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Chapter 1

1.1 Learning outcomes

The reader will learn:

• to implement and use the solver propellerSimpleFoam.

• to update Erik Svenning’s (course of 2010) work from OpenFOAM 1.5-dev to 2.4x

• general knowledge about actuator disks and propellers

• some theory regarding propeller performance prediction

• what Xfoil can be used for

• to call Xfoil from the code

• to use m4 to parametrize blockMeshDict
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1.2 Introduction and motivation

This work is built on top of Erik Svenning’s work [Svenning, 2010]. Erik implemented an actuator
disk to model the flow around a propeller. The flow was calculated among other things from a given
thrust, torque and prescribed force distribution around the blade (an approximation to the optimum
force distribution defined by Goldstein). The idea behind this new implementation is to be able to
analyze a more realistic propeller by taking into account its geometry, operating conditions and so
on. So first lets start by taking a look at Erik’s implementation. Erik’s original work file can be
downloaded here:
www.tfd.chalmers.se/~hani/kurser/OS_CFD_2010/erikSvenning/erikSvenningFiles.tgz
and the report:
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2010/erikSvenning/erikSvenningReport.pdf

and the files corresponding to the present report:
www.tfd.chalmers.se/~hani/kurser/OS_CFD/GonzaloMonteroVillar/gonzaloMonteroFiles.tgz

1.3 actuatorDiskExplicitForceSimpleFoam by Erik Svenning
updated to OpenFOAM 2.4.x

The actuatorDiskExplicitForceSimpleFoam solver was originally developed for OpenFOAM 1.5-dev, thus, to
make it work in OpenFOAM 2.4.x version, some small adjustments are required. First download and copy
the files into your desktop, and enter that folder.

wget www.tfd.chalmers.se/~hani/kurser/OS_CFD/GonzaloMonteroVillar/gonzaloMonteroFiles.tgz

tar -zxvf gonzaloMonteroFiles.tgz

rm gonzaloMonteroFiles.tgz

mv gonzaloMonteroFiles/ ~/Desktop

cd ~/Desktop/gonzaloMonteroFiles/

Then copy the readSIMPLEControls.H file from the Additional files folder to erikSvenningOriginalFiles/ac-
tuatorDiskExplicitForce and go into that folder

cp Additional\ files/readSIMPLEControls.H erikSvenningOriginalFiles/actuatorDiskExplicitForce/

cd erikSvenningOriginalFiles/actuatorDiskExplicitForce/

Execute (be careful if copy pasting because single quotation is interpreted as a new line by the terminal)

sed -i 's+#include "incompressible/RASModel/RASModel.H"+#include

"incompressible/RAS/RASModel/RASModel.H"+' actuatorDiskExplicitForceSimpleFoam.C

to modify the location where the file RASModel.H is located on the file actuatorDiskExplicitForceSimple-
Foam.C. Then change the content in the Make/options file to:

EXE_INC = \

-I$(LIB_SRC)/turbulenceModels \

-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/RAS/RASModel \

-I$(LIB_SRC)/transportModels \

-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/fvOptions/lnInclude \

-I$(LIB_SRC)/sampling/lnInclude \

-I$(LIB_SRC)/turbulenceModels/RAS \

-I$(LIB_SRC)/finiteVolume/cfdTools/general/include

EXE_LIBS = \

-lincompressibleTurbulenceModel \

-lincompressibleRASModels \

-lincompressibleTransportModels \

-lfiniteVolume \

-lmeshTools \

-lfvOptions \

-lsampling
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Finally type:

OF24x

wmake

to compile actuatorDiskExplicitForceSimpleFoam solver. Now lets do the modifications necessary to run the
case.

cd ../caviyActuatorDisk/system

In fvSchemes in order to update it execute:

sed -i 's+div((nuEff\*dev(grad(U).T()))) Gauss linear;+

div((nuEff\*dev(T(grad(U))))) Gauss linear;+' fvSchemes

and also chanfe the divergence schemes to bounded Gauss in order to avoid a warning by executing (be
careful with the spacing):

sed -i 's+div(phi,U) Gauss upwind;+div(phi,U) bounded Gauss upwind;+' fvSchemes

sed -i 's+div(phi,k) Gauss upwind;+div(phi,k) bounded Gauss upwind;+' fvSchemes

sed -i 's+div(phi,epsilon) Gauss upwind;+div(phi,epsilon) bounded Gauss upwind;+' fvSchemes

and run the case:

cd ..

blockMesh

actuatorDiskExplicitForceSimpleFoam

Finally the result can be visualized using paraFoam by executing:

paraFoam

NOTE: not much is going to appear in the results since it has been run for only a few iterations

1.4 Theory background and tools used

This section presents the equations used to compute the thrust and torque produced at each radial station
of the blade. The propeller blade will be discretised into a finite number of elements that will be treated
individually to calculate their contribution to the thrust and torque produced. To calculate the total thrust
and torque all of them are summed up.

1.4.1 Nomenclature
r radial coordinate
R tip radius
T thrust
Q torque
β(r) local blade pitch angle
φ(r) local flow angle
α(r) local angle of attack
Γ(r) local blade circulation
B number of blades
V freestream velocity
Ω rotational speed
c(r) local blade chord

W (r) local relative velocity
cl(r) local blade lift coefficient
cd(r) local blade drag coefficient
λ advance ratio (= V/ωR)
λw(r) local wake advance

ratio(= rWa/(RWt))
ρ fluid density
µ fluid viscosity
a fluid speed of sound
()a, ()t axial and tangential components
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Figure 1.1: Velocity parametrization by ψ

1.4.2 Obtaining thrust and torque

Firstly, all the velocities are going to be expressed with respect to the angle ψ. This can be seen in Fig. 1.1.
Newton method will be used to solve iteratively starting from a guessed value of ψ. The system of equations
for which the iterative method is solved reads:

Ua = V + ua (1.1)

Ut = Ωr − ut (1.2)

U =
√
U2

a + U2
t (1.3)

Wa(ψ) = 0.5Ua + 0.5Usinψ (1.4)

Wt(ψ) = 0.5Ut + 0.5Ucosψ (1.5)

va(ψ) = Wa − Ua (1.6)

vt(ψ) = Ut −Wt (1.7)

α(ψ) = β − arctan(Wa/Wt) (1.8)

W (ψ) =
√
W 2

a +W 2
t (1.9)

λw(ψ) =
rWa

RWt
(1.10)

f(ψ) = 0.5B

(
1− r

R

)
1

λw
(1.11)

F (ψ) =
2

π
arccos(e−f ) (1.12)

Γ(ψ) = vt
4πr

B
F

√√√√1 +

(
4λwR

πBr

)2

(1.13)

We can also get the circulation as:

Γ =
1

2
Wccl (1.14)

Finally with the two last relations for the circulation (Eqs. 1.13 and 1.14) we can establish a residual used
for the aforementioned Newton iterations as:

R(ψ) = vt
4πr

B
F

√√√√1 +

(
4λwR

πBr

)2

− 1

2
Wccl (1.15)

The Newton update for ψ then reads:

δψ = − R

dR/dψ
(1.16)
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ψ ← ψ + δψ (1.17)

Once convergence has been reached, the angle of attack, and flow relative velocity to the blades are known
and the lift (L) and drag (D) forces can be obtained per radial station using the airfoil polars. What the
airfoil polars are and how they are obtained will be discussed later. The lift and drag forces per radial
station (dT and dQ) can be decomposed into thrust and torque as seen in Fig. 1.2 leading to

dT = B
1

2
ρW 2(cl cosφ− cd sinφ)c dr (1.18)

dQ = B
1

2
ρW 2(cl sinφ+ cd cosφ)c r dr, (1.19)

Figure 1.2: Lift and drag decomposition

In equations 1.18 and 1.19 dr is the differential radial corresponding to each elements in which the blade
has been discretised.
Drela [2006] gives a more detailed description on the theory. The thrust and torque represent the whole
contribution at that radial station, and thus, since an actuator disk is going to be simulated, this contribution
needs to be equally spread among all the computational cell at that radius. That is why, as it can be seen
in Sec. 1.4.5 a cylindrical mesh has been chosen. Once equally spread, the thrust and torque will be
decomposed in forces in the x, y and z direction and added to the momentum equation as a source term in
the solver.

1.4.3 Airfoil polars

Airfoil polars are going to be a really important thing to take into account when calculating the flow around
the propeller, not only because they are use to obtain the lift and drag coefficients, but also because they
are a direct consequence of the choice made for the airfoil shapes to use. These curves relate lift and drag
coefficients with the blade angle of attack. A typical airfoil polar can be seen in Fig. 1.3.
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Figure 1.3: Airfoil polars
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1.4.4 The Xfoil tool

Xfoil is a program written in Fortran that among other things allows us to generate the polars of a given
airfoil and that is released under the GNU General Public License. For purposes of the implementation
of the OpenFOAM application some small modifications have been made. First download the software by
typing

cd ~/Desktop

wget http://web.mit.edu/drela/Public/web/xfoil/xfoil6.99.tgz

and uncompress it with the command:

tar -zxvf xfoil6.99.tgz

rm xfoil6.99.tgz

Lets modify a couple of lines in the source code:

cd ~/Desktop/Xfoil/src/

In this file some lines need to be commented by writing a ′C′ at the beginning of each line (lines 511 to 518,
534, 548, 550, 554 to 558, 560 to 562, 630 and 631). This can be done by executing:

sed -i '511,518{s/^/C/}' iopol.f

sed -i '534{s/^/C/}' iopol.f

sed -i '548{s/^/C/}' iopol.f

sed -i '550{s/^/C/}' iopol.f

sed -i '554,558{s/^/C/}' iopol.f

sed -i '560,562{s/^/C/}' iopol.f

sed -i '630,631{s/^/C/}' iopol.f

This will modify the format of the output so it is more suitable for its later use. The compilation instructions
need to also to be modified for it to compile (in Chalmers computers). The instructions are:

cd ~/Desktop/Xfoil/orrs

One line of the file src/osmap.f needs to be modified, which can be done as:

sed -i s#"/home/codes/orrs/osmapDP.dat"#$PWD/osmapDT.dat#g src/osmap.f

sed -i s#$HOME#"~"#g src/osmap.f

In order to comment lines 14 to 17 inclusive, by placing # at the beginning of each line in the file bin/Makefile,
execute

sed -i '14,17{s/^/#/}' bin/Makefile

Lets compile part of the code

cd ~/Desktop/Xfoil/orrs/bin

make osgen

make osmap.o

We still need to modify some more files

cd ~/Desktop/Xfoil/plotlib/

sed -i 's+PLTLIB = libPlt_gSP.a+PLTLIB = libPlt_gDP.a+' config.make

make

cd ~/Desktop/Xfoil/bin

sed -i 's+BINDIR = /home/codes/bin/+BINDIR = .+' Makefile_gfortran

Finally the applications can be compiled:
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make -f Makefile_gfortran xfoil

make -f Makefile_gfortran pplot

make -f Makefile_gfortran pxplot

If the compilation shows an error such as this one,

install: `xfoil' and `./xfoil' are the same file

make: *** [xfoil] Error 1

or equivalent for pplot or pxplot, do not worry, the compilation worked properly. The reason behind this
error is that it is trying to move the compiled binaries to the specified directory (BINDIR), but we have
chosen the current directory. Thus it is trying to move the binaries to the directory where they currently
are. For more information on how to use Xfoil refer to
http://web.mit.edu/drela/Public/web/xfoil/

1.4.5 m4 script for the mesh

In order to be able to modify the mesh easily, an m4 (cylindricalMesh.m4 ) script has been written to
generate the blockMeshDict file. In this script,the outer diameter of the cylinder, inner radius, square width
and length of the cylinder will be chosen in order to define the geometry (D, Rs, SS and L respectively). On
the other hand, in order to define how the mesh will be constructed the following parameters can be modified:
NPS (the amount of cells along the side of the square), NPD (the amount of cells from one circumference
to the other in the radial direction), NPDI (amount of cells between the square and the smallest circle) and
NPX (amount of cells in the direction of the free-stream flow). This script has been prepared assuming that
the cross sectional topology of the mesh will be as the one shown in Fig. 1.4.

Figure 1.4: Cross sectional topology of the mesh

In order to generate the blockMeshDict from the .m4 file, the following command is executed:

m4 cylindricalMesh.m4 > blockMeshDict

cylindricalMesh.m4

The script itself is presented here:

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.4.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;
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object blockMeshDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

changecom(//)changequote([,])

define(calc, [esyscmd(perl -e 'printf (\$1)')])

define(VCOUNT, 0)

define(vlabel, [[// ]Vertex \$1 = VCOUNT define(\$1, VCOUNT)define([VCOUNT], incr(VCOUNT))])

convertToMeters 1;

define(D, 6) //column diameter

define(L, 40) // length

define(PI, 3.14159265)

define(R, calc(D/2))

rBig R;

define(Rs, calc(D/15)) //Radius of the smallest section

rSmall Rs;

define(SS, calc(D/70)) // width of half of the square side

halfSquare SS;

define(CW, calc(Rs*cos((PI/180)*45)))

define(CX, calc(R*cos((PI/180)*45)))

define(CZ, calc(R*sin((PI/180)*45)))

define(NPS, 4) //how many cells in the square section

NPSValue NPS;

define(NPD, 20) //how many cells from perimeter to perimeter

NPDValue NPD;

define(NPDI,3) // how many cells from square to perimeter

NPDIValue NPDI;

define(NPX, 70) // how many cells in X

NPXValue NPX;

vertices

(

(0.0 CW CW)

(0.0 -CW CW)

(0.0 -CW -CW)

(0.0 CW -CW)

(0.0 CX CZ)

(0.0 -CX CZ)

(0.0 -CX -CZ)

(0.0 CX -CZ)

(L CW CW)

(L -CW CW)

(L -CW -CW)

(L CW -CW)

(L CX CZ)

(L -CX CZ)

(L -CX -CZ)

(L CX -CZ)

(0.0 SS SS)

(0.0 -SS SS)

(0.0 -SS -SS)

(0.0 SS -SS)

(L SS SS)

(L -SS SS)

(L -SS -SS)

(L SS -SS)

);

blocks

(

hex (6 14 10 2 5 13 9 1) (NPX NPD NPS) simpleGrading (2 1 1)

hex (6 14 15 7 2 10 11 3) (NPX NPS NPD) simpleGrading (2 1 1)
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hex (3 11 15 7 0 8 12 4) (NPX NPD NPS) simpleGrading (2 1 1)

hex (1 9 8 0 5 13 12 4) (NPX NPS NPD) simpleGrading (2 1 1)

hex (18 22 23 19 17 21 20 16) (NPX NPS NPS) simpleGrading (2 1 1)

hex (2 10 22 18 1 9 21 17) (NPX NPDI NPS) simpleGrading (2 1 1)

hex (17 21 20 16 1 9 8 0) (NPX NPS NPDI) simpleGrading (2 1 1)

hex (19 23 11 3 16 20 8 0) (NPX NPDI NPS) simpleGrading (2 1 1)

hex (2 10 11 3 18 22 23 19) (NPX NPS NPDI) simpleGrading (2 1 1)

);

edges

(

arc 6 5 (0.0 -R 0.0)

arc 5 4 (0.0 0.0 R)

arc 7 4 (0.0 R 0.0)

arc 6 7 (0.0 0.0 -R)

arc 14 13 (L -R 0.0)

arc 13 12 (L 0.0 R)

arc 15 12 (L R 0.0)

arc 14 15 (L 0.0 -R)

arc 2 1 (0.0 -Rs 0.0)

arc 1 0 (0.0 0.0 Rs)

arc 3 0 (0.0 Rs 0.0)

arc 2 3 (0.0 0.0 -Rs)

arc 10 9 (L -Rs 0.0)

arc 9 8 (L 0.0 Rs)

arc 11 8 (L Rs 0.0)

arc 10 11 (L 0.0 -Rs)

);

boundary

(

inlet

{

type patch;

faces

(

(2 6 5 1)

(0 1 5 4)

(7 3 0 4)

(7 6 2 3)

(19 18 17 16)

(18 2 1 17)

(17 1 0 16)

(19 16 0 3)

(18 19 3 2)

);

}

outlet

{

type patch;

faces

(

(14 15 11 10)

(11 15 12 8)

(8 12 13 9)

(14 10 9 13)

(22 23 20 21)

(10 11 23 22)

(10 22 21 9)

(21 20 8 9)

(23 11 8 20)
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);

}

walls

{

type wall;

faces

(

(6 14 13 5)

(5 13 12 4)

(4 12 15 7)

(15 14 6 7)

);

}

);

mergePatchPairs

(

);

1.5 Functions defined in propellerSimpleFoam

Here is a summary of which functions have been implemented in the solver and what they do:

• ReadGeometry: reads the values under the propellerData subdictionary in fvSolution. It also calculates
the x size of each cell.

• CalcActuatorDiskVolForce: decomposes the thrust and torque calculated in calculateThrustAndTorque
function and puts them into VolumeForce that will be added as a source term in the momentum
equation.

• WriteVTK: generated a .vtk file that will show the outer surface of the propeller so it can be visualized.

• PointIsInDisk: checks if a given point belong to the actuator disk region or not.

• calculateThrustAndTorque: by means of the equations shown in Sec. 1.4 calculates thrust and torque.

• calculatePolars: if chosen by the user, will call Xfoil and generate the polars according to what is
found in the polarsData subdictionary in fvSolution.

1.6 Implementation of propellerSimpleFoam

NOTE: if trying to follow this procedure, be careful with copy pasting. In the pdf some lines have been
divided in several lines to make them fit in the page width. This should be corrected when implementing
the code, if not some errors will appear when compiling. If one line’s indent is greater than usual (assuming
that the indent is not due to the fact that it is inside a lop or so) should mean that it is a line that has been
divided. For example all this piece of code represent one line in the code:

prop.CalcActuatorDiskVolForce(mesh, VolumeForce, nps, npd, rIn, rOut, xDimension,

actuatorDiskThickness, xCoordinateActuatorToPlot, betaVal, chordVal, radiiVal,

sizeGeo, polarDist, sizeDist);

The starting point for the implementation of propellerSimpleFoam will be Erik’s work that have just been
updated to work in OpenFOAM 2.4x. We are going to proceed to review all the changes done one by one.
In case one wants the final files directly, this can be found under the folder called propeller (both the solver
and the case). Lets start by copying the actuatorDiskExplicitForce and renaming all the files.

cd ~/Desktop/gonzaloMonteroFiles/erikSvenningOriginalFiles/

cp -r actuatorDiskExplicitForce/ $WM_PROJECT_USER_DIR/applications/

cd $WM_PROJECT_USER_DIR/applications/

mv actuatorDiskExplicitForce propellerSimpleFoam

cd propellerSimpleFoam

mv actuatorDiskExplicitForceSimpleFoam.C propellerSimpleFoam.C

mv actuatorDiskExplicitForce.cpp propeller.cpp

mv actuatorDiskExplicitForce.h propeller.h

rm *.dep

10



1.6. IMPLEMENTATION OF PROPELLERSIMPLEFOAM CHAPTER 1.

Lets modify the file Make/files:

sed -i 's+actuatorDiskExplicitForce+propeller+' Make/files

With these changes we will make sure that when compiling all the correct files and libraries are used, and also
that the name of the solver is as desired, propellerSimpleFoam. Lets go ahead with the propellerSimpleFoam.C
file modifications.

sed -i 's+#include "actuatorDiskExplicitForce.h"+#include "propeller.h"+' propellerSimpleFoam.C

Right after all the initial #include statements introduce this piece of code (after # include ”initContinuity-
Errs.H”):

//read values from blockMeshDict

fileName polyMeshDir;

IOdictionary meshDict

(

IOobject

(

"polyMesh/blockMeshDict",

runTime.constant(),

polyMeshDir,

runTime,

IOobject::MUST_READ,

IOobject::NO_WRITE,

false

)

);

scalar nps;

scalar npd;

scalar rIn;

scalar rOut;

ITstream& is1 = meshDict.lookup("NPSValue");

is1.format(IOstream::ASCII);

is1 >> nps;

ITstream& is2 = meshDict.lookup("NPDValue");

is2.format(IOstream::ASCII);

is2 >> npd;

ITstream& is3 = meshDict.lookup("rBig");

is3.format(IOstream::ASCII);

is3 >> rOut;

ITstream& is4 = meshDict.lookup("rSmall");

is4.format(IOstream::ASCII);

is4 >> rIn;

//Initilization of xDimension

volScalarField xDimension

(

IOobject

(

"xDimension",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh
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);

scalar actuatorDiskThickness;

scalar xCoordinateActuatorToPlot;

//read the distribution of the polars along the radius

std::ifstream fileDist("polarDistribution.txt");

int sizeDist;

fileDist>>sizeDist;

double polarDist[sizeDist];

for (int j=0;j<sizeDist;j++)

{

fileDist >>polarDist[j];

}

std::ifstream fileGeo("geometry.txt");

int sizeGeo;

fileGeo>>sizeGeo;

double chordVal[sizeGeo];

double betaVal[sizeGeo];

double radiiVal[sizeGeo];

for (int j=0;j<sizeGeo;j++)

{

fileGeo >>radiiVal[j]>>chordVal[j]>>betaVal[j];

}

Here several things are done. First some values from the blockMeshDict dictionary are read, and stored
for later use. We also initialize a volScalarField called xDimension, that later will be filled with the length
in the x direction each cell. This values will be used later to be able to identify if a cell location belongs
to the area where the the actuator disk is placed. Finally we read and store the values from the files
geometry.txt and polarDistribution.txt, which contents will be explained later (in Sec. 1.7.2). Following with
the implementation process, lets keep applying changes (still in propellerSimpleFoam.C )

sed -i 's+actuatorDiskExplicitForce+propeller+' propellerSimpleFoam.C

sed -i 's+actuatorDisk+prop+' propellerSimpleFoam.C

Next we will remove

//Write geometry to VTK

prop.WriteVTK();

and we insert at the end of the file (right before return (0);)

//Write geometry to VTK

prop.WriteVTK(actuatorDiskThickness, xCoordinateActuatorToPlot);

Finally execute:

sed -i 's+prop.ReadGeometry(mesh);+prop.ReadGeometry(mesh, xDimension);+' propellerSimpleFoam.C

sed -i 's+scalar propThickness;+scalar actuatorDiskThickness;+' propellerSimpleFoam.C

Those are all the changes needed in propellerSimpleFoam.C. Now we can move on to make the necessary
modifications to the propeller.h file. First execute

sed -i 's+ACTUATORDISKEXPLICITFORCE_H_+PROPELLER_H_+' propeller.h

sed -i 's+actuatorDiskExplicitForce+propeller+' propeller.h

and replace the all the public: functions with:

void ReadGeometry(const fvMesh &iMesh, volScalarField &xDimension);

void CalcActuatorDiskVolForce(const fvMesh &iMesh, volVectorField &ioVolumeForce,

const scalar &nps, const scalar &npd, const scalar &rIn, const scalar &rOut,

volScalarField &xDimension, scalar &actuatorDiskThickness, scalar

&xCoordinateActuatorToPlot,const double betaVal[],const double chordVal[], const

double radiiVal[],const int sizeGeo, const double polarDist[], const int sizeDist);

void WriteVTK(scalar &actuatorDiskThickness, scalar &xCoordinateActuatorToPlot);
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Redefining some function definitions in order to be able to give as an argument all the new variables needed
for the computation, such as mFlightSpeed. In the private: section, lets add the following data members
after the ones that are already there (after scalar mRho;).

scalar mRpm;

scalar mTemperature;

scalar mB; //number of blades

scalar mViscosity;

scalar mReRef;

scalar mReExp;

scalar mDeltaBeta;

scalar mFlightSpeed;

vector mCentrePoint;

and remove these one that will not be needed anymore:

vector mPointStartCenterLine;

vector mPointEndCenterLine;

scalar mThrust, mTorque;

Finally we remove the declarations of the private member functions and we add the following ones:

bool PointIsInDisk(const vector &iCentrePoint, const vector &iPoint, scalar &oDist2,

vector &oCircumferentialDirection, const scalar &xDimensionOfCell);

scalar iterationLoop(const scalar &Ut, const scalar &U, const double alphaVal[],

const double ClVal[], const int sizePol, const int sizeGeo, const scalar &r,

const double betaVal[], const double chordVal[], const double radiiVal[],

const scalar &psi);

void calculateThrustAndTorque(const double alphaVal[], const double ClVal[],

const double CdVal[], const int sizePol, const int sizeGeo, const scalar &r,

const double betaVal[], const double chordVal[], const double radiiVal[],

const scalar &dr, scalar &thrust, scalar &torque);

scalar interpolate(const double valuesSearchFrom[],

const double valuesSearchOn[], const scalar valueInt, const int size);

void calculatePolars(const fvMesh &iMesh);

In this last step four new functions have been declared, that will later be explained. Note that the definition
for the functions CalcAxialForce, CalcCircForce and CalcDiskThickness have been removed, since in the
case of using propellerSimpleFoam application, both CalcAxialForce and CalcCircForce have been replaced
by calculateThrustAndTorque. This is necessary since the propeller model is different as explained in Sec.
1.4. These are all the changes concerning propeller.h file.
Several modifications need to be done in propeller.cpp file. First

sed -i 's+#include "actuatorDiskExplicitForce.h"+#include "propeller.h" \n #include

<fstream> \n #include <string>+' propeller.cpp

sed -i 's+actuatorDiskExplicitForce+propeller+' propeller.cpp

sed -i 's+actuatorDiskExplicitForce+propeller+' propeller.cpp

sed -i 's+subDict("actuatorDisk")+subDict("propellerData")+' propeller.cpp

The contents in the default constructor should be replace with:

mCentrePoint.x() = 0.0;

mCentrePoint.y() = 0.0;

mCentrePoint.z() = 0.0;

mExtRadius = 0.0;

mIntRadius = 0.0;

mRho = 1.225;

mRpm = 0;

mTemperature = 293.15; //in Kelvin

mB = 3; //number of blades

mViscosity = 0.178e-4;

mReRef = 500000;

mReExp = 0.0;
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The declaration of the function ReadGeometry needs to be changed to:

void propeller::ReadGeometry(const fvMesh &iMesh, volScalarField &xDimension)

At the beginning of the definition of ReadGeometry, some variables are read from the fvSolution dictionary.
There remove:

Istream& is3 = iMesh.solutionDict().subDict("actuatorDisk").lookup("thrust");

is3.format(IOstream::ASCII);

is3 >> mThrust;

Istream& is4 = iMesh.solutionDict().subDict("actuatorDisk").lookup("torque");

is4.format(IOstream::ASCII);

is4 >> mTorque;

and also remove

Istream& is7 = iMesh.solutionDict().subDict("actuatorDisk").lookup("startPoint");

is7.format(IOstream::ASCII);

is7 >> mPointStartCenterLine;

Istream& is8 = iMesh.solutionDict().subDict("actuatorDisk").lookup("endPoint");

is8.format(IOstream::ASCII);

is8 >> mPointEndCenterLine;

and add the following lines:

Istream& is21 = iMesh.solutionDict().subDict("propellerData").lookup("centrePoint");

is21.format(IOstream::ASCII);

is21 >> mCentrePoint;

Istream& is7 = iMesh.solutionDict().subDict("propellerData").lookup("flightSpeed");

is7.format(IOstream::ASCII);

is7 >> mFlightSpeed;

Istream& is8 = iMesh.solutionDict().subDict("propellerData").lookup("rpm");

is8.format(IOstream::ASCII);

is8 >> mRpm;

Istream& is9 = iMesh.solutionDict().subDict("propellerData").lookup("temperatureKelvin");

is9.format(IOstream::ASCII);

is9 >> mTemperature;

Istream& is10 = iMesh.solutionDict().subDict("propellerData").lookup("numberOfBlades");

is10.format(IOstream::ASCII);

is10 >> mB;

Istream& is11 = iMesh.solutionDict().subDict("propellerData").lookup("dynamicViscosity");

is11.format(IOstream::ASCII);

is11 >> mViscosity;

Istream& is12 = iMesh.solutionDict().subDict("propellerData").lookup("ReRef");

is12.format(IOstream::ASCII);

is12 >> mReRef;

Istream& is13 = iMesh.solutionDict().subDict("propellerData").lookup("ReExp");

is13.format(IOstream::ASCII);

is13 >> mReExp;

Istream& is14 = iMesh.solutionDict().subDict("propellerData").lookup("deltaBeta");

is14.format(IOstream::ASCII);

is14 >> mDeltaBeta;
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Here some extra variables are read from the fvSolution dictionary. The reason why we are using so many
new is that we are taking into account the operating condition of the propeller (rpm, temperature ...). Right
after that insert now:

const faceList & ff = iMesh.faces();

const pointField & pp = iMesh.points();

scalar xDim;

forAll ( iMesh.C(), celli)

{

const cell & cc = iMesh.cells()[celli];

labelList pLabels(cc.labels(ff));

pointField pLocal(pLabels.size(), vector::zero);

forAll (pLabels, pointi)

{

pLocal[pointi] = pp[pLabels[pointi]];

}

xDim = Foam::max(pLocal & vector(1,0,0)) - Foam::min(pLocal & vector(1,0,0));

xDimension[celli] = xDim;

}

//calcualte polars if needed

calculatePolars(iMesh);

and remove:

if(debug >= 2) {

Info << "Actuator disk values loaded from fvSolution:\n";

Info << "mIntRadius: " << mIntRadius << "\n";

Info << "mExtRadius: " << mExtRadius << "\n";

Info << "mThrust: " << mThrust << "\n";

Info << "mTorque: " << mTorque << "\n";

Info << "mRho: " << mRho << "\n";

Info << "mPointStartCenterLine: " << mPointStartCenterLine << "\n";

Info << "mPointEndCenterLine: " << mPointEndCenterLine << "\n";

}

Before, in propellerSimpleFoam.C a volScalarField has been declared, xDimension, and here is where values
are assigned to it. In this piece of code every cell’s x dimension is calculated and stored in the volScalarField.
Also the last line calls calculatePolars function, which will generate airfoil polars by means of Xfoil if required
by the user.
Again, another function declaration, in this case the one for CalcActuatorDiskVolForce needs to be changed
to:

void propeller::CalcActuatorDiskVolForce(const fvMesh &iMesh, volVectorField

&ioVolumeForce, const scalar &nps, const scalar &npd, const scalar &rIn, const scalar &rOut,

volScalarField &xDimension, scalar &actuatorDiskThickness, scalar &xCoordinateActuatorToPlot,

const double betaVal[],const double chordVal[],const double radiiVal[],const int

sizeGeo, const double polarDist[], const int sizeDist){

Lets see what needs to be changed inside the definition of CalcActuatorDiskVolForce. Right before the for
loop (for(label i = 0; i ¡ iMesh.C()...)insert this piece of code,

scalar TotalForce(0.0);

scalar TotalTorque = 0.0;

int nPolars;

Istream& is=iMesh.solutionDict().subDict("propellerData").lookup("numberOfPolars");

is.format(IOstream::ASCII);

is >> nPolars;

std::ifstream filePol2("polarsData.txt");
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int sizePols[nPolars];

int maxSize = 0;

for (int j=0;j<nPolars;j++)

{

filePol2 >> sizePols[j];

if (maxSize < sizePols[j])

{

maxSize = sizePols[j];

}

}

double alphaValAll[maxSize][nPolars];

double ClValAll[maxSize][nPolars];

double CdValAll[maxSize][nPolars];

for (int k=0;k<nPolars;k++)

{

for (int i=0;i<sizePols[k];i++)

{

filePol2 >> alphaValAll[i][k]>>ClValAll[i][k]>>CdValAll[i][k];

}

}

scalar dr = (rOut-rIn)/npd;

scalar numberOfCellsCirc = 4*nps;

scalar thrust;

scalar torque;

we can also remove the line that reads:

ReadGeometry(iMesh);

and these ones too:

vector TotalForce(0.0,0.0,0.0);

scalar TotalTorque = 0.0;

Here first we check how many airfoil polars are there, and then each of them is extracted from a .txt file,
stored and divided into α, Cl and Cd values. This is really of great importance since the lift and the
drag forces will aid, not only on the Newton iteration method described in Sec. 1.4 but also because the
decomposition of them will be used for the calculation of the thrust and torque (see Eqs. 1.18 and 1.19).
Inside the definition of CalcActuatorDiskVolForce function, at the beginning of the for loop (for(label i = 0;
i ¡ iMesh.C().size()...) replace:

if(PointIsInDisk(mPointStartCenterLine,mPointEndCenterLine,iMesh.C()[i],RadialDist2, LineTangent,

CircumferentialDirection)) {

with:

if(PointIsInDisk(mCentrePoint,iMesh.C()[i],RadialDist2,CircumferentialDirection, xDimension[i])) {

inside the for label i=0... for loop, inside the if(PointIsInDisk... replace:

vector axialForce = LineTangent*CalcAxialForce(sqrt(RadialDist2),mRho)/mRho;

ioVolumeForce[i] += axialForce;

//compute the total force added to the actuator disk, this is just for control

TotalForce += axialForce*iMesh.V()[i];

vector circForce = CircumferentialDirection*

CalcCircForce(sqrt(RadialDist2),mRho)/mRho;

ioVolumeForce[i] += circForce;

TotalTorque += (CalcCircForce(sqrt(RadialDist2),mRho)/mRho)*

sqrt(RadialDist2)*iMesh.V()[i];

DiskVolume += iMesh.V()[i];
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with

thrust=0;

torque=0;

int exactOrOutsideRangePos=0;

int polarNumberToUse=0;

int firstPolarNumber=0;

if (sqrt(RadialDist2)/mExtRadius<polarDist[0] ||

sqrt(RadialDist2)/mExtRadius==polarDist[0])

{

exactOrOutsideRangePos=1;

polarNumberToUse=0;

}

else if (sqrt(RadialDist2)/mExtRadius>polarDist[sizeDist-1] ||

sqrt(RadialDist2)/mExtRadius==polarDist[sizeDist-1])

{

exactOrOutsideRangePos=1;

polarNumberToUse=sizeDist-1;

}

else

{

for (int l=0;l<sizeDist-1;l++)

{

if (sqrt(RadialDist2)/mExtRadius==polarDist[l])

{

exactOrOutsideRangePos=1;

polarNumberToUse=l;

break;

}

if (sqrt(RadialDist2)/mExtRadius>polarDist[l] &&

sqrt(RadialDist2)/mExtRadius<polarDist[l+1])

{

firstPolarNumber=l;

exactOrOutsideRangePos=0;

break;

}

}

}

if (exactOrOutsideRangePos==1 || nPolars==1)

{

if (nPolars==1)

{

polarNumberToUse=0;

}

double alphaVal[sizePols[polarNumberToUse]];

double ClVal[sizePols[polarNumberToUse]];

double CdVal[sizePols[polarNumberToUse]];

for (int l=0;l<sizePols[polarNumberToUse];l++)

{

alphaVal[l]=alphaValAll[l][polarNumberToUse];

ClVal[l]=ClValAll[l][polarNumberToUse];

CdVal[l]=CdValAll[l][polarNumberToUse];

}

calculateThrustAndTorque(alphaVal, ClVal, CdVal, sizePols[polarNumberToUse],

sizeGeo,sqrt(RadialDist2), betaVal, chordVal,radiiVal, dr, thrust,torque);

}

else

{

scalar thrust1=0;
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scalar torque1=0;

double alphaVal1[sizePols[firstPolarNumber]];

double ClVal1[sizePols[firstPolarNumber]];

double CdVal1[sizePols[firstPolarNumber]];

double r1 = polarDist[firstPolarNumber];

for (int l=0;l<sizePols[firstPolarNumber];l++)

{

alphaVal1[l]=alphaValAll[l][firstPolarNumber];

ClVal1[l]=ClValAll[l][firstPolarNumber];

CdVal1[l]=CdValAll[l][firstPolarNumber];

}

calculateThrustAndTorque(alphaVal1,ClVal1,CdVal1, sizePols[firstPolarNumber],

sizeGeo, sqrt(RadialDist2), betaVal, chordVal, radiiVal, dr, thrust1, torque1);

scalar thrust2=0;

scalar torque2=0;

double alphaVal2[sizePols[firstPolarNumber+1]];

double ClVal2[sizePols[firstPolarNumber+1]];

double CdVal2[sizePols[firstPolarNumber+1]];

double r2 = polarDist[firstPolarNumber+1];;

for (int i=0;i<sizePols[firstPolarNumber+1];i++)

{

alphaVal2[i]=alphaValAll[i][firstPolarNumber+1];

ClVal2[i]=ClValAll[i][firstPolarNumber+1];

CdVal2[i]=CdValAll[i][firstPolarNumber+1];

}

calculateThrustAndTorque(alphaVal2,ClVal2,CdVal2, sizePols[firstPolarNumber+1],

sizeGeo, sqrt(RadialDist2), betaVal, chordVal, radiiVal, dr, thrust2, torque2);

thrust=(thrust2-thrust1)*(sqrt(RadialDist2)/mExtRadius-r1)/(r2-r1)+thrust1;

torque=(torque2-torque1)*(sqrt(RadialDist2)/mExtRadius-r1)/(r2-r1)+torque1;

}

vector axialForce = vector(1, 0, 0)*thrust/(numberOfCellsCirc*mRho*iMesh.V()[i]);

ioVolumeForce[i] += axialForce;

TotalForce += thrust/numberOfCellsCirc;

vector circForce = CircumferentialDirection*torque/

(numberOfCellsCirc*mRho*iMesh.V()[i]*sqrt(RadialDist2));

ioVolumeForce[i] += circForce;

TotalTorque += torque/numberOfCellsCirc;

actuatorDiskThickness = xDimension[i];

xCoordinateActuatorToPlot = iMesh.C()[i].x();

With this piece of code, first the actual radial position is evaluated with respect to the ones given in
polarDistribution.txt to see in which range it is, and therefore which polar, or polars should it use to
calculate the thrust and torque. The polarDistribution.txt will divide the blade into sections with different
airfoil shapes. If it happens that the cell that is being analyzed lays on the radial position where a polar
type is defined for that, it will use that one. If it is somewhere in between two of them, linear interpolation
will be used. Right before the end of the declaration of CalcActuatorDiskVolForce remove:

Info << "Total disk volume: " << DiskVolume << "\n";

and add:

// Some dimensionles numbers

scalar n=mRpm/60;
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scalar diameter=mExtRadius*2;

scalar J=mFlightSpeed/(n*diameter);

scalar Ct=TotalForce/(mRho*pow(n,2)*pow(diameter,4));

scalar Cp=TotalTorque*n*2*3.1415/(mRho*pow(n,3)*pow(diameter,5));

scalar efficiency=Ct*J/Cp;

Info << "Advance ratio: " <<J<<"\n";

Info << "Thrust coefficient: " <<Ct<<"\n";

Info << "Power coefficient: " <<Cp<<"\n";

Info << "Propeller efficiency: " <<efficiency<<"\n\n";

Finally once the forces have been computed some typical dimensionless numbers (when working with pro-
pellers) are printed in the screen. These dimensionless numbers are defined according to Eqs. 1.20 to
1.23.

Advance ratio → J =
Vfreestream

n D
(1.20)

Thrust coefficient → CT =
T

ρn2 D4
(1.21)

Power coefficient → CP =
P

ρn3 D5
(1.22)

Efficiency → η = CT
J

CP
(1.23)

where n is the angular velocity of the blades in [rev/s].
The writeVTK function declaration needs to be changed to:

void propeller::WriteVTK(scalar & actuatorDiskThickness,

scalar &xCoordinateActuatorToPlot){

In the writeVTK function definition just below the line that reads:

vectorField points(NumPoints,vector::zero);

add the following ones

vector mPointStartCenterLine = mCentrePoint;

vector mPointEndCenterLine =mCentrePoint;

mPointEndCenterLine.x()=xCoordinateActuatorToPlot+actuatorDiskThickness/2;

mPointStartCenterLine.x()=xCoordinateActuatorToPlot-actuatorDiskThickness/2;

Rewrite the whole PointIsInDisk function as:

bool propeller::PointIsInDisk(const vector &iCentrePoint, const vector &iPoint,

scalar &oDist2, vector &oCircumferentialDirection,

const scalar &xDimensionOfCell)

{

/////////////////////////////////////////////////////////////////////////

// Check if a given point is located in the actuator disk region.

/////////////////////////////////////////////////////////////////////////

//Is the center of the disk inside the cell boundaries in the axial direction?

if(!(iCentrePoint.x()>(iPoint.x()-xDimensionOfCell/2) && iCentrePoint.x()<

(iPoint.x()+xDimensionOfCell/2)))

{

return false;

}

vector VecLineToPoint(iPoint - iCentrePoint);

VecLineToPoint.x() = 0.0;

scalar RadialDist2 = VecLineToPoint.x()*VecLineToPoint.x() + VecLineToPoint.y()

*VecLineToPoint.y() + VecLineToPoint.z()*VecLineToPoint.z();

oDist2 = RadialDist2;

//Check if the point is inside the actuator disk in the radial direction
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if(!(RadialDist2<=mExtRadius*mExtRadius&& RadialDist2 >= mIntRadius*mIntRadius))

{

return false;

}

oCircumferentialDirection = vector (1.0, 0.0, 0.0) ^ VecLineToPoint;

oCircumferentialDirection /= mag(oCircumferentialDirection);

return true;

}

As it name suggest this function will check if a given point is in the actuator disk area. Even though it
apparently seems to be the same function as in the case of the actuatorDiskExplicitForceSimpleForce, in fact
is not. In this application the actuator disk is considered to have the width of one cell whereas in Erik’s,
the user could choose the width. Thus several change needed to be adjusted in order to account for that.
Delete the definition of PointIsInHub, CalcAxialForce and CalCircForce since they are not used anymore.
At the end of the file, (before } //end namespace Foam) add this pieces of code which contains the first out
of four new functions implemented.

scalar propeller::interpolate(const double valuesSearchFrom[], const double

valuesSearchOn[], const scalar valueInt, const int size)

{

/////////////////////////////////////////////////////////////////////////

// Interpolates from two given sets of data

/////////////////////////////////////////////////////////////////////////

scalar interpolatedValue = 0;

if (valueInt < valuesSearchFrom[0])

{

interpolatedValue = valuesSearchOn[0];

}

else if (valueInt > valuesSearchFrom[size-1])

{

interpolatedValue = valuesSearchOn[size-1];

}

else

{

for (int i=0;i<size;i++)

{

if (valuesSearchFrom[i] == valueInt)

{

interpolatedValue = valuesSearchOn[i];

break;

}

else if (valuesSearchFrom[i] < valueInt && valuesSearchFrom[i+1]

> valueInt && i < size-1)

{

interpolatedValue = (valuesSearchOn[i+1]-valuesSearchOn[i])*

(valueInt-valuesSearchFrom[i])/(valuesSearchFrom[i+1]-

valuesSearchFrom[i])+valuesSearchOn[i];

break;

}

}

}

return interpolatedValue;

}

As expected this function simply interpolates from two set of values and returns the interpolated value. Note
that it is trimmed, which means that if the value that you want to interpolate for, it is outside the range,
the closest value (either the first or the last one) will be returned. The second function that needs to be
added after the last one reads:

scalar propeller::iterationLoop(const scalar &Ut, const scalar &U, const
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double alphaVal[], const double ClVal[], const int sizePol, const

int sizeGeo, const scalar &r, const double betaVal[], const double

chordVal[], const double radiiVal[], const scalar &psi)

/////////////////////////////////////////////////////////////////////////

// Runs the sets of equations needed to check if convergence has been reached

/////////////////////////////////////////////////////////////////////////

{

scalar pi = M_PI;

scalar Wa = 0.5*mFlightSpeed + 0.5*U*sin(psi);

scalar Wt = 0.5*Ut + 0.5*U*cos(psi);

scalar vt = Ut- Wt;

scalar beta = interpolate (radiiVal, betaVal, r/mExtRadius, sizeGeo)+

mDeltaBeta;

scalar alpha = beta - atan(Wa/Wt)*180/pi;

scalar chord = interpolate (radiiVal, chordVal, r/mExtRadius,

sizeGeo);

scalar W = sqrt(pow(Wt,2) + pow(Wa,2));

scalar a = sqrt(287*1.4*mTemperature);

scalar Ma = W/a;

scalar lambda_w = r*Wa/(mExtRadius*Wt);

scalar f = 0.5*mB*(1-r/mExtRadius)/lambda_w;

scalar F = 2*acos(exp(-f))/pi;

scalar Gamma = vt*4*pi*r*F*sqrt(1+pow(4*lambda_w*mExtRadius

/(pi*mB*r),2))/mB;

scalar Cl = interpolate (alphaVal, ClVal, alpha, sizePol);

//applying local Prantdl-Meyer compressibility factor

Cl = Cl/(sqrt(1 - pow(Ma,2)));

scalar residual = Gamma - 0.5*W*Cl*chord;

return residual;

}

This function will execute the Newton iteration shown in Sec. 1.4 and will return the residual. Also add
this other function:

void propeller::calculateThrustAndTorque(const double alphaVal[], const double

ClVal[], const double CdVal[], const int sizePol, const int sizeGeo, const

scalar &r, const double betaVal[], const double chordVal[], const double

radiiVal[], const scalar &dr, scalar &thrust, scalar &torque)

/////////////////////////////////////////////////////////////////////////

// Calculates the thrust and torque at a given radial position

/////////////////////////////////////////////////////////////////////////

{

scalar pi = M_PI;

scalar residual1 = 1;

scalar residual2 = 0;

scalar eps = 1e-5;

scalar newtonConvergence = 1e-6;

scalar dRdPsi;

scalar deltaPsi = 0;

scalar omega = mRpm*pi/30;

scalar Ut = omega*r;

scalar U = sqrt(pow(mFlightSpeed,2) + pow(Ut,2));

scalar psi = 2*atan(mFlightSpeed/Ut);

while (residual1 > newtonConvergence)

{

psi = psi + deltaPsi;

residual1 = iterationLoop(Ut, U, alphaVal, ClVal, sizePol, sizeGeo, r,

betaVal, chordVal, radiiVal, psi);

residual2 = iterationLoop(Ut, U, alphaVal, ClVal, sizePol, sizeGeo, r,

betaVal, chordVal, radiiVal, psi+eps);
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dRdPsi = (residual2 - residual1)/eps;

deltaPsi = -residual1/dRdPsi;

}

scalar Wa = 0.5*mFlightSpeed + 0.5*U*sin(psi);

scalar Wt = 0.5*Ut + 0.5*U*cos(psi);

scalar beta=interpolate(radiiVal,betaVal,r/mExtRadius, sizeGeo)+mDeltaBeta;

scalar alpha = beta - atan(Wa/Wt)*180/pi;

scalar W = sqrt(pow(Wt,2) + pow(Wa,2));

scalar chord = interpolate (radiiVal, chordVal, r/mExtRadius, sizeGeo);

scalar Re = mRho*W*chord/mViscosity;

scalar a = sqrt(287*1.4*mTemperature);

scalar Ma = W/a;

scalar Cl = interpolate (alphaVal, ClVal, alpha, sizePol);

//applying local Prantdl-Meyer compressibility factor

Cl = Cl/(sqrt(1 - pow(Ma,2)));

scalar Cd = interpolate (ClVal, CdVal, Cl, sizePol);

Cd = Cd * pow(Re/mReRef,mReExp); //Reynolds number correction

scalar phi = atan(Wa/Wt);

thrust = 0.5*mB*mRho*pow(W,2)*(Cl*cos(phi) - Cd*sin(phi))*chord*dr;

torque = 0.5*mB*mRho*pow(W,2)*(Cl*sin(phi) + Cd*cos(phi))*chord*r*dr;

}

This function will call iteratively to iterationLoop until convergence has been reached and then it will compute
thrust and torque from Eqs. 1.18 and 1.19. And the last one:

void propeller::calculatePolars(const fvMesh &iMesh)

/////////////////////////////////////////////////////////////////////////

// If needed will calculate the polars by means of Xfoil

/////////////////////////////////////////////////////////////////////////

{

int nPolarsToGenerate;

Istream& is15 = iMesh.solutionDict().subDict("polarsData").

lookup("generatePolars");

is15.format(IOstream::ASCII);

is15 >> nPolarsToGenerate;

if (nPolarsToGenerate>0)

{

double a[80][nPolarsToGenerate];

double cl[80][nPolarsToGenerate];

double cd[80][nPolarsToGenerate];

int sizeValues[nPolarsToGenerate];

for (int i=0;i<nPolarsToGenerate;i++)

{

char name1[50];

sprintf(name1,"polar%i.txt",i+1);

const char* fileName=name1;

char inst1[50];

sprintf(inst1,"instructions%i.txt",i+1);

const char* instructions=inst1;

char searchFor1[50];

sprintf(searchFor1,"type%i",i+1);

std::string searchForType=string(searchFor1);

word aa = word(iMesh.solutionDict().subDict("polarsData").

lookup(searchForType));

string type1=aa;

char *type = new char[type1.length() + 1];
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std::strcpy(type,type1.c_str());

char searchFor2[50];

sprintf(searchFor2,"airfoilName%i",i+1);

std::string searchForAirfoil=string(searchFor2);

if (type1 == "naca")

{

int airfoilType;

Istream& is17 = iMesh.solutionDict().subDict("polarsData").

lookup(searchForAirfoil);

is17.format(IOstream::ASCII);

is17 >> airfoilType;

Info<<"Calculating polars for NACA: "<<airfoilType<<"\n";

FILE *myFile;

myFile=fopen(instructions,"w");

fprintf(myFile,"./xfoil\n");

fprintf(myFile,"plop\n");

fprintf(myFile,"g\n");

fprintf(myFile,"\n");

fprintf(myFile,"naca %i\n",airfoilType);

fprintf(myFile,"oper\n");

fprintf(myFile,"iter 70\n");

fprintf(myFile,"visc 50000\n");

fprintf(myFile,"pacc\n");

fprintf(myFile,"%s\n",fileName);

fprintf(myFile,"\n");

fprintf(myFile,"aseq -15 15 1\n");

fprintf(myFile,"\n");

fprintf(myFile,"quit\n");

fclose(myFile);

}

else if (type1 == "geometry")

{

word bb = word(iMesh.solutionDict().subDict("polarsData")

.lookup(searchForAirfoil));

string bb1=bb;

char *geometryName = new char[bb1.length() + 1];

std::strcpy(geometryName,bb1.c_str());

Info<<"Calculating polars for the airfoil defined in "

<<geometryName<<"\n";

FILE *myFile;

myFile=fopen(instructions,"w");

fprintf(myFile,"./xfoil\n");

fprintf(myFile,"plop\n");

fprintf(myFile,"g\n");

fprintf(myFile,"\n");

fprintf(myFile,"load %s\n",geometryName);

fprintf(myFile,"mdes\n");

fprintf(myFile,"filt\n");

fprintf(myFile,"exec\n");

fprintf(myFile,"\n");

fprintf(myFile,"pane\n");

fprintf(myFile,"oper\n");

fprintf(myFile,"iter 70\n");

fprintf(myFile,"visc 50000\n");

fprintf(myFile,"pacc\n");
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fprintf(myFile,"%s\n",fileName);

fprintf(myFile,"\n");

fprintf(myFile,"aseq -15 15 1\n");

fprintf(myFile,"\n");

fprintf(myFile,"quit\n");

fclose(myFile);

}

else

{

Info<<"WARNING: in the polar number "<<i<<

" the type is not valid, choose between naca or geometry \n";

}

char command[80];

sprintf(command,"./xfoil < %s 1>/dev/null",instructions);

system(command);

char command1[80];

sprintf(command1,"rm %s",instructions);

system(command1);

double iy;

double it;

double ir;

double ie;

double iw;

double iq;

int size=0;

std::ifstream file;

file.open(fileName);

if (file.is_open())

{

while (!file.eof())

{

file >> a[size][i]>>cl[size][i]>>cd[size][i]>>iy>>it>>

ir>>ie>>iw>>iq;

size=size+1;

}

}

file.close();

char command2[80];

sprintf(command2,"rm %s",fileName);

system(command2);

size=size-1;

sizeValues[i]=size;

}

FILE *myFileP;

myFileP=fopen("polarsData.txt","w");

for (int go=0;go<nPolarsToGenerate;go++)

{

fprintf(myFileP,"%i\n",sizeValues[go]);

}

for (int po=0;po<nPolarsToGenerate;po++)

{

for (int el=0;el<sizeValues[po];el++)

{

fprintf(myFileP,"%5.2f %6.4f %6.4f\n",a[el][po],

cl[el][po],cd[el][po]);

}

}

fclose(myFileP);

}

24



1.7. HOW TO DEFINE THE PROPELLER CHAPTER 1.

}

Finally, this function will be in charge of automatizing the process of obtaining the airfoil polars with Xfoil
if the users decides to do so. It can generate polars both from a NACA 4 or 5 type, or in a more general
case, from the geometry of the airfoil given in a .txt. This .txt file needs to have some specific format and
ordering of points. More about this can be read in it’s original user guide:
http://web.mit.edu/drela/Public/web/xfoil/xfoil_doc.txt

To end up with the required modifications, we have to go to the UEqn.H file. Here simply replace the line
that calls to actuatorDisk.CalcActuatorDiskVolForce with:

prop.CalcActuatorDiskVolForce(mesh, VolumeForce, nps, npd, rIn, rOut, xDimension,

actuatorDiskThickness, xCoordinateActuatorToPlot, betaVal, chordVal, radiiVal,

sizeGeo, polarDist, sizeDist);

Now it is ready to be compiled, just type when being in propellerSimpleFoam directory:

wmake

1.7 How to define the propeller

In order to define the propellers geometry and operating conditions several data inputs are needed. The
required data will be provided by means of the fvSolution dictionary and using some .txt files.

1.7.1 The fvSolution dictionary

The information provided here, concerns the operating conditions and some basic geometrical data. In this
dictionary the following is needed, and will be divided into two subdictionaries. The first one looks like this:

propellerData

{

numberOfPolars 10;

flightSpeed 30;

deltaBeta 30;

centrePoint (15 0 0);

density 0.36518;

interiorRadius 0.49;

exteriorRadius 1.524;

rpm 500;

temperatureKelvin 216.86;

numberOfBlades 3;

dynamicViscosity 0.1433e-4;

ReRef 50000;

ReExp 0;

}

Lets explain some of the terms that might be confusing or not completely clear.

• numberOfPolars: this will determine how many different polars will be needed to compute the forces
in the propeller. It is not really common to have a propeller blade with constant airfoil shape along
the radius, normally the shape of the aerofoil varies with the radius as can be inferred from Fig. 1.5.
Thus, the user can choose the amount of polars that are needed to better represent the problem to
simulate. This will be done via the polarsData sub dictionary and the file polarsData.txt that later
will be described.

• deltaBeta: Propeller may vary the pitch angle of their blades by rotating them. This deltaBeta rep-
resent that offset that will be given to the whole blade (value in degrees). A representation of what
the pitch angle is can be seen in Fig. 1.6.
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Figure 1.5: Cross sectional airfoils at different radial stations

Figure 1.6: Ilustration of the pitch angle

• ReRef and ReExp: The value of ReRef is the Reynolds number at which the polars that will be used
were obtained. In case that the polars are generated by means of Xfoil, this value should be set to
50000. ReExp will be use to correct the Cd obtained from the polar corresponding to the reference
Reynolds number. The correction will be done as follows:

Cd,corrected = Cd,polars

(
Re

ReRef

)ReExp

(1.24)

where Re is the actual Reynolds number at the operating conditions. The lift coefficient, Cl, is also
corrected to try to account for compressibility effects. This is done via Prandtl-Meyer compressibility
factor as:

Cl,corrected =
Cl,polars√
1−Ma2

(1.25)

where Ma is the Mach number.

The second subdictionary will contain all the information needed in case the polars needs to be generated
with Xfoil.

polarsData

{

generatePolars 2;

type1 naca;

airfoilName1 2412;

type2 geometry;

airfoilName2 ARA-D6.txt;

}

• generatePolars: This is going to be the parameter that indicates if Xfoil will be used for generating the
polars or they will be provided by the user in a file named polarsData.txt which format and content
will be later discussed. If generatePolars is equal to 0, it means that the user supplies the polars, if
different, Xfoil will generate that amount of polars by taking into account the other two keywords
in the subdictionary. Note that if automatic polars generation is used, the value of generatePolars
and numberOfPolars in the propellerData subdirectory need to be the same, as well as the amount of
radial station given in polarsData.txt.

• type: This parameters can be either naca or geometry. The number after type indicates that those
values will be used to generate that polar number.
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• airfoilName: If naca is choosen in it’s correspondent type, a naca 4 or 5 must be provided and Xfoil will
generate the geometry first and then the polars. If instead geometry has been chosen, the name of the
file containing 2D coordinates of the airfoil shape must be provided, as in the example subdictionary.
The format of this file can be found in Xfoil documentation
http://web.mit.edu/drela/Public/web/xfoil/xfoil_doc.txt

1.7.2 The .txt files

There are three different files that might be used when running the case. These are, geometry.txt and
polarDistribution.txt, which will always be required, and the third one which is polarsData.txt that will be
required when the polars are not automatically generated. Let’s go through the specific format that they
should have.

• geometry.txt : In this file the geometry of the propeller will be defined. Data regarding chord and pitch
angle, (β), is provided for different radial stations. Here is an example:

10

0.3220 0.0568 15.8540

0.3626 0.0634 13.8499

0.3934 0.0682 12.1941

0.4450 0.0738 9.3355

0.5076 0.0761 6.3916

0.6230 0.0717 2.7624

0.7349 0.0625 0.4000

0.8468 0.0510 -1.4360

0.9586 0.0365 -3.0595

0.9900 0.0325 -3.5147

The first number (in this case 10) indicates the number of rows of the table (without itself been taken
into account). Each row represents one radial station. The first column is value of the radius at
that radial station divided by the tip radius of the propeller, r

Rtip
. The second column contains the

values of the blade chord (in meters) at those locations indicated by column one, and the third column
represent the value of β (in degrees).

• polarsData.txt : This file is only needed if Xfoil is not used. In order to show how the format looks
like lets use a commented example:

2 //number of rows given for polar 1

3 //number of rows given for polar 2

2 //number of rows given for polar 3

-2 0.6648 0.0314 //point 1 of polar number 1

0 0.7890 0.0422 //point 2 of polar number 1

-5 0.3544 0.0160 //point 1 of polar number 2

-1 0.7131 0.0287 //point 2 of polar number 2

6 1.0977 0.0160 //point 3 of polar number 2

2 0.8188 0.0203 //point 1 of polar number 3

7 1.2003 0.0330 //point 2 of polar number 3

The first column represents the value of the angle of attack (in degrees), the second one is Cl and the
third one is Cd.

• polarDistribution.txt : In this file the information about which airfoil polar corresponds to each radial
station is stored. As an example:

10

0.382

0.3926

0.4334

0.445

0.5376

0.613

0.724

0.8558
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0.9516

0.99

The first number, once again, indicates the number of rows (without itself been taken into account).
The values that are stored in this file are r

Rtip
. What every value represents, is the association of that

radial station with the corresponding polar. For the file shown above for example:

r

Rtip
= 0.382 → polar1

r

Rtip
= 0.3926 → polar2

and so on. For radial stations that lie in between when going through all the cells, linear interpolation
will be used. Once again this first number has to match the rest in fvSolution dictionary regarding
the amount of polars.

1.8 Setting up a case

Before this, make sure that propellerSimpleFoam is compiled. The final files have been included in the
accompanying files (gonzaloMonteroFiles/propeller/propellerCase/ ). Lets start once again from Erik’s case
and by copying (into the $FOAM RUN directory) the cylindricalMesh.m4 file presented in Sec. 1.4.5, and
the three .txt that will be needed later.

cd ~/Desktop/gonzaloMonteroFiles/erikSvenningOriginalFiles/

cp -r caviyActuatorDisk $FOAM_RUN

cd ../Additional\ files/

cp cylindricalMesh.m4 $FOAM_RUN/caviyActuatorDisk/constant/polyMesh

cp *.txt $FOAM_RUN/caviyActuatorDisk/

Note that the three binaries (pxplot, pplot and xfoil) generated when compiling Xfoil should be place in the
same folder as the .txt files.

cd ~/Desktop/Xfoil/bin/

cp pxplot xfoil pplot $FOAM_RUN/caviyActuatorDisk/

cd $FOAM_RUN

mv caviyActuatorDisk propellerCase

cd propellerCase/constant/polyMesh

gedit cylindricalMesh.m4

Now lets modify cylindricalMesh.m4 to customize our mesh and computational domain, for example, by
setting the following values:

• D=5

• L=50

• modify the definition of Rs, to get:

define(Rs, calc(D/13))

• NPS=6

• NPD=20

• NPDI=4

• NPX=40

NOTE: it is important that the actuator disk area lays in between the two circular sections.
Lets execute the .m4 file to generate the blockMeshDict with the wanted mesh.

m4 cylindricalMesh.m4 > blockMeshDict

cd ../..

blockMesh

cd 0

gedit U
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We will set up the U file like this:

internalField uniform (15 0 0);

boundaryField

{

inlet

{

type zeroGradient;

}

outlet

{

type zeroGradient;

}

walls

{

type slip;

}

}

gedit p

We have set the uniform velocity to 15 m/s (always axial direction), so later in the dictionary we will have
to be consistent with it. We will set it up like this the file for the pressure:

internalField uniform 0;

boundaryField

{

inlet

{

type zeroGradient;

}

outlet

{

type zeroGradient;

}

walls

{

type zeroGradient;

}

}

We have to initialize the volVectorField VolumeForce. For that lets make a copy of the U file and modify it.

cp U VolumeForce

gedit VolumeForce

Change the dimensions to [0 1 − 2 0 0 0 0] and the object to VolumeForce. The rest will be set as:

dimensions [0 1 -2 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

inlet

{

type fixedValue;

value uniform (0.0 0.0 0.0);

}
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outlet

{

type fixedValue;

value uniform (0.0 0.0 0.0);

}

walls

{

type fixedValue;

value uniform (0.0 0.0 0.0);

}

}

Now we need to create another one for the volScalarField xDimension, so since it is a scalar field this time
we will copy and modify the pressure file:

cp p xDimension

gedit xDimension

Once again remember to change the dimension, in this case to meters and also to change the object field to
xDimension. Finally it should be like this one:

dimensions [0 1 0 0 0 0 0];

internalField uniform 0;

boundaryField

{

inlet

{

type fixedValue;

value uniform 0;

}

outlet

{

type fixedValue;

value uniform 0;

}

walls

{

type fixedValue;

value uniform 0;

}

}

Now lets go on and modify the fvSolution dictionary.

cd ../system/

gedit fvSolution

In the SIMPLE subdictionary add:

pRefCell 0;

pRefValue 0;

Rename the actuatorDisk as propellerData. Add the missing fields so that it ends up looking like this:

propellerData

{

numberOfPolars 2;

flightSpeed 15;

deltaBeta 30;

centrePoint (15 0 0);
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density 0.36518;

interiorRadius 0.49;

exteriorRadius 1.524;

rpm 500;

temperatureKelvin 216.86;

numberOfBlades 3;

dynamicViscosity 0.1433e-4;

ReRef 50000;

ReExp 0;

}

Those values of density, viscosity, temperature... have been obtained assuming flight altitude of 36000 ft
and using ISA tables. According to those, the value of nu should be also replaced in transportProperties
file. In fvSolution create a subdictionary with the following structure and named polarsData.

polarsData

{

generatePolars 2;

type1 naca;

airfoilName1 2412;

type2 geometry;

airfoilName2 NACA0012.txt;

}

gedit fvSchemes

and add the following change the divergence schemes so they look like:

default none;

div(phi,U) bounded Gauss upwind;

div(phi,k) bounded Gauss upwind;

div(phi,epsilon) bounded Gauss upwind;

div(phi,R) Gauss upwind;

div(R) Gauss linear;

div(phi,nuTilda) Gauss upwind;

div((nuEff*dev(grad(U).T()))) Gauss linear;

div((nuEff*dev(T(grad(U))))) Gauss linear;

Now we are ready to run the case:

cd ..

propellerSimpleFoam

NOTE: it may happen that when trying to calculate the polars of the airfoil by means of Xfoil we may see
this message on the terminal:

sh: ./xfoil: Permission denied

rm: cannot remove `polar1.txt': No such file or directory

If so, simply remove the downloaded binaries of xfoil, pxplot and pplot, compile them yourself, and copy
them to the same directory. This should fix the problem.

1.9 Some results and validation

Some simulations have been run and some sort of validation has carried out. Results obtained by [Hartman and Bierman, 1938]
have been tried to reproduce. More precisely, Fig. 9, in the mentioned report, was the curve used and the
result can be seen in Fig. 1.7. Note that the accuracy may not be very good since in order to obtain data
from the graphs in the report, Plotdigitizer software was used.
Finally some contours and streamlines to visualize the flow around the propeller in Fig. 1.8.
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Figure 1.7: Validation of model with NACA report 640, Fig. 9, 35 degree at 0.75R

a) b)

c) d)

Figure 1.8: Flow visualization around the propeller, a) volume force in the area of the propeller, b) velocity
magnitude contour, c) velocity magnitude contour and volume force contour on the disk and d) streamlines
and column force vectors
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1.10 Study questions

• What do we use the propellerSimpleFoam for?

• What is the main difference with respect to the project carried out by Erik Sven- ning in 2010?

• What are the polars of an airfoil and how do we use them here?

• How do we relate the obtained thrust and torque with the fluid?

• What is Xfoil and how do we use it here?

• How can we execute commands on the terminal while running OpenFoam (C++ code) and how can
this be useful for us?

• How is the .m4 used here?
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