFreeSurfaceDyMFoam should not have the
dimensions of time/p, but only of time. So, in line 53, the following code was added:

dimensionedScalar rAUf("(1|A(U))", dimTime, 1.0);

The final code of correctPhi.H is the following:

correctPhi.H

{
if (mesh.changing())
{
forAll(U.boundaryField(), patchI)
{
if (U.boundaryField() [patchI].fixesValue())
{
U.boundaryField() [patchI].initEvaluate();
}
}

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

59

60

61

62

63

64

65

66

68

69

70

4.3. MODIFYING THE SOLVER CHAPTER 4. INCLUDING THE DYNAMIC MESH

forAll(U.boundaryField(), patchI)

{
if (U.boundaryField() [patchI].fixesValue())
{
U.boundaryField() [patchI].evaluate();
phi.boundaryField () [patchI] =
U.boundaryField () [patchI]
& mesh.Sf () .boundaryField() [patchI];
}
}
}
wordList pcorrTypes
(
p_gh.boundaryField() .size(),
zeroGradientFvPatchScalarField: :typeName
)5
forAll(p_gh.boundaryField(), patchI)
{
if (p_gh.boundaryField() [patchI].fixesValue())
{
pcorrTypes[patchI] = fixedValueFvPatchScalarField::typeName;
}
}
volScalarField pcorr
(
I0object
(
"pcorr",
runTime.timeName (),
mesh,
IOobject: :NO_READ,
I0object::NO_WRITE
),
mesh,
dimensionedScalar("pcorr", p_gh.dimensions(), 0.0),
pcorrTypes
)5

dimensionedScalar rAUf("(1]A(U))", dimTime, 1.0);
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pcorrEqn
(
fvm::laplacian(rAUf, pcorr) == fvc::div(phi)
);

pcorrEqn.setReference(p_ghRefCell, p_ghRefValue);
pcorrEqn.solve();

if (pimple.finalNonOrthogonalIter())
{
phi -= pcorrEqn.flux();

17

71

4.3. MODIFYING THE SOLVER CHAPTER 4. INCLUDING THE DYNAMIC MESH

#include "continuityErrs.H"

The modifications presented above are the ones that must be applied to the source code of the
solver to get dynamic meshes implemented. Before compilation, the ancillary files for the compiler
also required changes.

In Make/files in the first line, potentialFreeSurfaceFoam was replaced with the name of the
new solver, potentialFreeSurfaceDyMFoam. The destination of the compiled file in line 3 was
replaced by:

EXE = $(FOAM_USER_APPBIN) /potentialFreeSurfaceDyMFoam

The final file is the following: £11
iles

potentialFreeSurfaceDyMFoam.C

EXE = $(FOAM_USER_APPBIN)/potentialFreeSurfaceDyMFoam

In Make/options it was included the locations of where to look for the header and other files
called in the new solver source code:
e in line 2 and 3, under EXE_INC = \, it was added

-I$(LIB_SRC)/dynamicMesh/1lnInclude \
-I$(LIB_SRC) /dynamicFvMesh/InInclude \

e in lines 11 and 12, under EXE_LIBS = \ it was added

-ldynamicFvMesh \
-1topoChangerFvMesh \

The final file is the following:

options

EXE_INC = \
-I$(LIB_SRC)/dynamicMesh/1lnInclude \
-I$(LIB_SRC) /turbulenceModels/incompressible/turbulenceModel \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(LIB_SRC)/finiteVolume/1nInclude \
-I$(LIB_SRC) /meshTools/1nInclude

EXE_LIBS = \
-ldynamicFvMesh \
-ltopoChangerFvMesh \
-lincompressibleTransportModels \
-lincompressibleTurbulenceModel \
-lincompressibleRASModels \
-lincompressibleLESModels \
-1finiteVolume \
-1lmeshTools

18

4.3. MODIFYING THE SOLVER CHAPTER 4. INCLUDING THE DYNAMIC MESH

4.3.4 A bug

During the executing of this project, a probable bug was found in potentialFreeSurfaceFoam.
The computed total pressure values along a vertical line crossing the computational domain have a
non-smooth and non-physical variation, as can be seen in figure 4.1

Kinematic pressure along the vertical line through (5: 0; 0.5)

g
R
o™
g
E
p -4
=3
2
H]
a 54
:
g <
2
74
84
3 — Total pressure
— Dynamic pressure
-10 T T T T
0z o] 02 08 1

04 0o
Distance to bottom (m)

Figure 4.1: Total pressure along a vertical line crossing the domain in the tutorial case oscillatingBox of
potentialFreeSurfaceFoam. The water surface is 1 m above the bottom. Even with values of dynamic pressure
practically zero, the total pressure below the water surface is negative, indicating negative hydrostatic
pressure.

In figure [I.1] it can be seen that, even though the dynamic pressure is practically zero, the total
pressure below the water surface is negative and jumps from 0 m?/s? at the free surface to -10 m? /s?
just below, which is not possible in incompressible flow. However, the pressure at the water surface
is zero and the pressure in the interior domain increases linearly with depth, as expected, at the
correct rate. In result, the pressure below the water surface is offset. This points to a problem with
the pressure reference level within the solver, computing the correct value at the free surface and
an offset value below. potentialFreeSurfaceFoam and potentialFreeSurfaceDyMFoam work
with dynamic pressure throughout the solving process and, at the end, compute the total pressure
by adding a reference hydrostatic pressure. Because of this, all the dynamic effects are actually
computed correctly and only the total pressure is wrong. In the case of the dynamics of bodies
interacting with the fluids, it is the total pressure that governs the time evolution and, therefore,
this problem cannot be ignored. The way to correct this was to hard code the correct reference
level in the potentialFreeSurfaceDyMFoam source code, since a dynamic way to correctly get
the reference level was not found. Because of this, the reference level has to be set up and the solver
recompiled every time a new reference is needed. The changes to the reference level were made in
the file createFields.H:

e in line 76, the code

dimensionedVector("zero", dimLength, vector::zero)

was changed to

dimensionedVector("one", dimLength, vector::one)

19

4.3. MODIFYING THE SOLVER CHAPTER 4. INCLUDING THE DYNAMIC MESH

e lines 79 and 80 were commented out:

/*refLevel .boundaryField() [freeSurfacePatchI]
== mesh.C() .boundaryField() [freeSurfacePatchI];*/

In line 76, the vector is set to have the value one because the pressure should be referenced to
the initial free surface pressure, which, in the tutorial “oscillatingBox” and in the test case presented
in this report in chapter [5|is situated one meter above the bottom. Lines 79 and 80 should be the
part of the code where the reference level is set for each part of the domain. However, these lines
only set reference levels for the freeSurface patch, explaining why the free surface has the correct
value computed.

In figure[4.2)is represented the pressure profile along a vertical line, with the changes to createFields.H
described. As can be seen, the pressure has the correct variation with depth.

Kinematic pressure along the vertical line through (5. 0; 0.5)

— Tofal pressure
10+ — Dynamic pressure

Kinemcitic pressure (m*2/5"2)

a4

-
092 901 ©0 ©01 02 03 04 05 05 07 08 08 1 11
Distance o bottom (m)

Figure 4.2: Total pressure along a vertical line crossing the domain in the tutorial case oscillatingBox of
potentialFreeSurfaceFoam. With negligible values of the dynamic pressure, the total pressure now has the
correct variation with depth.

The complete createFields.H file is the following:

options
Info<< "Reading field p (kinematic)\n" << endl;
volScalarField p
(
I0object
(
Ilpll ,
runTime.timeName(),
mesh,
I0object: :MUST_READ,
IOobject: :AUTO_WRITE
),
mesh
)

20

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

59

60

61

62

63

64

66

67

4.3. MODIFYING THE SOLVER CHAPTER 4. INCLUDING THE DYNAMIC MESH

Info<< "Reading field U\n" << endl;
volVectorField U

(
I0object
(
IIUII s
runTime.timeName (),
mesh,
I0object: :MUST_READ,
I0object::AUTO_WRITE
),
mesh
);

#include "createPhi.H"
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible: :turbulenceModel> turbulence
(

incompressible: :turbulenceModel: :New(U, phi, laminarTransport)
)
#include "readGravitationalAcceleration.H"

Info<< "\nReading freeSurfaceProperties\n" << endl;

I0dictionary freeSurfaceProperties

(
I0object
(
"freeSurfaceProperties",
runTime.constant (),
mesh,
IO0object: :MUST_READ,
I0object: :NO_WRITE
)
);

word freeSurfacePatch(freeSurfaceProperties.lookup("freeSurfacePatch"));
label freeSurfacePatchI = mesh.boundaryMesh().findPatchID(freeSurfacePatch);
if (freeSurfacePatchI < 0)

{
FatalErrorIn(args.executable())
<< "Patch " << freeSurfacePatch << " not found. "
<< "Available patches are:" << mesh.boundaryMesh() .names()
<< exit(FatalError);
}

Info<< "Creating field refLevel\n" << endl;
volVectorField reflLevel

(

I0object

21

68

69

70

71

72

73

74

76

77

78

79

80

81

82

83

84

86

87

88

89

90

92

93

94

95

96

97

98

99

4.3. MODIFYING THE SOLVER CHAPTER 4. INCLUDING THE DYNAMIC MESH

(
"refLevel",
runTime.timeName (),
mesh,
I0object: :NO_READ,
I0object::NO_WRITE
),
mesh,

dimensionedVector("ones", dimLength, vector::one)

);

/*refLevel.boundaryField() [freeSurfacePatchI]
== mesh.C() .boundaryField () [freeSurfacePatchl];*/

Info<< "Creating field zeta\n" << endl;
volVectorField zeta

(
I0object
(
"zeta",
runTime.timeName(),
mesh,
IO0object: :READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector("zero", dimLength, vector::zero)
);

Info<< "Creating field p_gh\n" << endl;
volScalarField p_gh

(
I0object
(
Ilp_ghll’
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject: :AUTO_WRITE
),
mesh
);

// Force p_gh to be consistent with p
// Height is made relative to field ’reflevel’
p_gh = p - (g & (mesh.C() + zeta - reflLevel));

label p_ghRefCell = 0;
scalar p_ghRefValue = 0.0;
setRefCell(p_gh, pimple.dict(), p_ghRefCell, p_ghRefValue);

22

4.3. MODIFYING THE SOLVER CHAPTER 4. INCLUDING THE DYNAMIC MESH

IObasicSourcelist sources(mesh);

This potential bug was reported.
After executing of the changes described, the new solver was compiled, executing the command
wmake.

23

Chapter 5

Case set up

5.1 Introduction

This chapter describes the set up of a 2D simulation of a floating box, moving due to waves generated
in a fluid. The case is based on the oscillatingBox tutorial of potentialFreeSurfaceFoam.

5.2 The basic case - oscillatingBox

To set up the case, first, the original oscillatingBox tutorial was copied to the USER working directory
and renamed oscillatingDyMBox:

cd $WM_PROJECT_USER_DIR/run

cp -r $FOAM_TUTORIALS/incompressible/potentialFreeSurfaceFoam/\
oscillatingBox oscillatingDyMBox

cd oscillatingDyMBox

5.3 Patches

A new patch, called floatingBox was created, empty, by adding to constant/polyMesh/blockMeshDict
the following code:

floatingBox
{
type wall;
faces
(
)3
}
below
floatingObject
{
type wall;
faces
(
);
¥

24

© 0 N o G A W N e

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

5.3. PATCHES CHAPTER 5. CASE SET UP

The first patch simulates a box that moves with the waves; the second patch simulates a box
that moves and generates waves. The patches are created without any geometric definition for two
reasons. First, because it allows the fluid domain to be constructed with a single block, whose
geometry is much simpler to specify and mesh; secondly, because it allows the floating objects to be
defined (as will be shown later in with a utility dictionary that will not require the geometry
of the domain to be changed, making it simpler to change the floating body characteristics. The
complete blockMeshDict file is the following:

blockMeshDict

/*= -— *— Ct++ —k——————— ————x\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: 2.1.x |
[\\ / A nd | Web: www . OpenFOAM. org |
I \\/ M anipulation |
*— -— —-— -— ————x/
FoamFile
{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;
}

// % %k % % %k k % % k % %k % * % % % % %k % *k % %k *k *k % % %k % *k %k *k X % * * x *x //

convertToMeters 1;

vertices
(
(000
(10 0 0)
(10 1 0)
(010
(000.1)
(10 0 0.1)
(10 1 0.1)
(010.1)
);
blocks
(
hex (01 23456 7) (200 20 1) simpleGrading (10 0.1 1)
)
edges
(
);
boundary
(
freeSurface
{
type wall;
faces
(
(3762
)
}

25

5.4. BOUNDARY AND INITIAL CONDITIONS

CHAPTER 5. CASE SET UP

walls
{
type wall;
faces
(
(047 3)
(2 651)
(1540
)
}
floatingObject
{
type wall;
faces
(
);
}
floatingBox
{
type wall;
faces
(
)
}
frontAndBack
{
type empty;
faces
(
1)
7)
)
}
);
mergePatchPairs
(
)

5.4 Boundary and initial conditions

The changes made to boundary and initial conditions were the definition of the different initial and

floatingObject

{

type calculated;
value uniform O;

26

boundary values of the variables for the new floatingBox patch. Additionally, it was created a
pointDisplacement file, that defines the rigid body and moving characteristics of the mesh points.
In 0.o0rg/p, below

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

5.4. BOUNDARY AND INITIAL CONDITIONS CHAPTER 5. CASE SET UP

it was added

floatingBox

{
type calculated;
value uniform O;

}
The final p file is the following:
p

Y et k= Ctt —k—mm e *\
| ========= | I
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[A\ / 0 peration | Version: 2.1.x |
[\\ / A nd | Web: www.OpenFOAM. org |
I \\/ M anipulation |
\ K B et e *x/
FoamFile
{

version 2.0;

format ascii;

class volScalarField;

location "o";

object P;
}

// % % % % >k k % % k * % % k% % % % % %k % % % % % * % % %k * % % * % % *x * x *x //

dimensions [02-20000];

internalField uniform O;

boundaryField
{

freeSurface

{
type calculated;
value uniform O;

}

walls

{
type calculated;
value uniform O;

}

floatingObject

{
type calculated;
value uniform 0;

}

floatingBox

{
type calculated;
value uniform O;

}

frontAndBack

{
type empty;

}

27

oA W N

o N o

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

5.4. BOUNDARY AND INITIAL CONDITIONS CHAPTER 5. CASE SET UP

// 3k 3k >k 3k 3k 3k 3k 5k %k >k 3K 3k 3k 5k %k >k 3k 3k 3k 3k 5k %k >k 3K 3k 3k 5k %k >k 3k 3k 3k 3k 5k %k >k 3k 3k 3k 5k %k >k 3k 3k 3k 3k 5k %k >k 3K 3k 3k 5k %k %k >k 3k 3k 3k %k %k >k 3k 3k %k >k %k %k >k 3k %k >k %k //

In 0.org/p_gh, below

floatingObject
{

type zeroGradient;

3

it was added

floatingBox
{
type zeroGradient;
}
The complete p_gh file is the following:
p-gh
T e e k= Gt K mm e *\
| ========= ! |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: 2.1.x |
I \\ / A nd | Web: www . OpenFOAM. org |
| \\/ M anipulation |
K */
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
location "o";
object p_gh;
}

J/ ® % k ok ok ok ok ok ok ok ok ok ko k ok ok k ok k ok k ok k k ok k k k ok k k k *k * *x x x //

dimensions [02-20000];

internalField uniform O;

boundaryField
{
freeSurface
{
type
value
}
walls
{
type
value
}
floatingObject
{

waveSurfacePressure;
uniform 0;

zeroGradient;
uniform O;

28

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

© ® N o ;oA W N e

-
=}

[
=

5.4. BOUNDARY AND INITIAL CONDITIONS CHAPTER 5. CASE SET UP

type zeroGradient;
value uniform O;
}
floatingBox
{
type zeroGradient;
value uniform O;
}
frontAndBack
{
type empty;
}

In 0.0rg/U, below

floatingObject

{
type oscillatingFixedValue;
refValue uniform (0 1 0);
offset (0 -1 0);
amplitude table

(
¢ 00
(10 0.025)
(1000 0.025)
);
frequency constant 1;
value uniform (0 0 0);

}
it was added

floatingBox

{
type movingWallVelocity;
value uniform (0 0 0);

}
The final U file is the following:
U

[k——mm———— - —k— Gt ko m e *\
| ==s======= | I
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I A\\ / 0 peration | Version: 2.1.x |
N\ / A nd | Web: www . OpenFOAM. org |
| \\/ M anipulation |
\k———m————— e et e */
FoamFile
{

version 2.0;

format ascii;

29

5.4. BOUNDARY AND INITIAL CONDITIONS CHAPTER 5. CASE SET UP

class volVectorField;
location "o";
object U;

}

// % k% % % % k % % k % % %k * % % %k % *k %k *k % %k *k *k % % *k % *k %k *k X % * *x x *x //

dimensions [01-10000];

internalField wuniform (0 0 0);

boundaryField
{
freeSurface
{
type pressurelnletOutletParSlipVelocity;
value uniform (0 0 0);
}
walls
{
type fixedValue;
value uniform (0 0 0);
}
floatingObject
{
type oscillatingFixedValue;
refValue uniform (0 1 0);
offset (0 -1 0);
amplitude table
(
o 0)
(10 0.025)
(1000 0.025)
);
frequency constant 1;
value uniform (0 0 0);
}
floatingBox
{
type movingWallVelocity;
value uniform (0 0 0);
}
frontAndBack
{
type empty;
}

Since the floatingBox will be moving, it is required to specify how the movement of the box
should be determined. This was done by setting up a file called pointDisplacement, that informs
the solver how the mesh points should move throughout the computation. A file similar to the one
required exists in the floatingObject tutorial of interDyMFoam. It was copied to the 0.org folder
of oscillatingDyMBox and modified as needed:

cp $FOAM_TUTORIALS/multiphase/interDyMFoam/\
ras/floatingObject/0.org/pointDisplacement O.org

30

5.4. BOUNDARY AND INITIAL CONDITIONS CHAPTER 5. CASE SET UP

In the new pointDisplacement file, the portion of code

atmosphere
{
type fixedValue;
value uniform (0 0 0);
I

was deleted. The name of the patch
stationaryWalls

was changed to
walls

(note the small w instead of capital w). The code

floatingObject

{
type sixDoFRigidBodyDisplacement;
centreOfMass (0.5 0.5 0.5);
moment0fInertia (0.08622222 0.08622222 0.144);

mass 9.6;

rholInf 1; // needed only for solvers solving for kinematic pressure
report on;

value uniform (0 0 0);

}
was changed to

floatingBox
{
type sixDoFRigidBodyDisplacement;
centreOfMass (1.2 .9 0.05);
momentOfInertia (0.08622222 0.144 0.08622222);
mass 10;
rhoInf 1000; // needed only for solvers solving for kinematic pressure
report on;
value uniform (0 0 0);

3

This last part is where the six degree of freedom body characteristics of the floating box are
attributed. Since the floating box in this tutorial has the name floatingBox, the name of the rigid
body had to be changed from floatingObject to floatingBox. Then, the mass and inertia char-
acteristics had to be defined. A special note to the value rhoInf. In the floatingObject tutorial of
interDyMFoam, since interDyMFoam solves for dynamic pressure, the value of the fluid density
is already included in all the calculations. potentialFreeSurfaceFoam and potentialFreeSur-
faceDyMFoam, however, solve for kinematic pressure. This means that the forces calculated in
interDyMFoam, as the integration of pressure over the body surface, are correctly determined,
but, in potentialFreeSurfaceDyMFoam and potentialFreeSurfaceFoam, they are divided by
the value of the fluid density. Therefore, in potentialFreeSurfaceDyMFoam, the fluid density,
rhoInf has to be specified in this dictionary in order for the correct dynamics to be computed.

After the last patch, the information for the box that generates waves, floatingObject, was
added. The box generating waves doesn’t actually move, it just simulates an equivalent motion by
applying, at its impermeable boundaries, an oscillatory velocity field on the fluid. To have this, the
following code was added after the floatingBox patch:

31

5.4. BOUNDARY AND INITIAL CONDITIONS CHAPTER 5. CASE SET UP

floatingObject
{
type fixedValue;
value uniform (0 0 0);

}
The characteristics of the freeSurface patch were added, after the floatingObject patch:

freeSurface
{
type fixedValue;
value uniform (0 0 0);

}

and the frontAndBack patch was added at the end of the file

frontAndBack
{
type fixedValue;
value uniform (0 0 0);

3

Unlike what would be expected, the free surface patch doesn’t move or deform with the waves,
as was explained in

Due to an effect called drift force, the floating box tends to move steadily forward with the waves.
To prevent the mesh from deforming too much and collapsing, some restrictions were imposed on its
motions. The box was only allowed to move vertically up and down and to rotate around the z axis
(transverse to the domain). These restrictions were imposed by applying a fixedLine constraint
and defining the moment of inertia around the z and y axes to be very large, say 1000000.

The fixedLine constrain was added to the floatingBox patch, after value uniform (0 0 0);
with following code:

constraints
{
maxIterations 500000000;
fixedLinel
{

sixDoFRigidBodyMotionConstraint fixedLine;
tolerance le-6;

relaxationFactor 0.7;

fixedLineCoeffs

{

refPoint (1.2 0.9 0.05);

direction (0 1 0);

}

}

The final pointDisplacement file is the following

pointDisplacement
[k= Ctd —hmmm e *\
| s======== | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I A\\ / 0 peration | Version: 2.1.x |
I \\ / A nd | Web: www . OpenFOAM. org |

32

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

5.4. BOUNDARY AND INITIAL CONDITIONS CHAPTER 5. CASE SET UP

| \\/ M anipulation |
\k———m————— e e */
FoamFile
{
version 2.0;
format ascii;
class pointVectorField;
location "0.01";
object pointDisplacement;
}

// % %k % % % k % % k% % % %k *k % % %k % *k %k * % %k *k *k % % *k % *k %k *k X % * *x x *x //
dimensions [010000O0O0];
internalField uniform (0 0 0);

boundaryField
{
Walls
{
type fixedValue;
value uniform (0 0 0);
}
floatingBox
{
type sixDoFRigidBodyDisplacement;
centreOfMass (1.2 .9 0.05);
momentOfInertia (1000000 1000000 0.08622222);
mass 10;
rhoName rhoInf;
rhoInf 1000; // needed only for solvers solving for kinematic pressure
report on;
value uniform (0 0 0);

constraints

{
maxIterations 500000000;
fixedLinel
{

sixDoFRigidBodyMotionConstraint fixedLine;
tolerance le-6;
relaxationFactor 0.7;
fixedLineCoeffs
{
refPoint (1.2 0.9 0.05);
direction (0 1 0);

}
}

}
}
floatingObject
{

type fixedValue;

value uniform (0 0 0);
}
freeSurface
{

type fixedValue;

value uniform (0 0 0);
}

33

65

66

67

68

69

70

© ® N o A W N e

25

26

5.5. MESH MOTION SOLUTION CHAPTER 5. CASE SET UP

frontAndBack
{
type fixedValue;
value uniform (0 0 0);

5.5 Mesh motion solution

Besides the motion characteristics of the rigid body, the dynamic characteristics of the mesh and how
the adaptivity should be performed must also be defined. The adaptivity characteristics of the mesh
are specified via a dictionary called dynamicMeshDict in the constant/ directory. This dictionary
doesn’t exist in the original oscillatingBox tutorial. It was copied from the interDyMFoam tutorial
floatingObject:

cp $FOAM_TUTORIALS/multiphase/interDyMFoam/\
ras/floatingObject/constant/dynamicMeshDict constant

The dynamicMeshDict didn’t require any significant changes. Only the moving object name had
to be changed from floatingObject to floatingBox:

diffusivity inverseDistance (floatingQObject);
was changed to
diffusivity inverseDistance (floatingBox);

The final dynamicMeshDict file is the following:

dynamicMeshDict

/*— -—— -— *— CH+ —k————————— -—— ————x\
| ========= | |
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: 2.1.x |
N\ / A nd | Web: www . OpenFOAM. org I
| \\/ M anipulation |
*— -— -—— -— -— -— ————x/
FoamFile
{

version 2.0;

format ascii;

class dictionary;

object motionProperties;
}

J/ % % % % %k % k% % % % % * % % % %k % %k % % % % *k X * % % k *k % % kx *k % % *x x //
dynamicFvMesh dynamicMotionSolverFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

solver displacementLaplacian;

diffusivity inverseDistance (floatingBox);

// 3k 3k >k 3k 3k 3k 3k 5k %k >k 3K 3k 3k 5k 5k %k 3k 3k 3k 3k 5k %k >k 3K 3k 3k 5k 5k %k 3k 3k 3k 3k 3k %k >k 3K 5k 3k 5k %k %k 3k 3k 3k 3k 5k %k >k 5K 3k 3k 5k %k %k >k 3k 3k 3k %k %k >k 5k 3k %k >k %k %k >k 3k %k >k %k //

34

AW

@

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

5.5. MESH MOTION SOLUTION

CHAPTER 5. CASE SET UP

The solution method to the mesh motion is specified in system/fvSolution. Checking the
fvSolution file of the floatingObject tutorial of interDyMFoam, the following code was added
to system/fvSolution in the new case file

lacement

solver GAMG;

rance le-5;

relTol O;
smoother GaussSeidel;
cacheAgglomeration true;
nCellsInCoarsestLevel 10;
agglomerator faceAreaPair;
mergelevels 1;

cellDisp
{

tole
X

The final fvSolution file is the following

fvSolution
R k= Gt Ko mm *\
| ========= | I
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: 2.1.x |
I \\ / A nd | Web: www . OpenFOAM. org |
| \\/ M anipulation |
K */
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "system";
object fvSolution;
}
J/ ® % k ok ok ok ok ok ok ok ok ok ko k ok ok k ok k ok k ok k k ok k k k ok k k k *k *k * x x //
solvers
{
cellDisplacement
{
solver GAMG;
tolerance le-5;
relTol 0;
smoother GaussSeidel;

cacheAgglomeration true;
nCellsInCoarsestLevel 10;

agglomerator
mergelevels

p_gh

{

solver
tolerance
relTol
smoother
nPreSweeps
nPostSweeps

faceAreaPair;
1

GAMG;

le-7;

0.1;
DICGaussSeidel;
0;

2;

35

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76
77

78

5.5. MESH MOTION SOLUTION

CHAPTER 5. CASE SET UP

cacheAgglomeration true;
nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;
mergelLevels 1;
maxIter 100;
}
p_ghFinal
{
$p_gh;
tolerance le-7;
relTol 0;
}
U
{
solver smoothSolver;
smoother GaussSeidel;
tolerance le-7;
relTol 0.1;
¥
UFinal
{
$U;
tolerance le-7;
relTol 0;
}
}
PIMPLE
{
momentumPredictor no;
nOuterCorrectors 1;
nCorrectors 2;
nNonOrthogonalCorrectors 0;
}

Finally, the libraries corresponding to all the extra functionalities added to the case must be
declared in system/controlDict. In the end of the controlDict file, those libraries were declared
using the following code:

1libs
(

)

"1ibOpenFOAM.so"
"libincompressibleRASModels.so"
"libfvMotionSolvers.so"

"libforces.so"

In line 62, the reference to the floatingObject patch was changed to floatingBox.

36

5.6. OBJECT GEOMETRY CHAPTER 5. CASE SET UP

5.6 Object geometry

The geometry of the floating boxes wasn’t defined in blockMeshDict. It was defined using the utili-
ties topoSet and subSetMesh. The complete description of this utilities is out of the scope of this
report and will not be presented. The technical descriptions available are also very limited. topoSet
operates on cells, faces and points creating named regions in the computational domain. In the this
example, it was used to select a region of cells in the mesh that would later be eliminated to create the
geometry of the floating bodies. It operates based on a dictionary. subSetMesh selects regions of
cells, faces and points and performs operations on those regions. In this case, it was used to select the
regions created with topoSet and eliminate them from the computational domain. More informa-
tion about these two utilities can be found in $F0AM_UTILITIES/mesh/manipulation/subSetMesh
and $FOAM_UTILITIES/mesh/manipulation/topoSet, including how to construct the required dic-
tionaries.

The geometry of the box oscillating and generating waves, floatingQObject, is already defined
in the file system/topoSetDict. To generate the geometry for the box moving with the waves,
floatingBox, another dictionary for topoSet was created, topoSetDict2. It was created as a copy
of topoSetDict:

cp system/topoSetDict system/topoSetDict2

It was then adapted to create the geometry of floatingBox. The following code was deleted:

{
name f0;
type faceSet;
action new;
source patchToFace;
sourcelnfo
{
name freeSurface;
}
}
{
name f0;
type faceSet;
action subset;
source boxToFace;
sourcelnfo
{
box (=100 0.9 -100) (0.2 100 100);
}
}
{
name f0;
type faceZoneSet;
action new;
source setToFaceZone;
sourcelnfo
{
faceSet £0;
}
}

37

© 0 N o ¢ A W N e

5.6. OBJECT GEOMETRY CHAPTER 5. CASE SET UP

All instances of cO were changed to c1, two in total. Finally in line 27
box (0.1 0.8 -100) (0.4 100 100);

was changed to
box (1 0.8 -100) (1.4 100 100);

The box field encloses a region is space, selecting all the elements contained within it. It thus
defines the geometry of floatingBox.
The final topoSetDict2 file is the following:

topoSetDict2

Ve -—— *— C++ —k——————— ————x\
| ========= ! |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: 2.1.x |
[N\ / A nd | Web: www . OpenFOAM. org I
I \\/ M anipulation |
*— - - - ————x/
FoamFile
{

version 2.0;

format ascii;

class dictionary;

object topoSetDict;
}

// % %k % % %)k % % k% % % % %k % % % % %k % % % % % * % % %k % % % * % % *x * x *x //

actions

(

name cl;

type cellSet;
action new;
source boxToCell;

sourcelnfo
{
box (1 0.8 -100) (1.4 100 100);
}
}
{
name cl;
type cellSet;
action invert;
}

)

[/ FEkokoksk ok ook ok sk ok ook ok ok K o ok ok oK K K ok ok K K K K ok ok K K K ok ok K K ok ok K K ok ok K ok ok K K Kok sk kR ok sk kR kokkk ok kokkk [/ /

The remaining part was the removal of the previously selected cells, attributing to the faces of
the interior domain that would be exposed when the selected cells were removed, the patch name
of floatingBox. To keep the case as close as possible to the original floatingBox case, this was

38

5.6. OBJECT GEOMETRY CHAPTER 5. CASE SET UP

done in the Allrun script, since it is there that the commands for subSetMesh operating on the
floatingObject patch are executed.
In Allrun in lines 13 to 16, the following code was added:

rm -r log.topoSet

rm -r log.subsetMesh

runApplication topoSet -dict system/topoSetDict2
runApplication subsetMesh -overwrite cl -patch floatingBox

The lines

rm -r log.topoSet
rm -r log.subsetMesh

are only required because the Allrun script writes log files after the execution of the applications
and, when topoSet and subSetMesh are executed for the second time, it will halt if those files
already exist, created the first time the applications were executed. The final Allrun script is the
following:

Allrun

#!/bin/sh
cd ${0%/*} || exit 1 # run from this directory

Source tutorial run functions
. $WM_PROJECT_DIR/bin/tools/RunFunctions

Set application name
application=‘getApplication®

runApplication blockMesh

runApplication topoSet

runApplication subsetMesh -overwrite cO -patch floatingObject
rm -r log.topoSet

rm -r log.subsetMesh

runApplication topoSet -dict system/topoSetDict2
runApplication subsetMesh -overwrite cl -patch floatingBox

cp -r O.org O > /dev/null 2>&1

runApplication $application

- e end-of-file

Analysing the Allrun script, it can be seen that the command to execute the solver in this case
is

runApplication $application

There is no mention to the actual solver, only to a variable storing the name. The definition of
the solver to be used is made in system/controlDict. Since this case was copied from a tutorial of
potentialFreeSurfaceFoam, the solver was defined to be potentialFreeSurfaceFoam. To get
the case running with potentialFreeSurfaceDyMFoam, in system/controlDict, in line 18, the
code

application potentialFreeSurfaceFoam;

was changed to

39

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

5.6. OBJECT GEOMETRY

CHAPTER 5. CASE SET UP

application potentialFreeSurfaceDyMFoam;

The final controlDict file is the following

Allrun

/*= -— -— *— CH+ —¥——————— -— ————x%\
| ========= | |
[\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[A\ / 0 peration | Version: 2.1.x |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M anipulation |
*— -— -— -— -— -— ————x/
FoamFile
{

version 2.0;

format ascii;

class dictionary;

location "system";

object controlDict;
}
// % %k % % %)k % % % % %k % %k % % % % %k % * % % % * % % %k % %k % * X % *x * x *x //
application potentialFreeSurfaceDyMFoam;
startFrom startTime;
startTime 0;
stopAt endTime;
endTime 20;
deltaT 0.001;
writeControl adjustableRunTime;
writeInterval 0.02;
purgelWrite 0;
writeFormat ascii;

writePrecision 6;

writeCompression uncompressed;

timeFormat

timePrecision

general;

6;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo

maxDeltaT

functions

0.4;

1;

40

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

96

97

98

99

5.6. OBJECT GEOMETRY

CHAPTER 5. CASE SET UP

)

forces

{
type forces;
functionObjectLibs ("libforces.so");
outputControl outputTime;
outputInterval 1;
patches (floatingBox) ;
pName P;
UName U;
rhoName rhoInf;
log true;
rhoInf 1000;
CofR (00 0);

}

poolHeight

{
type faceSource;

functionObjectLibs ("libfieldFunctionObjects
enabled true;
outputControl timeStep;

timeInteval 1;
log true;
valueOutput false;
source faceZone;
sourcelName f0;
operation areaAverage;
fields
(

zeta
)

"1ibOpenF0AM.so"
"libincompressibleRASModels.so"
"libfvMotionSolvers.so"
"libforces.so"

.so");

41

5.7. RUNNING THE CASE CHAPTER 5. CASE SET UP

5.7 Running the case

Since a script, Allrun, was set up to automatically execute all sub commands required to solve this
case, to run the case only Allrun had to be executed:

./Allrun
On a dual core 1.80 GHz laptop the total time to run the simulation was 496 s. The initial

configuration of the case is represented in figure

floatingObject floatingBox

Figure 5.1: Initial configuration of the case.

42

Chapter 6

Results

The results of the case previously set up were visualized using paraView, through the paraFoam
script:

paraFoam

In figure[6.1]it is represented the movement of the floating box after 0.66 s, where the deformation
of the mesh due to the box movement is clear.

Time: 0.660000 s

Figure 6.1: Movement of the floating box after 0.66 s. The deformation of the mesh is clearly visible.

As mentioned in potentialFreeSurfaceFoam (and potentialFreeSurfaceDyMFoam,
since it is based on potentialFreeSurfaceFoam) approximates the free surface profile by a field.
Since there is no actual deformation of the free surface patch due to free surface waves, visualizing
the free surface in paraView had to be done in one of two ways, each with its own limitations.

The first way to visualize the free surface field is to colour it, as it would be done for the pressure
and velocity fields. The limitations of the way of visualizing are the fact that, in this tutorial, the
cells of the freeSurface patch are very thin, making it very difficult to actually see the results when
viewing the computational domain from the side. If the view angle is slightly changed, for example,
rotating it so that the surface can be seen from above, the field is more discernible. However, since
it is evolving over time, the colour scheme range has to constantly be adjusted to avoid saturation,
figure

The second way to visualize the results it to use the filter “warp by vector”, selecting zeta, to be
the governing parameter, figure This way, a deformation of the free surface with an approximate
geometry of the waves can be clearly seen. In some points, however, some non-physical distortions
appear, caused by the fact that the grid must represent both the warped surface caused by the wave
and the floatingBox geometry.

43

CHAPTER 6. RESULTS

— zeta Magnitude

i 0.018881746086
View from above 0016

0.012
0.008

0.004

View from the side 0

Figure 6.3: Warped representation of the zeta field. Some incorrect representations of the free surface can
be seen near the box and just first wave, where the freeSurface cell faces intersect the opposite cell faces.

In figure [6.4) two zoomed in representations of the mesh are displayed.

Figure 6.4: View of the lack of movement of the points defining the boundaries during the simulation, even
though the floating object close to them is moving. Left - Initial mesh. Right - Deformed mesh.

As can be seen, even though the floating box is moving and deforming the mesh, the points
defining the free surface boundary do not move. This is apparent by the extremely large deformation
of the first layer of cells below the free surface near box limits, when compared to other deformed
cells. This lack of adaptivity of the boundary points has two important consequences. First, it
will cause the mesh to collapse even for very small movements the the body, if it intersects the
free surface cells. Second, the dynamic free surface effects over the body when it is submerged will
not be computed correctly. The overall result of this is the limitation of the simulations to bodies
that do not get completely submerged and that only have very small movements around their initial
position.

44

Chapter 7

Modifications to the work
presented

The modifications proposed will be directed to test case presented and not to the solver.

The characteristics and number of bodies are easily modified. The shape of the objects can be
modified by changing the dimensions of the boxes that define them in the corresponding topoSet
dictionary file. In the same way, the position of the objects may be modified by translating the same
boxes.

To add new objects to simulations, the corresponding new patches must be added to 0.org/U,
0.org/p_gh, 0.org/p, blockMeshDict and 0.org/pointDisplacement and new topoSet dictionary
files must be created for each new body. The characteristics of the new patches to be added in these
files are the exactly the same as for the floatingBox, except in 0.org/pointDisplacement. In this
file, if the body is intended to move, the correct rigid body characteristics (mass, moment of inertia,
centre of gravity) must be individually defined for each body. As a starting point, the definitions for
floatingBox may be used as a guidance. In case the object is to be stationary in the mesh, then, the
definitions for it, in all files except 0.org/U, are the same as for floatingObject. In 0.org/U, if the
body is intended to simulate a fictitious forced motion in the same fashion as floatingObject, then
the motion definitions should be set here, in a similar manner as for floatingObject. Otherwise,
it’s definitions in 0.org/U should be the same as for the remaining patches.

Any additional moving bodies must be declared the in the constant/dynamicMeshDict file, for
the solver to know which bodies will cause mesh deformations.

The structure of the new topoSet dictionaries is the same of system/topoSetDict2. Only the
box coordinates and set name must be changed. The set name is not required to have the same
name as the body. However, each body must have a distinct set name in the topoSet dictionaries.
To automatically create these new bodies for each simulations (i.e, without having to run topoSet
and subSetMesh for each simulation), the Allrun script should also be changed. Below the last
line executing the application subSetMesh, the following commands should be added:

rm log.topoSet

rm log.subSetMesh

run Applications topoSet -dict pathToNewTopoSetDictionary
runApplication subsetMesh -overwrite SetName -patch NewObjectName

where pathToNewTopoSetDictionary is the relative path to the topoSet dictionary for the new
object, SetName is the name of the set created in the topoSet dictionary and NewObjectName
is the name of the new object as defined in blockMeshDict, 0.org/U, 0.org/p_gh, 0.org/p and
0.org/pointDisplacement.

The amplitude and frequency of the wave generation can be changed in the file 0.o0rg/U, by
changing the values of the amplitude and frequency fields of the floatingObject patch.

45

Chapter 8

Conclusions

The application of dynamic meshes to potentialFreeSurfaceFoam was successful. No validation
of the actual solution was performed, as that was not the objective of the project.

The motion of the box had to be restrained in the horizontal direction to avoid large mesh de-
formations. This situation is not ideal and limits the applicability of potentialFreeSurfaceDyM-
Foam.

One problem with the approach of potentialFreeSurfaceDyMFoam is that floating bodies
are constructed by removing cells from the top layers of the domain. Even though the dynamic mesh
capability is applied to potentialFreeSurfaceDyMFoam, the points of the domain that define
the boundaries are not able to move. This means that, if the floating body is allowed to move too
much in any direction, the restrictions imposed by being connected to fixed points will cause the
simulation to crash. This is not a problem with solvers such as interDyMFoam, since the floating
bodies defined at the water free surface will not be connected the boundaries of the domain, but to
the interior points.

Another problem with this approach is that by removing free surface boundary cells to define
the floating body, in the time instants where the body is submerged, no free surface effects will
be computed above the body, since the patch is not defined there. This will generate some errors
in the propagation of the waves and in the forces acting on the body. The same effect happens
when the body leaves the water surface, but in this last case, the simulation looses its validity, as
potentialFreeSurfaceDyMFoam is not prepared to handle the water sloshing that would appear
when the body fell back onto the water.

The floating bodies are created via topoSet and subSetMesh, by removing cells from the initial
computational domain. This approach doesn’t allow the definition of body geometries above the
free surface.

The main limitations of the solver presented are the inability to cope with large mesh motions,
the geometric definition of bodies that are only partially submerged, with part of their geometry
above the free surface and the computation of the motion when the bodies are completely submerged.

46

Chapter 9

Future work

As recommendations for future work, the possibility of using the solver to compute large motions of
bodies near the free surface, implying the motion of the boundaries points, should be investigated.
The modifications to the solver in order to accurately compute the solution when bodies that
initially intersect the free surface get completely submerged should also be investigated;
Finally, determining ways to define bodies with geometry above the free surface, in a manner
that is compatible with potentialFreeSurfaceDyMFoam should be investigated.

47

Bibliography

[1] Joel .H Ferziger and Milovan Peric. Computational Methods for Fluid Dynamics. Springer, 2002.

[2] OpenFOAM Foundation. Openfoam v2.1.0: Free surface flow.
http://www.openfoam.org/version2.1.0/free-surface-flow.php, October 2012.

48

	Introduction
	Report description
	Objectives
	Motivation

	Theory of moving meshes
	The solver
	potentialFreeSurfaceFoam
	waveSurfacePressure boundary condition

	Including the dynamic mesh
	Procedure
	potentialFreeSurfaceFoam
	Modifying the solver
	File structure
	Files
	Code
	A bug

	Case set up
	Introduction
	The basic case - oscillatingBox
	Patches
	Boundary and initial conditions
	Mesh motion solution
	Object geometry
	Running the case

	Results
	Modifications to the work presented
	Conclusions
	Future work

