reactingFoam Solver to
Calculate Radiative Heat
Transfer

By:

Sajjad Haider

Assignment for the Course ‘CFD with OpenSource software’, 2011

Chalmers University of Technology



In some combustion devices, involving large combustion chambers, the radiative heat transfer is the
major mode of heat transfer compared to conduction and convection e.g. large furnaces etc. OpenFOAM®
provides different solvers for modelling combustion. However, amongst the standard combustion solvers,
only fireFOAM includes calculation of radiative heat transfer. The purpose of this tutorial is to provide a
step by step procedure to develop a user-modified reactingFoam solver that calculates radiative heat
transfer. The approach here will be to modify an existing standard solver in OpenFOAM®. This may help
the readers, considering any code changes, to be able to use this tutorial possibly for future versions of
OpenFOAM®. However, it is important to mention that this tutorial is based on OpenFOAM® version
2.0.1.

Some standard solvers for particle-tracking flows (Lagrangian Solvers) i.e. reactingParcelFoam,
reactingParcelFilmFoam, porousExplicitSourceReactingParcelFoam and LTSReactingParcelFoam, are
based on reacting flow and also include calculation of radiative heat transfer. However, this tutorial will
use one of the aforementioned solvers to develop a user-modified reactingFoam solver that can be used
for non-particulate reacting flows. The solver used to be modified is reactingParcelFoam.

Copy the original solver and rename it

cd SWM_PROJECT_USER_DIR
cp -r SFOAM_APP/solvers/lagrangian/reactingParcelFoam reactingFoamRadiation

Rename the file

cd reactingFoamRadiation
mv reactingParcelFoam.C reactingFoamRadiation.C

Now open the reactingFoamRadiation.C file in any text editor and comment/remove following lines:
#include "basicReactingCloud.H"

#include "createClouds.H"

#include "SLGThermo.H"

parcels.evolve();

rho = thermo.rho();

Include following (see reactingFoam.C file in the SFOAM_APP/solvers/combustion/reactingFoam )
#include "multivariateScheme.H"

runTime.write();

Remove the header files named rhoEqn.H and creatClouds.H

rm rhoEqn.H
rm createClouds.H



Open the header file hsEqn.H and modify

fvScalarMatrix hEgn

(
fvm::ddt(rho, hs)
+ mvConvection->fvmDiv(phi, hs)
- fvm::laplacian(turbulence->alphakff(), hs)

DpDt
+ parcels.Sh(hs)
+ radiation->Shs(thermo)
+ chemistrySh

);
hEgn.relax();

hEgn.solve();

to

fvScalarMatrix hsEqn
(
fvm::ddt(rho, hs)
+ mvConvection->fvmDiv(phi, hs)
- fvm::laplacian(turbulence->alphakff(), hs)

DpDt
+ radiation->Shs(thermo)
+ chemistrySh

)

hsEqn.relax();
hsEqn.solve();
Open headerfile Uegn.H and modify

fvVectorMatrix UEqn
(
fvm::ddt(rho, U)
+ fvm::div(phi, U)
+ turbulence->divDevRhoReff(U)

rho.dimensionedInternalField()*g
+ parcels.SU(U)
);

to

fvVectorMatrix UEqn
(



fvm::ddt(rho, U)
+ fvm::div(phi, U)
+ turbulence->divDevRhoReff(U)

Open headerfile Yegn.H and modify

solve
(
fvm::ddt(rho, Yi)
+ mvConvection->fvmDiv(phi, Yi)
- fvm::laplacian(turbulence->mukff(), Yi)

parcels.SYi(i, Yi)

+ kappa*chemistry.RR(i)().dimensionedInternalField(),
mesh.solver("Yi")

);
to
solve

fvm::ddt(rho, Yi)
+ mvConvection->fvmDiv(phi, Yi)
- fvm::laplacian(turbulence->mukff(), Yi)

kappa*chemistry.RR(i),
mesh.solver("Yi")

);
Open headerfile pegn.H and modify

fvScalarMatrix pEgn
(
fvm::ddt(psi, p)
+ fvm::div(phid, p)
- fvm::laplacian(rho*rAU, p)

parcels.Srho()

);
to

fvScalarMatrix pEgn
(
fvm::ddt(psi, p)
+ fvm::div(phid, p)
- fvm::laplacian(rho*rAU, p)
);



and

fvScalarMatrix pEgn
(
fvm::ddt(psi, p)
+ fvc::div(phi)
- fvm::laplacian(rho*rAU, p)

parcels.Srho()

);
to

fvScalarMatrix pEgn
(
fvm::ddt(psi, p)
+ fvc::div(phi)
- fvm::laplacian(rho*rAU, p)

);
Open headerfile createFields.H and remove line
SLGThermo slgThermo(mesh, thermo);
Then go to Make folder and open ‘files' and modify as follows
reactingParcelFoam.C to be changed to reactingFoamRadiation.C

EXE = $(FOAM_APPBIN)/reactingParcelFoam t0 be changed to EXE = $(FOAM_USER_APPBIN)/
reactingFoamRadiation

Then open 'Options' and remove following lines in EXE_INC =\

-IS(LIB_SRC)/lagrangian/basic/InInclude\
-IS(LIB_SRC)/lagrangian/intermediate/Ininclude \
-IS(LIB_SRC)/lagrangian/distributionModels/InInclude\
-IS(LIB_SRC)/thermophysicalModels/properties/liquidProperties/Ininclude\
-IS(LIB_SRC)/thermophysicalModels/properties/liquidMixtureProperties/Ininclude \
-IS(LIB_SRC)/thermophysicalModels/properties/solidProperties/Ininclude \
-IS(LIB_SRC)/thermophysicalModels/properties/solidMixtureProperties/Ininclude \
-IS(LIB_SRC)/thermophysicalModels/SLGThermo/Ininclude \
-IS(LIB_SRC)/regionModels/regionModel/InInclude \
-IS(LIB_SRC)/regionModels/surfaceFilmModels/Ininclude \
-IS(LIB_SRC)/sampling/Ininclude \

And in EXE_LIBS =\
-llagrangian \

-llagrangianintermediate \
-IregionModels \



-ISLGThermo \
-lliquidProperties \
-lliquidMixtureProperties \
-IsolidProperties \
-IsolidMixtureProperties \
-IsurfaceFilmModels \
-lsampling\

Save file.

Go back to reactingFoamRadiation folder and run '‘wmake' command to compile the new solver.

References:

Vdovin Alexey, Radiation heat transfer in OpenFOAM?®, Final assignment CFD with OpenSource
software, 2009, Chalmers University of Technology.

Lecture Slides, CFD with OpenSource software, 2011, Chalmers University of Technology.






