
CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 1

Object orientation in C++ (and OpenFOAM)

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 2

Object orientation in C++ (and OpenFOAM)

Prerequisites

• You have a very basic knowledge in C programming, and C syntax (to the point where it is

the same as in C++).

• You know what it means to construct an object of a class, and how to call a function of that

class in the top-level code (if you know that the function exists).

• You know the difference between a declaration and a definition of a function in the top-level

code.

• You know how to compile top-level C++ codes using both g++ and wmake (not necessarily

OpenFOAM code).

Learning outcomes

• You will be familiar with the concepts of object orientation in C++

• You will be able to read and understand most features of OpenFOAM classes.

• You will be able to figure out how OpenFOAM classes are related.

Note that you will be asked to pack up your final cleaned-up directories and submit them for

assessment of completion.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 3

Object orientation in C++ (and OpenFOAM)

• To begin with: The aim of this part of the course is not to teach all of C++

and object orientation, but to give a short introduction that is useful when

trying to understand the contents of OpenFOAM.

• After this introduction you should be able to recognize and make minor

modifications to most C++ features in OpenFOAM.

• Some books:

– C++ direkt by Jan Skansholm (ISBN 91-44-01463-5)

– C++ from the Beginning by Jan Skansholm (probably similar)

– C++ how to Program by Paul and Harvey Deitel

– Object Oriented Programming in C++ by Robert Lafore

• A link:

– https://www.geeksforgeeks.org/c-plus-plus/

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 4

C++ classes and objects

• C++ code can define classes, and the ’variables’ we assign to a class are objects of that class.

• Object orientation focuses on those objects.

• An object thus belongs to a class of objects with the same attributes. The class defines:

- The construction of the object

- The destruction of the object

- Attributes of the object (member data)

- Functions that can manipulate the object (member functions)

• The objects may be related in different ways, and the classes may inherit attributes from

other classes.

• A benefit of object orientation is that the classes can be re-used, and that each class can be

designed and bug-fixed for a specific task.

• In OpenFOAM, the classes are designed to define, discretize and solve PDE’s.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 5

C++ class declaration and definition

• The following structure defines the class with name myClass and its public and private

member functions and member data.

class myClass {

public:

//declarations of public member functions and member data

protected:

//declarations of protected member functions and member data

private:

//declarations of private member functions and member data

};

• public attributes are visible from outside the class.

• protected attributes are visible in the class and sub-classes.

• private attributes are only visible in the class.

• If neither public, procected, private are specified, all attributes will be private.

• Declarations of member functions and member data inside the class are done just as func-

tions and variables are declared in a top-level code.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 6

C++ class declaration and definition

Let’s start building an application with a class.

Put in appWithClass.C:

class myClass

{

private:

protected:

public:

};

int main()

{

myClass myClassObject;

return 0;

}

The necessary main() function knows about a class named myClass, and it is thus possible to

construct an object of that class.

Compile and run with (rm so any error messages can be seen when the output grows):

rm appWithClass; g++ -o appWithClass appWithClass.C; ./appWithClass

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 7

C++ class declaration and definition

We will now add a member data to the class and write it out in two ways. For this we need the

<iostream> library, in namespace std. Add the lines in red:

#include <iostream> //Just for cout

using namespace std; //Just for cout

class myClass

{

private:

protected:

public:

int i_=19; //Member data (underscore is OpenFOAM convention)

};

int main()

{

myClass myClassObject;

cout << "myClassObject.i_: " << myClassObject.i_ << endl;

return 0;

}

Try moving the member data to private or protected, and it will not compile. Why?

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 8

C++ class declaration and definition

When we construct an object of a class we do in fact use a constructor. The constructor defines

how an object of the class should be constructed, and if/how the member data should be initial-

ized. We haven’t declared any constructor in our code, but the compiler has declares one for

us. The compiler has also declared a default destructor for us, which can be used to specify how

an object should be destructed when the lifetime of the object expires. However, it is better to

explicitly state the constructors and destructors.

Add a constructor and destructor below the declaration of i_ in the public part of the class:

myClass()

{

cout<< "i_ = " << i_ << endl;

};

~myClass()

{};

You can see that these are functions, with definitions in the curly brackets. They have the same

name as the class, which makes them constructors.

The tilde (~) makes the second one a destructor. Read more about destructors at:

https://en.cppreference.com/w/cpp/language/destructor

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 9

C++ class declaration and definition

At the moment the member data i_ is given its value at declaration. However, it can also be

given at definition/initialization.

Change from

int i_=19; //Member data (underscore is OpenFOAM convention)

myClass()

{

to

int i_; //Member data (underscore is OpenFOAM convention)

float j_;

myClass()

:

i_(20),

j_(21.5)

{

We have here as well added one more member data, which is a float.

The lines between : and { is the initialization. The member data should be initialized in the

same order as in the declaration, in a comma-separated list

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 10

C++ class declaration and definition
The classes are most of the time implemented in libraries that are linked to at compile-time.
The top-level code needs to know only the class declaration. The class definition is compiled
into the library only. We start by separating the definition from the declaration:

class myClass

{

private:

protected:

public:

int i_; //Member data (underscore is OpenFOAM convention)

float j_;

myClass();

~myClass();

};

myClass::myClass()

:

i_(20),

j_(21.5)

{

cout<< "i_ = " << i_ << endl;

}

myClass::~myClass()

{}

We see that the definitions of the constructors are here outside the declaration, and we thus

have to state the class name when they are defined (myClass::). We note again that the

function name is the same as the class name for constructors and destructors.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 11

Use of classes through objects

Change the main() function to the following, and spend some time to understand what is

happening:

int main()

{

myClass myClassObject;

cout<< "myClassObject.i_: " << myClassObject.i_ << endl;

cout<< "myClassObject.j_: " << myClassObject.j_ << endl;

myClass myClassObject2;

cout<< "myClassObject2.i_: " << myClassObject2.i_ << endl;

myClassObject2.i_=30;

cout<< "myClassObject.i_: " << myClassObject.i_ << endl;

cout<< "myClassObject2.i_: " << myClassObject2.i_ << endl;

cout<< "==" << endl;

return 0;

}

The last line is a delimiter so that it is easier to see the next section of output. Such a delimiter

should be added manually after each addition to the main() function in the rest of these slides.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 12

References

There may be references to any object. Add before the return statement:

myClass& myClassObjectRef = myClassObject;

cout<< "myClassObjectRef.i_: " << myClassObjectRef.i_ << endl;

myClassObject.i_=42;

cout<< "myClassObject.i_: " << myClassObject.i_ << endl;

cout<< "myClassObjectRef.i_: " << myClassObjectRef.i_ << endl;

myClassObjectRef.i_=43;

cout<< "myClassObject.i_: " << myClassObject.i_ << endl;

cout<< "myClassObjectRef.i_: " << myClassObjectRef.i_ << endl;

The & at construction (first line) states that the object is a reference.

Compile, run, and understand how references work. A reference refers to an object of the same

class. It is kind of an alias.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 13

Pointers (1/2)
There may be pointers to any object. Add before the return statement:

myClass* myClassObjectPntr = &myClassObject;

cout<< "myClassObjectPntr->i_: " << myClassObjectPntr->i_ << endl;

myClass* myClassPntr = new myClass;

cout<< "myClassPntr->i_: " << myClassPntr->i_ << endl;

myClassObjectPntr->i_=3;

myClassPntr->i_=4;

cout<< "myClassObjectPntr->i_: " << myClassObjectPntr->i_ << endl;

cout<< "myClassPntr->i_: " << myClassPntr->i_ << endl;

myClass* generalPntr;

generalPntr = &myClassObject;

cout<< "generalPntr->i_: " << generalPntr->i_ << endl;

generalPntr = &myClassObject2;

cout<< "generalPntr->i_: " << generalPntr->i_ << endl;

• The * after the class name says that a pointer should be constructed.

• The first pointer is constructed using a reference to the object myClassObject+ (the & sign).

The second pointer is constructed using the class itself (i.e. there is no object, only a memory

location that allocates a new object!!!). Note in the output that the constructor of the class

is called!!! The third pointer is just constructed as a pointer of the class myClass, without

pointing at anything. Note that the constructor is not called!!! It is then used to show that

pointers can be made to point at different objects of that class.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 14

Pointers (2/2)
The code again, for reference:

myClass* myClassObjectPntr = &myClassObject;

cout<< "myClassObjectPntr->i_: " << myClassObjectPntr->i_ << endl;

myClass* myClassPntr = new myClass;

cout<< "myClassPntr->i_: " << myClassPntr->i_ << endl;

myClassObjectPntr->i_=3;

myClassPntr->i_=4;

cout<< "myClassObjectPntr->i_: " << myClassObjectPntr->i_ << endl;

cout<< "myClassPntr->i_: " << myClassPntr->i_ << endl;

myClass* generalPntr;

generalPntr = &myClassObject;

cout<< "generalPntr->i_: " << generalPntr->i_ << endl;

generalPntr = &myClassObject2;

cout<< "generalPntr->i_: " << generalPntr->i_ << endl;

• We see that we have to use -> to call a member data (or functions) through a pointer.

• Pointers are often confused with references. A pointer holds a memory address of another

object. A reference can be seen as an alias of another object. A pointer can be re-assigned,

while a reference must be assigned at initiation.

• OpenFOAM uses the pointer functionality to make run-time choises possible, such as the

choise of turbulence model.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 15

Static members (data and functions)

• Static members of a class only exist in a single instance in a class, for all objects, i.e. it will

be equivalent in all objects of the class.

• They are defined as static, which can be applied to member data or member functions.

• Static members do not belong to any particular object, but to a particular class.

Add after the declaration of j_ (under public):

static int m_;

Add before main() (it is not allowed to set the value inside the class - why?):

int myClass::m_ = 9;

Add before return 0;:

cout<< "myClassObject.m_: " << myClassObject.m_ << endl;

cout<< "myClassObject2.m_: " << myClassObject2.m_ << endl;

myClass::m_=30; //Or: myClassObject2.m_=30;

cout<< "myClassObject.m_: " << myClassObject.m_ << endl;

cout<< "myClassObject2.m_: " << myClassObject2.m_ << endl;

We see that all objects are affected by the center line. It would be less clear to write the alter-

native that is commented at the center line (why?), although it will have the same effect!

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 16

Member functions

Until now our class only has member data (except for the constructor and destrucor, which are

in fact special member functions). Add the declaration of a member function in the public part

of the declaration (after the destructor):

void write();

Add the definition of the member function (after defining the destructor):

void myClass::write()

{

cout<< "My member data i_ = " << i_ << endl;

cout<< "My member data j_ = " << j_ << endl;

}

Add a call to the function, before return 0; in the main() function:

myClassObject.write();

myClassObject2.write();

generalPntr->write(); //Use "->" for pointers!

Compile and test.

We see that the member functions have direct access to all the member data and member

functions of the class (private, protected, public).

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 17

Inlining of member functions

The member functions may be inlined, to avoid an overhead in the function call for small func-

tions. We will see this when we look inside OpenFOAM. The syntax is basically:

inline void myClass::write()

{

Contents of the member function.

}

where

- myClass:: tells us that the member function write belongs to the class myClass.

- void tells us that the function does not return anything

- inline tells us that the function will be inlined into the code where it is called

instead of jumping to the memory location of the function at each call (good for

small functions). Member functions defined directly in the class declaration will

automatically be inlined if possible.

You can try this by adding inline at the beginning of the declaration and definition of the

write() function. Note however that inline functions must be both declared and defined in

the header file when doing it the OpenFOAM way (why?).

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 18

Constant member functions

An object of a class can be constant (const). Such objects are only allowed to call constant

member functions, that promise not to change the object itself (the values of its member data).

Some member functions might in fact not change the object, but we need to tell the compiler

that it doesn’t. That is done by adding const after the parameter list in the function declara-

tion/definition. Then the function can be used for constant objects.

Add before return 0;:

const myClass myClassObject3;

myClassObject3.write();

Try to compile and see it fail, since the write() function is not a constant function (although

it does not change the object). Make it work by changing the function declaration/definition to:

inline void write() const;

...

inline void myClass::write() const

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 19

Reference to member data through member functions (1/2)

We have previously seen that private member data can only be used inside the class. However,

public member functions can be used to make private member data available outside the class.

Add after private:

int k_=7;

Add after the declaration of the write() function (note the & sign):

int& k();

Add after the definition of the write() function (note the & sign):

int& myClass::k()

{

return k_;

}

Add before the return 0; statement (note the & sign):

int& k=myClassObject.k();

cout<< "k: " << k << endl;

k=5; //Or directly: myClassObject.k()=5;

cout<< "k: " << k << endl;

cout<< "myClassObject.k(): " << myClassObject.k() << endl;

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 20

Reference to member data through member functions (2/2)

We might only want to make the member data available, but not modifiable.

Add after the k_ member data under private:

const int l_=17;

Add after the declaration of the k() function:

const int& l();

Add after the definition of the k() function:

const int& myClass::l()

{

return l_;

}

Add before the return 0; statement:

const int& l=myClassObject.l();

cout<< "l: " << l << endl;

Note that the const has its origin in the declaration of the member data, so it can’t be removed.

Since the function can’t change the member data, we might consider making it constant:

Declaration: const int& l() const;

Definition: const int& myClass::l() const

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 21

More about constructors - special member functions

Constructors are special member functions that are only used when an object is constructed.

They are named the same as the class itself. As for any function there may be many construc-

tors, depending on how an object of the class can be constructed. Let’s add a constructor for

which we supply the values of the member data. After the declaration of the constructor, add:

myClass(int,int);

After the definition of the constructor, add:

myClass::myClass(int i, int j)

:

i_(i),

j_(j)

{

cout<< "i_ = " << i_ << endl;

cout<< "j_ = " << j_ << endl;

}

Before the return statement, add:

myClass myClassObject4(23,56);

There can of course only be one constructor of myClass that takes two integer arguments.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 22

Operators

At the moment we can’t say myClass mySum=myClassObject+myClassObject2;, since it is

not obvious how the summation should be done.

• Operators define how to manipulate objects (such as to do the above summation).

• Standard operator symbols are:

new delete new[] delete[]

+ - * / % ^ & | ~

! = < > += -= *= /= %=

^= &= |= << >> >>= <<= == !=

<= >= && || ++ -- , ->* ->

() []

When defining operators, one of these must be used.

• Operators are defined as member functions (or friend functions) with name operatorX,

where X is an operator symbol.

• OpenFOAM has defined operators for all classes, including iostream operators << and >>

We will introduce a summation operator...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 23

Operators

Add before main():

inline myClass operator+(const myClass& mC1, const myClass& mC2)

{

return myClass

(

mC1.i_ + mC2.i_,

mC1.j_ + mC2.j_

);

}

Add before return 0;:

myClassObject.write();

myClassObject2.write();

myClass mySum=myClassObject+myClassObject2;

mySum.write();

We note here, and from the output, that we use the constructor that takes two integer argu-

ments.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 24

Inheritance

• A class can inherit attributes from already existing classes, and extend with new attributes.

• Syntax, when defining the new class:

class subClass

: public baseClass

{ ...subClass attributes... }

where subClass will inherit all the attributes from baseClass.

subClass is now a sub-class to baseClass.

We will discuss public later.

• An attribute of subClass may have the same name as one in baseClass. Then the

subClass attribute will be used for subClass objects and the baseClass attribute will

be hidden. Note that for member functions, all of them with the same name will be hidden,

irrespectively of the number of parameters.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 25

Inheritance
Add before main:

class mySubClass

: public myClass

{

public:

mySubClass();

mySubClass(int,int);

};

mySubClass::mySubClass()

:

myClass()

{}

mySubClass::mySubClass(int i, int j)

:

myClass(i,j)

{}

As can be seen, it is necessary to redefine the constructors and call the base class constructors

for their initializations.

Continued...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 26

Inheritance

Add before return 0;:

mySubClass mySubClassObject(45,90);

cout<< "mySubClassObject.i_: " << mySubClassObject.i_ << endl;

cout<< "mySubClassObject.j_: " << mySubClassObject.j_ << endl;

mySubClassObject.write();

You should now be able to change the class of your first myClassObject to mySubClass, and

the constructors, member data, member functions, references and pointers should work as be-

fore.

You can then add additional attributes to the sub class.

The sub classes are in OpenFOAM implemented in a separate directories, and thus in separate

files. The sub class thus needs to #include myClass.H in its header of the *.H file.

Note that you can’t do

cout<< "mySubClassObject.k_: " << mySubClassObject.k_ << endl;

since k_ is private in the base class and not visible in the sub class. See next slide...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 27

Inheritance: visibility and multiple inheritance

Some general information about inheritance and visibility, which you can test yourself if you

like:

• A member that is redefined in a sub class will hide the corresponding member from the

base class. All the alternatives for a function with a specific name from the base class will

be hidden in the sub class if one or more of them is redefined in the sub class.

• A hidden member of a base class can be reached in the sub class by baseClass::member

• Members of a class can (as known) be public, private or protected.

- private members are never visible in a sub-class, while public and protected are.

However, protected are only visible in a sub-class (not in other classes or top-level

code).

- The visibility of the members inherited from a base class to a sub class can be stated/-

modified in the sub class using the reserved words public, private or protected

when declaring the class. (public in the previous example). It is only possible to make

each member of a base class less visible in the sub class.

• A class may be a sub class to several base classes (multiple inheritance), and this is used to

combine features from several classes. Watch out for ambigous (tvetydiga) members!

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 28

Friends

• A friend is a function (not a member function) or class that has access to the private

members of a particular class.

• A class can invite a function or another class to be its friend, but it cannot require to be a

friend of another class. It is not mutal.

Add at the end of public in the declaration of myClass:

friend class myClassFriend;

Remember that l_ is private data of myClass, and add before main():

class myClassFriend

{

public:

myClassFriend();

};

myClassFriend::myClassFriend()

{

myClass testMyClassFriend;

cout << "testMyClassFriend.l_ = " << testMyClassFriend.l_ << endl;

}

Add before return 0;:

myClassFriend myClassFriendObject;

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 29

Templates

The most obvious way to define a class (or function) is to define it for a specific type of object.

However, often similar operations are needed regardless of the object type. Instead of writing a

number of identical classes where only the object type differs, a generic template can be defined.

The compiler then defines all the specific classes that are needed. OpenFOAM convention is

that templated classes (and their file and directory names) start with a capital letter.

Add before main():

template<typename T>

class MyTemplatedClass

{

public:

T x_;

MyTemplatedClass(T);

};

template<typename T>

MyTemplatedClass<T>::MyTemplatedClass(T x)

:

x_(x)

{cout << "x_ = " << x_ << endl;}

Add before return 0;:

MyTemplatedClass<int> myTemplatedClassIntObject(4.6);

cout<< "myTemplatedClassIntObject.x_: " << myTemplatedClassIntObject.x_ << endl;

MyTemplatedClass<float> myTemplatedClassFloatObject(4.6);

cout<< "myTemplatedClassFloatObject.x_: " << myTemplatedClassFloatObject.x_ << endl;

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 30

Typedef

• OpenFOAM is full of templates, and sometimes several layers of templates.

• A code can be easier to read if e.g. complex templates are renamed with typedef. Add

before main():

typedef MyTemplatedClass<int> myTemplInt;

typedef MyTemplatedClass<float> myTemplFloat;

Add before return 0;:

myTemplInt myTemplIntObject(4.6);

cout<< "myTemplIntObject.x_: " << myTemplIntObject.x_ << endl;

myTemplFloat myTemplFloatObject(4.6);

cout<< "myTemplFloatObject.x_: " << myTemplFloatObject.x_ << endl;

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 31

Virtual member functions (1/4)

• Virtual member functions are used for dynamic binding, i.e. the function will work differ-

ently depending on how it is called, and it can be determined at run-time using pointers.

• The reserved word virtual is used in front of the member function declaration to declare

it as virtual.

• Variants of the virtual member function can be realized by sub classes that re-implement

the member function. The sub class member functions corresponding to the base class

virtual function will automatically be a virtual function.

• By defining a pointer to the base class a dynamic binding can be realized. The pointer can

be made to point at any of the sub classes of the base class, and the virtual functions will

operate according to that specific sub class.

• The difference compared to a standard sub class is that for a standard sub class an object

must be constructed for either the base class or the sub class. Then the object will always

correspond to that class. When using virtual functions, the pointer can be constructed for

the base class and point at one of the sub classes. It is also possible to dynamically change

so that it points at any of the other sub classes.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 32

Virtual member functions (2/4)

• Let us modify the write() function of the original class myClass. Just add the word

virtual at the beginning of the declaration of the write() function. It is also necessary

to add that word to the destructor, i.e.:

...

virtual ~myClass();

...

virtual inline void write() const;

...

• Compile and run, and you see that the class works as before. But we now have a new

option...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 33

Virtual member functions (3/4)

• Add two sub classes that re-implement the write() function (before the main() function):

class myClassVirtualInstance1

: public myClass

{

public:

inline void write() const;

};

inline void myClassVirtualInstance1::write() const

{

cout<< "In myClassVirtualInstance1" << endl;

}

class myClassVirtualInstance2

: public myClass

{

public:

inline void write() const;

};

inline void myClassVirtualInstance2::write() const

{

cout<< "In myClassVirtualInstance2" << endl;

}

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 34

Virtual member functions (4/4)

• Add before return 0;:

myClassVirtualInstance1 myClassVirtualInstance1Object;

myClassVirtualInstance2 myClassVirtualInstance2Object;

myClass* myClassPtr;

myClassPtr = &myClassObject;

myClassPtr->write();

myClassPtr = &myClassVirtualInstance1Object;

myClassPtr->write();

myClassPtr = &myClassVirtualInstance2Object;

myClassPtr->write();

• Compile, run, and check that the output from write() is given correctly.

• You can see that the other member functions work as for the base class.

• Try to remove the word virtual in the base class, and see that the dynamic binding is

broken - i.e. the base class write() function is executed. This means that the base class

determines which functions are virtual and can be modified through pointers.

• The objects constructed at the first rows above belong to the sub-classes. They work the

same both with and without the word virtual in the base class. Check yourself!

• Note that the base class works as before (it is still being used by objects in our code).

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 35

Abstract classes (1/3)

• A class with at least one virtual member function that is undefined (a pure virtual function)

is an abstract class.

• The main difference from the discussion on virtual member functions is that an object can

not be created for an abstract class. It is used in cases where the base class has no function

itself, enforcing the use of one of the sub classes.

• The OpenFOAM turbulenceModel is such an abstract class since one must specify which
turbulence model. It has a number of pure member functions, such as (see turbulenceModel.H)

//- Solve the turbulence equations and correct the turbulence viscosity

virtual void correct() = 0;

(you see that it is pure virtual by ’= 0’, and that the definition does not evaluate any specific

turbulence model).

• A turbulence pointer of the class turbulenceModel is constructed in e.g.:

$FOAM_SOLVERS/incompressible/pimpleFoam/createFields.H

• The correct() function is called through the pointer, in e.g.:

$FOAM_SOLVERS/incompressible/pimpleFoam/pimpleFoam.C: turbulence->correct();

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 36

Abstract classes (2/3)

• We can’t change myClass to an abstract class, since we construct objects of that class in our
code. Verify this by changing in the declaration:

virtual inline void write() const = 0;

• Create a new abstract class, with a sub class (before main()):

class myAbstractClass

{

public:

virtual ~myAbstractClass();

virtual inline void write() const = 0;

};

myAbstractClass::~myAbstractClass()

{}

class myAbstractClassInstance1

: public myAbstractClass

{

public:

inline void write() const;

};

inline void myAbstractClassInstance1::write() const

{

cout<< "In myAbstractClassInstance1" << endl;;

}

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 37

Abstract classes (3/3)

• Add before return 0;:

myAbstractClass* myAbstractClassPtr = new myAbstractClassInstance1;

myAbstractClassPtr->write();

• Note that you can’t create an object of the base class (try before return 0;):

myAbstractClass myAbstractClassObject;

The abstract class does not have any definition of the function write(), so it can’t work.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 38

End of example implementations

Here we stop implementing examples.

Remember that nothing we have implemented in this single-file code is OpenFOAM. You should

still be able to compile it with:

g++ -o appWithClass appWithClass.C

and run it with:

./appWithClass

We will in the following few slides only discuss some more advanced aspects in general terms,

which we will see later in OpenFOAM.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 39

Container classes

• A container class contains and handles data collections. It can be viewed as a list of entries

of objects of a specific class. A container class is a sort of template, and can thus be used for

objects of any class.

• The member functions of a container class are called algorithms. There are algorithms that

search and sort the data collection etc.

• Both the container classes and the algorithms use iterators, which are pointer-like objects.

• The container classes in OpenFOAM can be found in $FOAM_SRC/OpenFOAM/containers,

for example Lists/UList

• forAll is defined in UList.H to help us march through all entries of a list of objects of any

class:

#define forAll(list, i) \

for (Foam::label i=0; i<(list).size(); i++)

Search OpenFOAM for examples of how to use forAll, e.g.:

forAll(anyList, i) { statements; }

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 40

Forward declaration

We know that we introduce header files to let the compiler know about classes, functions, etc.

that the code in a particular class needs to use. In some cases that is not possible. For instance,

if two classes are mutual friends they both need to know about each other at compile time. That

is not possible, since the compilation goes sequentially through the files. As one of the classes is

declared, the other class has not yet been declared. The solution is to do a forward declaration.

A forward declaration tells the compiler about the existence of an identifier before declaring the

identifier.

Forward declarations can also potentially speed up the compilation speed, since the compiler

does not have to look up the other class. On the other hand, the class identifier must be repeated

wherever it will be used.

In OpenFOAM you see this before the class declaration, inside namespace Foam, looking like

class, function, or operator declarations.

Read more: https://www.geeksforgeeks.org/what-are-forward-declarations-in-c/

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 41

Structure vs. class

A structure (struct) is the same as a class, except for the default visibility of the attributes.

A struct by default has public attributes, while a class by default has private attributes.

Structures are used mostly to hold collections of data, and to access the data through the

public member data (e.g. myStructObject.i_).

We can in fact change all class to struct in the code we developed in these slides.

Read more at:

https://www.geeksforgeeks.org/structure-vs-class-in-cpp/

https://en.cppreference.com/w/c/language/struct

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 42

Error messages

List of common error messages, to be extended:

• Comment the definition of myClass::write(), and you get a common error message:

myClassAppWithClass.C:(.text.startup+0x3b5): undefined reference to `myClass::write()'

You get a similar message when linking to a library with pre-compiled definitions that do

not correspond to the declarations in your code.

	Object orientation in C++ (and OpenFOAM)
	C++ classes and objects
	Class definition and usage
	Member functions
	Container classes, templates, typedefs and namespace

