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Constructing object UEqn

In this presentation we will have a look at how equations are discretized and assembled in
OpenFOAM.

After constructing the full linear system, it is solved. Here, we will not cover the solution
procedure of the linear system.

As an example we will have a look at the
momentum equation in the icoFoam solver.
The momentum equation for laminar
Newtonian flows reads:

∂

∂t
(u) +∇ · (u⊗ u)−∇ · (ν∇u) = −∇p

Each term in the momentum equation is
represented by an expression in the code.

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

- fvm::laplacian(nu, U)

);

if (piso.momentumPredictor())

{

solve(UEqn == -fvc::grad(p));

}

fvVectorMatrix is a typedef defined in fvMatricesFwd.H as:

typedef fvMatrix<scalar> fvScalarMatrix;

typedef fvMatrix<vector> fvVectorMatrix;

typedef fvMatrix<sphericalTensor> fvSphericalTensorMatrix;

typedef fvMatrix<symmTensor> fvSymmTensorMatrix;

typedef fvMatrix<tensor> fvTensorMatrix;

UEqn is an object of the class template fvMatrix<Type> instantiated with type vector.
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fvMatrix class

fvMatrix is a class for finite volume discretization and solution of scalar equations in
OpenFOAM. In the case of vectorial equations, the solution procedure is performed in a loop
for each component separately. It contains a special matrix type that uses face addressing for
the matrix assembly.
Previously, we showed that the discretized momentum equation will take the form of

auPuP +
∑
N

auNuN = r−∇p or Ax = B

fvMatrix important member data:
X An lduMatrix object (superclass, A)

X psi_: A reference to the volume field
being discretized (x)

X dimensions_: The dimension set

X source_: The source term (right-hand
side of the linear system, B)

X internalCoeffs_: Contribution of the
boundary conditions to the diagonal
members of the coefficient matrix

X boundaryCoeffs_: Contribution of the
boundary conditions to the source term

X faceFluxCorrectionPtr_:
Non-orthogonal correction of the face
flux field.

fvMesh Contructor

template<class Type>

Foam::fvMatrix<Type>::fvMatrix

(

const GeometricField<Type,fvPatchField,volMesh>& psi,

const dimensionSet& ds

)

:

lduMatrix(psi.mesh()),

psi_(psi),

useImplicit_(false),

lduAssemblyName_(),

nMatrix_(0),

dimensions_(ds),

source_(psi.size(), Zero),

internalCoeffs_(psi.mesh().boundary().size()),

boundaryCoeffs_(psi.mesh().boundary().size()),

faceFluxCorrectionPtr_(nullptr)

{
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fvMatrix compilation

How the fvMatrix class is compiled and used in icoFoam? Can you find it?

fvMatrix is a class template. Uninstantiated templates can not be compiled directly and
stored in a library. Can you explain why?

A common practice in C++ is to keep the declaration and implementation of a class
template in the header file so that the compiler will have access to the full implementation
wherever the header file is included.

#ifdef NoRepository

#include "fvMatrix.C"

#endif

Another common approach in OpenFOAM is to use macros to specialize a class template for
specific type(s). Then, the specialized class can be compiled and stored in a library. An
example is the compilation of the turbulence models in OpenFOAM (after OpenFOAM 3.0).

wmake command defines the NoRepository variable by default.

fvMatrix.H is included inside icoFoam. Can you track it down?

gcc -E can create the output of the icoFoam.C after preprocessing step. Run the first step
of wmake using gcc instead of g++ with -E flag.

icoFoam.C that compiler sees and works with has actually 266,191 lines of codes!
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Components of UEqn

Each term inside the UEqn brackets constructs a separate instance of fvMatrix<vector>.
That means a full linear system will be created for each term and stored in member data of
fvMatrix<vector> class.

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

- fvm::laplacian(nu, U)

);

In fact, ddt(), div(), and lapacian() are global functions defined in the fvm namespace
that return a type tmp<fvMatrix<Type>>. We will discuss each term later in detail.

“+” and “-” are overloaded global operators.

Constructors of fvMatrix indicate that inside bracket should also return an instance of
fvMatrix. Here the copy constructor is called.

Constructing UEqn can be better explained by running icoFoam with activating the debug
switch for fvVectorMatrix, i.e.,

icoFoam -debug-switch fvVectorMatrix=1
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icoFoam with debug switch for fvVectorMatrix

Courant Number mean: 0 max: 0

...

in file lnInclude/fvMatrix.C at line 281

Constructing fvMatrix<Type> for field U

...

in file lnInclude/fvMatrix.C at line 281

Constructing fvMatrix<Type> for field U

...

in file lnInclude/fvMatrix.C at line 281

Constructing fvMatrix<Type> for field U

...

in file lnInclude/fvMatrix.C at line 454

Destroying fvMatrix<Type> for field U

...

in file lnInclude/fvMatrix.C at line 454

Destroying fvMatrix<Type> for field U

...

in file lnInclude/fvMatrix.C at line 371

Copying fvMatrix<Type> for field U

...

in file lnInclude/fvMatrix.C at line 454

Destroying fvMatrix<Type> for field U

...

in file lnInclude/fvMatrix.C at line 330

Copying fvMatrix<Type> for field U

fvMatrix<Type>::solveSegregatedOrCoupled(const dictionary& solverControls)

: solving fvMatrix<Type>

fvMatrix<Type>::solveSegregated(const dictionary& solverControls) : solving

fvMatrix<Type>

smoothSolver: Solving for Ux, Initial residual = 1, Final residual =

1.53142e-06, No Iterations 3

smoothSolver: Solving for Uy, Initial residual = 0, Final residual = 0, No

Iterations 0

...

in file lnInclude/fvMatrix.C at line 454

Destroying fvMatrix<Type> for field U

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

- fvm::laplacian(nu, U)

);

if (piso.momentumPredictor())

{

solve(UEqn == -fvc::grad(p));

}

fvm::ddt(U)

fvm::div(phi,U)

fvm::laplacian(nu,U)

+ operator

- operator

fvVectorMatrix UEqn(...)

solve(UEqn == fvc::grad(p))
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Non-default copy-constructor and destructor

template<class Type>

Foam::fvMatrix<Type>::fvMatrix(const fvMatrix<Type>& fvm)

:

lduMatrix(fvm),

psi_(fvm.psi_),

useImplicit_(fvm.useImplicit_),

lduAssemblyName_(fvm.lduAssemblyName_),

nMatrix_(fvm.nMatrix_),

dimensions_(fvm.dimensions_),

source_(fvm.source_),

internalCoeffs_(fvm.internalCoeffs_),

boundaryCoeffs_(fvm.boundaryCoeffs_),

faceFluxCorrectionPtr_(nullptr)

{

DebugInFunction

<<"Copying fvMatrix<Type> for field "<<psi_.name()<<endl;

if (fvm.faceFluxCorrectionPtr_)

{

faceFluxCorrectionPtr_ =

new GeometricField<Type, fvsPatchField, surfaceMesh>

(

*(fvm.faceFluxCorrectionPtr_)

);

}

}

template<class Type>

Foam::fvMatrix<Type>::~fvMatrix()

{

DebugInFunction

<< "Destroying fvMatrix<Type> for field " << psi_.name() <<

endl;

deleteDemandDrivenData(faceFluxCorrectionPtr_);

subMatrices_.clear();

}

Non-default copy-constructor and
destructor are defined. Why?

Mainly because of memory management
which should be done manually in C++
(no automatic garbage collection).

faceFluxCorrectionPtr_ is a pointer
that points to a dynamically allocated
memory on the heap (new command).
It is responsible for the non-orthogonal
correction of the face flux field and will
be discussed later in the discretization
of the Laplacian term.

Copy-constructor takes care of shallow
copy problem, while destructor clears
the garbage.

When faceFluxCorrectionPtr_ goes
out of scope, the pointer will be
removed but its corresponding allocated
memory will not be freed. There will be
an allocated memory on the heap that
nothing points to it (garbage).
Therefore, we need to remove it
manually in the destructor.
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<< "Destroying fvMatrix<Type> for field " << psi_.name() <<

endl;

deleteDemandDrivenData(faceFluxCorrectionPtr_);

subMatrices_.clear();

}

Non-default copy-constructor and
destructor are defined. Why?

Mainly because of memory management
which should be done manually in C++
(no automatic garbage collection).

faceFluxCorrectionPtr_ is a pointer
that points to a dynamically allocated
memory on the heap (new command).
It is responsible for the non-orthogonal
correction of the face flux field and will
be discussed later in the discretization
of the Laplacian term.

Copy-constructor takes care of shallow
copy problem, while destructor clears
the garbage.

When faceFluxCorrectionPtr_ goes
out of scope, the pointer will be
removed but its corresponding allocated
memory will not be freed. There will be
an allocated memory on the heap that
nothing points to it (garbage).
Therefore, we need to remove it
manually in the destructor.
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Non-default copy-constructor and destructor

template<class Type>

Foam::fvMatrix<Type>::fvMatrix(const fvMatrix<Type>& fvm)

:

lduMatrix(fvm),

psi_(fvm.psi_),

useImplicit_(fvm.useImplicit_),

lduAssemblyName_(fvm.lduAssemblyName_),

nMatrix_(fvm.nMatrix_),

dimensions_(fvm.dimensions_),

source_(fvm.source_),

internalCoeffs_(fvm.internalCoeffs_),

boundaryCoeffs_(fvm.boundaryCoeffs_),

faceFluxCorrectionPtr_(nullptr)

{

DebugInFunction

<<"Copying fvMatrix<Type> for field "<<psi_.name()<<endl;

if (fvm.faceFluxCorrectionPtr_)

{

faceFluxCorrectionPtr_ =

new GeometricField<Type, fvsPatchField, surfaceMesh>

(

*(fvm.faceFluxCorrectionPtr_)

);

}

}

template<class Type>

Foam::fvMatrix<Type>::~fvMatrix()

{

DebugInFunction

<< "Destroying fvMatrix<Type> for field " << psi_.name() <<

endl;

deleteDemandDrivenData(faceFluxCorrectionPtr_);

subMatrices_.clear();

}

Such procedures are automated using
smart pointers, e.g., unique_ptr,
shared_ptr.

tmp< T > class in OpenFOAM is
reimplementation of the shared_ptr.
Hence, a memory that is dynamically
allocated on the heap using tmp< T >

will be freed automatically when the
pointer goes out of scope.

If we are not using smart pointers (like
here), a non-default copy-constructor is
also required to avoid a shallow copy
problem (only copying the pointer and
not the allocated memory).

Basically, for a class that allocates a
dynamic memory on the heap without
the usage of the smart pointers, the
copy-constructor, destructor, and
assignment operators have to be
redefined and the allocated memory
should be taken care of.
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Non-default copy-constructor and destructor

template<class Type>

Foam::fvMatrix<Type>::fvMatrix(const fvMatrix<Type>& fvm)

:

lduMatrix(fvm),
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{

DebugInFunction
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{
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new GeometricField<Type, fvsPatchField, surfaceMesh>

(

*(fvm.faceFluxCorrectionPtr_)

);

}

}

template<class Type>

Foam::fvMatrix<Type>::~fvMatrix()

{

DebugInFunction

<< "Destroying fvMatrix<Type> for field " << psi_.name() <<

endl;

deleteDemandDrivenData(faceFluxCorrectionPtr_);

subMatrices_.clear();

}

Such procedures are automated using
smart pointers, e.g., unique_ptr,
shared_ptr.

tmp< T > class in OpenFOAM is
reimplementation of the shared_ptr.
Hence, a memory that is dynamically
allocated on the heap using tmp< T >

will be freed automatically when the
pointer goes out of scope.

If we are not using smart pointers (like
here), a non-default copy-constructor is
also required to avoid a shallow copy
problem (only copying the pointer and
not the allocated memory).

Basically, for a class that allocates a
dynamic memory on the heap without
the usage of the smart pointers, the
copy-constructor, destructor, and
assignment operators have to be
redefined and the allocated memory
should be taken care of.
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+ operator

What does the following summation mean?

fvm::ddt(U)

+ fvm::div(phi, U)

Two objects are summed up and thus the
summation operator should be overloaded.

First, the global operator+, overloaded in
fvMatrix.C, is called.

The checkMethod function checks if the two
sides are compatible.

It then calls the member operator+= that
receives a type fvMatrix<Type>&.

Note that operator+ returns a value of the
same type. However, the assignment operators
(e.g., operator+=) modify member data of the
current object and thus are either void or
return *this.

template<class Type>

Foam::tmp<Foam::fvMatrix<Type>> Foam::operator+

(

const tmp<fvMatrix<Type>>& tA,

const tmp<fvMatrix<Type>>& tB

)

{

checkMethod(tA(), tB(), "+");

tmp<fvMatrix<Type>> tC(tA.ptr());

tC.ref() += tB();

tB.clear();

return tC;

}
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+ operator

Finally we end up with the
following member operator+=.

All the member data are
summed with their
corresponding values.

Each member data calls another
assignment operator+=.

Why are dimensions summed?
(Hint check its implementation)

Implementation of the “-”
operator is similar.

template<class Type>

void Foam::fvMatrix<Type>::operator+=(const fvMatrix<Type>& fvmv)

{

checkMethod(*this, fvmv, "+=");

dimensions_ += fvmv.dimensions_;

lduMatrix::operator+=(fvmv);

source_ += fvmv.source_;

internalCoeffs_ += fvmv.internalCoeffs_;

boundaryCoeffs_ += fvmv.boundaryCoeffs_;

useImplicit_ = fvmv.useImplicit_;

lduAssemblyName_ = fvmv.lduAssemblyName_;

nMatrix_ = fvmv.nMatrix_;

if (faceFluxCorrectionPtr_ && fvmv.faceFluxCorrectionPtr_)

{

*faceFluxCorrectionPtr_ += *fvmv.faceFluxCorrectionPtr_;

}

else if (fvmv.faceFluxCorrectionPtr_)

{

faceFluxCorrectionPtr_ = new

GeometricField<Type, fvsPatchField, surfaceMesh>

(

*fvmv.faceFluxCorrectionPtr_

);

}

}



Constructing momentum equation Solution LDU Addressing ddt(U) laplacian(nu,U)

== operator

Now that UEqn is fully constructed, let’s see what is
happening inside

solve(UEqn == -fvc::grad(p));

Some manipulations are performed on the UEqn

object using the == operator and the result is passed
to the global function solve through a temporary
object. The manipulation is not stored inside UEqn

because later we need the UEqn without the
contribution of the pressure.

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

- fvm::laplacian(nu, U)

);

if (piso.momentumPredictor())

{

solve(UEqn == -fvc::grad(p));

}

The temporary object is destroyed after retun of the solve function.

The == operator is globally overloaded (two input arguments) inside fvMatrix.C.

There are 14 definitions for == operator. Which one is used here?

To find out which one is used, we need to know the type of the left and right-hand sides of
the == operator.

UEqn is a fvMatrix<vector>.

What about -fvc::grad(p)?
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== operator

grad is a global function defined in the fvc namespace as

template<class Type>

tmp

<

GeometricField

<

typename outerProduct<vector,Type>::type, fvPatchField, volMesh

>

>

grad

(

const GeometricField<Type, fvPatchField, volMesh>& vf

)

{

return fvc::grad(vf, "grad(" + vf.name() + ’)’);

}

It is only important to note that the return type is a

tmp

<

GeometricField

<

typename outerProduct<vector,Type>::type, fvPatchField, volMesh

>

>
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== operator

Therefore, UEqn == -fvc::grad(p) employs the following definition of ==

template<class Type>

Foam::tmp<Foam::fvMatrix<Type>> Foam::operator==

(

const fvMatrix<Type>& A,

const tmp<GeometricField<Type, fvPatchField, volMesh>>& tsu

)

{

checkMethod(A, tsu(), "==");

tmp<fvMatrix<Type>> tC(new fvMatrix<Type>(A));

tC.ref().source() += tsu().mesh().V()*tsu().primitiveField();

tsu.clear();

return tC;

}

A new object is created using the copy-constructor.

The right-hand side of == is a GeometricField which is an explicit term and only
contributes to the source term of the fvMatrix.

The right-hand side times mesh volume is added to the source term of the UEqn.
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Solution
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Tracking the solve() function

Now that the momentum equation is fully discretized, let’s see what the solve function is
doing. We will only track down this function right before the linear system solution.

solve(UEqn == -fvc::grad(p));

The solve() function that receives an fvMatrix is a global function that is defined inside
the fvMatrix.C file.

Considering the input argument of the function, the following solve() function is called.

template<class Type>

Foam::SolverPerformance<Type> Foam::solve(fvMatrix<Type>& fvm)

{

return fvm.solve();

}

Then, a member solve() function (without any arguments) from the fvMatrix class is
called on the temporary object created for the full momentum equation (not the UEqn but
the UEqn == -fvc::grad(p)). It is defined in fvMatrixSolve.C.

template<class Type>

Foam::SolverPerformance<Type> Foam::fvMatrix<Type>::solve()

{

return this->solve(solverDict());

}
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Tracking the solve() function

Thereby, another solve() function from the fvMatrix class is called but this time the
function receives the solver dictionary as the input.

solverDict() return the dictionary of the solver that is read from fvSolution.

It calls another solverDict() function from solution class through inheritance (Can you
explain it?). It returns the corresponding solver dictionary.

template<class Type>

const Foam::dictionary& Foam::fvMatrix<Type>::solverDict() const

{

return psi_.mesh().solverDict

(

psi_.select

(

psi_.mesh().data::template getOrDefault<bool>

("finalIteration", false)

)

);

}

Have a look at the fvMesh inheritance diagram. fvMesh is an
fvSolution and fvSolution is a solution.
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Tracking the solve() function

The solve() member function in this->solve(solverDict()) receives a dictionary as an
argument and is defined in fvMatrixSolve.C as,

template<class Type>

Foam::SolverPerformance<Type> Foam::fvMatrix<Type>::solve

(

const dictionary& solverControls

)

{

return psi_.mesh().solve(*this, solverControls);

}

Another solve() member function is called. But this time it belongs to fvMesh class (why?)
and receives a fvMatrix<vector> and a dictionary. Its definition is found in fvMesh.C as

Foam::SolverPerformance<Foam::vector> Foam::fvMesh::solve

(

fvMatrix<vector>& m,

const dictionary& dict

) const

{

// Redirect to fvMatrix solver

return m.solveSegregatedOrCoupled(dict);

}

It will redirect us to the fvMatrix class again and call the solveSegregatedOrCoupled()

member function that at the end calls a linear system solver.

Now can you explain how the solve() function works on pEqn?
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LDU Addressing
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Introduction

Now that we learned how the UEqn is constructed, we can have a look at each term in

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

- fvm::laplacian(nu, U)

);

We will describe how each term is discretized in detail (i.e, time derivative, divergence, and
Laplacian).

However, In order to explain them, first, we need to understand how OpenFOAM stores the
coefficients in the linear system of a discretized equation. Later, you will see that
OpenFOAM mainly manipulates these coefficients during the discretization of each term.

OpenFOAM uses a special and efficient way of storing the coefficients called
Lower-Diagonal-Upper (LDU) decomposition.

All the addressing of the coefficients is stored using the face order numbering (face
addressing).
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fvMatrix class

Recall fvMatrix member data:
X An lduMatrix object (its superclass)

X psi_: The volume field being discretized

X dimensions_: The dimension set

X source_: source term (right hand side)

X internalCoeffs_: Contribution of the
boundary conditions to the diagonal
members of the coefficient matrix

X boundaryCoeffs_: Contribution of the
boundary conditions to the source term

X faceFluxCorrectionPtr_:
Non-orthogonal correction of the face flux
field.

template<class Type>

Foam::fvMatrix<Type>::fvMatrix

(

const GeometricField<Type,fvPatchField,volMesh>&

psi,

const dimensionSet& ds

)

:

lduMatrix(psi.mesh()),

psi_(psi),

useImplicit_(false),

lduAssemblyName_(),

nMatrix_(0),

dimensions_(ds),

source_(psi.size(), Zero),

internalCoeffs_(psi.mesh().boundary().size()),

boundaryCoeffs_(psi.mesh().boundary().size()),

faceFluxCorrectionPtr_(nullptr)

The lduMatrix object is basically the coefficient matrix of the linear system (without the
effects from BCs) which is stored in three components (lower, diagonal, and upper).

Previously, we showed that the discretized momentum equation will take the form of

auPuP +
∑
N

auNuN = r−∇p or Ax = B

A: coefficient matrix x: field vector to be solved B: source term vector
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Coefficients matrix

Consider a uniform 3× 3 cells mesh. For each cell,
the discretized equation is of form

auPuP +
∑
N

auNuN = r−∇p.

They all together create a linear system
(Ax = B). The coefficient matrix (A) is n× n,
where n is the number of cells (here 9× 9).

Cells are connected to each other through internal
faces. Each face has an owner cell and a neighbor
cell.

The number of non-zero coefficients in each row
and column depends on the number of internal
faces of that cell index.

Most coefficients in A are zero (white) except:
O: Owner coefficients (lower triangle)
N: Neighbor coefficients (upper triangle)
P: Diagonal coefficients

The number of non-zero coefficients in each
triangle is equivalent to the number of internal
faces (here 12).

Coefficient matrix A
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Coefficients matrix sparsity

Storing the full matrix A is quite convenient for
addressing and accessing the data. How about
efficiency?

Most A coefficients are zero and the matrix is
extremely sparse.

For a square uniform mesh, the number of
coefficients grows with n2 while the number of
non-zero coefficients grows with n.

A one million cells mesh has 1012 coefficients while
the number of non-zero coefficients is less than
5× 106 (only 0.0005% of the coefficients!).

OpenFOAM uses a special method to store only the
non-zero coefficients. Only the non-zero coefficients
of lower and upper triangles and diagonal coefficients
are stored. Face addressing should also be stored to
know to which face the non-zero coefficients belong.

A matrix for a 8× 8 cells mesh



Constructing momentum equation Solution LDU Addressing ddt(U) laplacian(nu,U)

Coefficients matrix addressing

The lduMatrix and lduAddressing classes provide all the functionalities required for storing
and accessing the coefficients.

The values of the lower, upper, and diagonal coefficients are accessed through lower(),
upper(), and diag() member function of lduMatrix.

The non-zero coefficients of A of the 3× 3 mesh is:
lower() = (a1,0 a3,0 a2,1 a4,1 a5,2 a4,3 a6,3 a5,4 a7,4 a8,5 a7,6 a8,7)
diag() = (a0,0 a1,1 a2,2 a3,3 a4,4 a5,5 a6,6 a7,7 a8,8)
upper() = (a0,1 a0,3 a1,2 a1,4 a2,5 a3,4 a3,6 a4,5 a4,7 a5,8 a6,7 a7,8)

The addressing is stored by the lduAddressing class and
can be accessed through its members functions, i.e.,
lowerAddr(), upperAddr(), and ownerStartAddr().

The addressing of the 3× 3 mesh is:
lowerAddr() = (0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 7)
upperAddr() = (1, 3, 2, 4, 5, 4, 6, 5, 7, 8, 7, 8)
ownerStartAddr() = (0, 2, 4, 5, 7, 9, 10, 11, 12, 12)

lowerAddr() returns list of owner cells of the internal faces
while upperAddr() gives the list of neighbors of the
internal faces. ownerStartAddr() specifies at which
position a new column in the lower() or a new row in the
upper() is started. A matrix for a 3× 3 cells mesh
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icoLduAddressingFoam

In order to understand and explain
the LDU addressing mechanism in
OpenFOAM, a special solver is
created, icoLduAddressingFoam.

The main intention is to calculate
and store the full coefficient
matrix in the linear system and
solve it.

The full momentum equation
object is created
UEqnWithPressure.

The non-zero values of the
coefficient matrix of this equation,
i.e., lower(), upper(), diag(),
and source() coefficients, as well
as the LDU addressing, i.e.,
lowerAddr(), upperAddr(), and
ownerStartAddr() are extracted
and written to the output.

// Momentum predictor

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

- fvm::laplacian(nu, U)

);

fvVectorMatrix UEqnWithPressure(UEqn == -fvc::grad(p));

if (piso.momentumPredictor())

{

solve(UEqnWithPressure);

}

labelUList lAdd = UEqnWithPressure.lduAddr().lowerAddr();

labelUList uAdd = UEqnWithPressure.lduAddr().upperAddr();

labelUList oAdd = UEqnWithPressure.lduAddr().ownerStartAddr();

scalarField lower = UEqnWithPressure.lower();

scalarField upper = UEqnWithPressure.upper();

scalarField diag = UEqnWithPressure.diag();

vectorField source = UEqnWithPressure.source();

Info << "lowerAddr:" << lAdd << nl << endl;

Info << "upperAddr:" << uAdd << nl << endl;

Info << "ownerStartAddr:" << nl << oAdd << nl << endl;

Info << "lower:" << lower << nl << endl;

Info << "upper:" << upper << nl << endl;

Info << "diag:" << nl << diag << nl << endl;

Info << "source:" << nl << source << nl << endl;
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Full coefficient matrix

The full coefficient matrix of the
x-component of the momentum equation is
constructed using the simpleMatrix class
(N ×N , N being the number of cells).

simpleMatrix is a simple square matrix
solver with scalar coefficients.

All the members of the matrix and its
source term (right-hand side) are initialized
with zero.

The diagonal, lower, and upper coefficients,
as well as the source terms, are put in the
right places.

The diagonal, lower, and upper coefficients
are computed using the face fluxes and are
always scalars (scalarField), even for a
fvVectorMatrix. The source term is a
vectorField and diagonal coefficients will
also change for each component by adding
the contribution of boundary conditions.

label nCells = mesh.nCells();

simpleMatrix<scalar> CoeffMat(nCells);

// Initialization of matrix

for(label i = 0; i < nCells; i++)

{

CoeffMat.source()[i] = 0.0;

for(label j = 0; j < nCells; j++)

{

CoeffMat[i][j] = 0.0;

}

}

// Assigning diagonal coefficients

for(label i = 0; i < nCells; ++i)

{

CoeffMat[i][i] = diag[i];

CoeffMat.source()[i] = source[i][0];

}

// Assigning off-diagonal coefficients

for(label faceI = 0; faceI < lAdd.size(); ++faceI)

{

label l = lAdd[faceI];

label u = uAdd[faceI];

CoeffMat[l][u] = upper[faceI];

CoeffMat[u][l] = lower[faceI];

}
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Boundary condition

The effects of boundary conditions are
added to the diagonals and source terms.

In OpenFOAM,the contribution of the
boundary condition to the diagonal
coefficients are provided by
internalCoeffs(), while
boundaryCoeffs() returns the contribution
of the boudanry condition to the source
term.

The impact of boundary condition is added
to the linear system and now the linear
system is fully constructed and ready to
solve.

The matrix and its source term are written
to the output.

The full linear system is then solved.

// Assigning contribution from BC

forAll(U.boundaryField(), patchI)

{

const fvPatch &pp = U.boundaryField()[patchI].

patch();

forAll(pp, faceI)

{

label cellI = pp.faceCells()[faceI];

CoeffMat[cellI][cellI] += UEqnWithPressure.

internalCoeffs()[patchI][faceI][0];

CoeffMat.source()[cellI] +=

UEqnWithPressure.boundaryCoeffs()[patchI][

faceI][0];

}

}

for(label i = 0; i < nCells; ++i)

{

for(label j = 0; j < nCells; ++j)

{

Info << CoeffMat[i][j] << "\t";

}

Info << CoeffMat.source()[i] << endl;

}

Info << endl;

scalarField scalarFieldUx(CoeffMat.solve());
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icoFoam and full matrix solutions

The full linear system for u (Ax = B) is solved and the results are compared to icoFoam



28.222 -1.131 0 -0.869 0 0 0 0 0
-0.869 27.222 -1.135 0 -0.996 0 0 0 0

0 -0.865 28.222 0 0 -1.135 0 0 0
-1.131 0 0 27.222 -1.149 0 -0.720 0 0

0 -1.004 0 -0.851 26.222 -1.147 0 -0.999 0
0 0 -0.865 0 -0.853 27.222 0 0 -1.282
0 0 0 -1.280 0 0 28.222 -0.720 0
0 0 0 0 -1.001 0 -1.280 27.222 -0.718
0 0 0 0 0 -0.718 0 -1.282 28.222





u0
u1
u2
u3
u4
u5
u6
u7
u8


=



-1.155
-2.440
-1.118
-1.199
-3.075
-0.762
6.333
2.406
4.575



icoFoam, full matrix, and MATLAB results for u

Cell No.
OpenFOAM
(icoFoam)

OpenFOAM
(full matrix)

MATLAB

(A−1B)

0 −0.0462047 −0.0462047 −0.0462047
1 −0.0972005 −0.0972005 −0.0972006
2 −0.0434501 −0.0434501 −0.0434503
3 −0.0449111 −0.0449111 −0.0449111
4 −0.1167420 −0.1167420 −0.1167420
5 −0.0216980 −0.0216980 −0.0216980
6 0.2267990 0.2267990 0.2267992
7 0.1745530 0.1745530 0.1745531
8 0.2403400 0.2403400 0.2403402
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icoFoam and full matrix solutions

The full linear system for u (Ax = B) is solved and the results are compared to icoFoam



28.222 -1.131 0 -0.869 0 0 0 0 0
-0.869 27.222 -1.135 0 -0.996 0 0 0 0

0 -0.865 28.222 0 0 -1.135 0 0 0
-1.131 0 0 27.222 -1.149 0 -0.720 0 0

0 -1.004 0 -0.851 26.222 -1.147 0 -0.999 0
0 0 -0.865 0 -0.853 27.222 0 0 -1.282
0 0 0 -1.280 0 0 28.222 -0.720 0
0 0 0 0 -1.001 0 -1.280 27.222 -0.718
0 0 0 0 0 -0.718 0 -1.282 28.222





u0
u1
u2
u3
u4
u5
u6
u7
u8


=



-1.155
-2.440
-1.118
-1.199
-3.075
-0.762
6.333
2.406
4.575



icoFoam, full matrix, and MATLAB results for u

Cell No.
OpenFOAM
(icoFoam)

OpenFOAM
(full matrix)

MATLAB

(A−1B)

0 −0.0462047 −0.0462047 −0.0462047
1 −0.0972005 −0.0972005 −0.0972006
2 −0.0434501 −0.0434501 −0.0434503
3 −0.0449111 −0.0449111 −0.0449111
4 −0.1167420 −0.1167420 −0.1167420
5 −0.0216980 −0.0216980 −0.0216980
6 0.2267990 0.2267990 0.2267992
7 0.1745530 0.1745530 0.1745531
8 0.2403400 0.2403400 0.2403402
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ddt(U)

The ddt(U) in

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

- fvm::laplacian(nu, U)

);

is a global function defined in the namespace fvm inside the fvmDdt.C as:

template<class Type>

tmp<fvMatrix<Type>>

ddt

(

const GeometricField<Type, fvPatchField, volMesh>& vf

)

{

return fv::ddtScheme<Type>::New

(

vf.mesh(),

vf.mesh().ddtScheme("ddt(" + vf.name() + ’)’)

).ref().fvmDdt(vf);

}

The function receives a GeometricField (here U) and returns a type tmp<fvMatrix<Type>>.

The New function is a selector that returns a type tmp<ddtScheme<Type>> which is the
abstract base class for the all the time discretization schemes (ddt).
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Theory and implementation

The fvmDdt(vf) function is called which is a pure
virtual function declared in the abstract base class
ddtScheme and overridden in the subclasses (e.g.,
EulerDdtScheme, backwardDdtScheme, etc.).

Here we will look at the fvmDdt(vf)

implementation in EulerDdtScheme.

The Euler first-order implicit method discretize
the time derivative term as:∫
V

∂φ

∂t
dV =

φnew − φold

∆t
VP = φnew

VP

∆t︸ ︷︷ ︸
diagonal

−φold
VP

∆t︸ ︷︷ ︸
source

In the case of dynamic mesh, the old cell volume
is used in the source term.

The contribution of the time derivative term to
the diagonal members is inversely proportional to
the time step size. That is why reducing time
step enhances the matrix diagonal dominance and
thereby stabilizes the simulation.

{

tmp<fvMatrix<Type>> tfvm

(

new fvMatrix<Type>

(

vf,

vf.dimensions()*dimVol/dimTime

)

);

fvMatrix<Type>& fvm = tfvm.ref();

scalar rDeltaT = 1.0/mesh().time().

deltaTValue();

fvm.diag() = rDeltaT*mesh().Vsc();

if (mesh().moving())

{

fvm.source() = rDeltaT*vf.oldTime().

primitiveField()*mesh().Vsc0();

}

else

{

fvm.source() = rDeltaT*vf.oldTime().

primitiveField()*mesh().Vsc();

}

return tfvm;

}
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Theory

The Laplacian term is discretized using the Gauss’ theorem, as∫
V
∇ · (γ∇φ) dV =

∑
f

γf sf · (∇φ)f .

The diffusion coefficient is mostly interpolated on the faces using the linear scheme.
Therefore, it is only a matter of calculating surface normal gradients, (∇φ)f . The Laplacian
scheme in the fvSchemes specifies:

laplacian(gamma,phi) Gauss <interpolation scheme> <snGrad scheme>

The surface normal vector sf is defined as sf = nf |sf |, where nf is the unit surface normal
vector and |sf | is the surface area.

surface normal gradient can be decomposed into
orthogonal and non-orthogonal parts, as nf = ∆ + k:

nf · (∇φ)f = ∆ · (∇φ)f + k · (∇φ)f

= |∆|
φN − φP
|d|︸ ︷︷ ︸

orthogonal

+ k · (∇φ)f︸ ︷︷ ︸
non−orthogonal

The orthogonal and non-orthogonal parts are treated implicitly and explicitly.
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Theory

∑
f

γf sf · (∇φ)f =
∑
f

γf |sf |nf · (∇φ)f .

Substituting the decomposed surface normal gradient into the discretized Laplacian term
theorem yields∑

f

γf |sf |nf · (∇φ)f =
∑
f

γf |sf |
(
|∆|

φN − φP
|d|

+ k · (∇φ)f

)
There are different ways to choose and compute ∆
and k. For more information, see prof. Jasak’s PhD
thesis. The over-relaxed approach states that k
should be orthogonal to nf . Hence,

∆ =
d

d · nf
, k = nf −∆

So, the discretized Laplacian term becomes∑
f

γf |sf |
(
φN − φP

d · nf
+ k · (∇φ)f

)
=
∑
f

γf |sf |
(
φN − φP

d · nf

)
︸ ︷︷ ︸

Implicit orthogonal

+
∑
f

γf |sf |
(
k · (∇φ)f

)
︸ ︷︷ ︸

Explicit non-orthogonal correction
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laplacian(nu,U)

Similar to ddt(U), laplacian(nu,U) in

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

- fvm::laplacian(nu, U)

);

is a global function defined in the namespace fvm inside the fvmLaplacian.C. There are
several definitions for the laplacian. In order to find out which is used here, we need to
assess the input arguments.

In the createFields.H of icoFoam, nu is created as a dimensionedScalar.

dimensionedScalar nu

(

"nu",

dimViscosity,

transportProperties

);

dimensionedScalar is a typedef:

typedef dimensioned<scalar> dimensionedScalar;

Therefore, we should look for a definition of laplacian that receives two input arguments
with type dimensioned and GeometricField.
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laplacian function

The corresponding definition reads:

template<class Type, class GType>

tmp<fvMatrix<Type>>

laplacian

(

const dimensioned<GType>& gamma,

const GeometricField<Type, fvPatchField, volMesh>& vf

)

{

const GeometricField<GType, fvsPatchField, surfaceMesh> Gamma

(

IOobject

(

gamma.name(),

vf.instance(),

vf.mesh(),

IOobject::NO_READ

),

vf.mesh(),

gamma

);

return fvm::laplacian(Gamma, vf);

}

The template function converts the dimensionedScalar into a surfaceScalarField and
calls another definition of laplacian. The return type is tmp<fvMatrix<Type>>.
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laplacian function

Now the following function is called

template<class Type, class GType>

tmp<fvMatrix<Type>>

laplacian

(

const GeometricField<GType, fvsPatchField, surfaceMesh>& gamma,

const GeometricField<Type, fvPatchField, volMesh>& vf

)

{

return fvm::laplacian

(

gamma,

vf,

"laplacian(" + gamma.name() + ’,’ + vf.name() + ’)’

);

}

Here again another definition of the laplacian function is called. The return type is
tmp<fvMatrix<Type>>.

The third argument is a type word (similar to string). In this case in returns:

"laplacian(nu,U)"

word is a subclass of string which is a subclass of std::string. + is an operator
overloaded inside std::string.
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gaussLaplacianScheme

Finally the following laplacian function is executed

template<class Type, class GType>

tmp<fvMatrix<Type>>

laplacian

(

const GeometricField<GType, fvsPatchField, surfaceMesh>& gamma,

const GeometricField<Type, fvPatchField, volMesh>& vf,

const word& name

)

{

return fv::laplacianScheme<Type, GType>::New

(

vf.mesh(),

vf.mesh().laplacianScheme(name)

).ref().fvmLaplacian(gamma, vf);

}

Here again, a selector function New is used that is connected to the OpenFOAM runtime
selection mechanism. It returns an object to the employed scheme class. Therefore, the
correct fvmLaplacian member function will be called.

The available schemes for discretization are Gauss and relaxedNonOrthoGauss. In other
words, the abstract base class laplacianScheme with pure virtual fvmLaplacian member
function has two subclasses.

Using Gauss, the overridden fvmLaplacian member function of gaussLaplacianScheme is
called. Now let’s find the implementation of fvmLaplacian.
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fvmLaplacian

The template fvmLaplacian function is declared and defined inside
gaussLaplacianScheme.H and gaussLaplacianScheme.C, respectively.

tmp<fvMatrix<Type>> fvmLaplacian

(

const GeometricField<GType, fvsPatchField, surfaceMesh>&,

const GeometricField<Type, fvPatchField, volMesh>&

);

template<class Type, class GType>

tmp<fvMatrix<Type>>

gaussLaplacianScheme<Type, GType>::fvmLaplacian

(

const GeometricField<GType, fvsPatchField, surfaceMesh>& gamma,

const GeometricField<Type, fvPatchField, volMesh>& vf

)

{

const fvMesh& mesh = this->mesh();

const surfaceVectorField Sn(mesh.Sf()/mesh.magSf());

//Continued ...

}

This is a general definition for any types of fvMatrix and GType. However, the compiler
picks up a totally different definition for scalar diffusion coefficient. In this presentation, we
will only focus on the scalar diffusion coefficient and leave out the general tensor coefficient
for you to study.
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fvmLaplacian

The template fvmLaplacian function is declared and defined inside
gaussLaplacianScheme.H and gaussLaplacianScheme.C, respectively.

tmp<fvMatrix<Type>> fvmLaplacian

(

const GeometricField<GType, fvsPatchField, surfaceMesh>&,

const GeometricField<Type, fvPatchField, volMesh>&

);

template<class Type, class GType>

tmp<fvMatrix<Type>>

gaussLaplacianScheme<Type, GType>::fvmLaplacian

(

const GeometricField<GType, fvsPatchField, surfaceMesh>& gamma,

const GeometricField<Type, fvPatchField, volMesh>& vf

)

{

const fvMesh& mesh = this->mesh();

const surfaceVectorField Sn(mesh.Sf()/mesh.magSf());

//Continued ...

}

This is a general definition for any types of fvMatrix and GType. However, the compiler
picks up a totally different definition for scalar diffusion coefficient. In this presentation, we
will only focus on the scalar diffusion coefficient and leave out the general tensor coefficient
for you to study.
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Partial-specialisation for scalar diffusion coefficient

The calculations of the Laplacian term for a scalar diffusion parameter (GType=scalar) is
carried out using partial-specialisation. Macros are used to enable this functionality.

After declaration of class in gaussLaplacianScheme.H, the macro function
defineFvmLaplacianScalarGamma(Type) is defined as the declaration of the fvmLalapcian

and fvcLalapcian functions for different types of fvMatrix while keeping GType scalar.
Subsequently, it is called for all possible fvMatrix types. Note the escape character \ which
escapes the new line.

The macro is performed as a
pre-processing step (before
compilation). The current macro is
simply a text replacement that
repeats the same function declaration
for different fvMatrix types.

After the pre-processing step, all the
macros are carried out and the
compiler only sees several function
declarations for different fvMatrix

types.

Each function declaration needs a
definition. The definitions are carried
out inside gaussLaplacianSchemes.C

using other macros.

#define defineFvmLaplacianScalarGamma(Type) \

\

template<> \

tmp<fvMatrix<Type>> gaussLaplacianScheme<Type, scalar>::fvmLaplacian \

( \

const GeometricField<scalar, fvsPatchField, surfaceMesh>&, \

const GeometricField<Type, fvPatchField, volMesh>& \

); \

\

template<> \

tmp<GeometricField<Type, fvPatchField, volMesh>> \

gaussLaplacianScheme<Type, scalar>::fvcLaplacian \

( \

const GeometricField<scalar, fvsPatchField, surfaceMesh>&, \

const GeometricField<Type, fvPatchField, volMesh>& \

);

defineFvmLaplacianScalarGamma(scalar);

defineFvmLaplacianScalarGamma(vector);

defineFvmLaplacianScalarGamma(sphericalTensor);

defineFvmLaplacianScalarGamma(symmTensor);

defineFvmLaplacianScalarGamma(tensor);



Constructing momentum equation Solution LDU Addressing ddt(U) laplacian(nu,U)

fvmLaplacian for scalar diffusion coefficient

The gaussLaplacianSchemes.C mainly looks like:

makeFvLaplacianScheme(gaussLaplacianScheme)

#define declareFvmLaplacianScalarGamma(Type) \

\

template<> \

Foam::tmp<Foam::fvMatrix<Foam::Type>> \

Foam::fv::gaussLaplacianScheme<Foam::Type, Foam::scalar>::fvmLaplacian \

( \

const GeometricField<scalar, fvsPatchField, surfaceMesh>& gamma, \

const GeometricField<Type, fvPatchField, volMesh>& vf \

) \

{ \

const fvMesh& mesh = this->mesh(); \

//Continued ...

}

declareFvmLaplacianScalarGamma(scalar);

declareFvmLaplacianScalarGamma(vector);

declareFvmLaplacianScalarGamma(sphericalTensor);

declareFvmLaplacianScalarGamma(symmTensor);

declareFvmLaplacianScalarGamma(tensor);

The macro function declareFvmLaplacianScalarGamma(Type) is defined as the definition
of the fvmLalapcian and fvcLalapcian functions where type of fvMatrix is an input
variable. The naming of the macro function is misleading! It is then called for all possible
fvMatrix types.
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fvmLaplacian for scalar diffusion coefficient

Let’s recall the theory∫
V
∇ · (γ∇φ) dV =

∑
f

γf |sf |
(
φN − φP

d · nf

)
︸ ︷︷ ︸

Implicit orthogonal

+
∑
f

γf |sf |
(
k · (∇φ)f

)
︸ ︷︷ ︸

Explicit non-orthogonal correction

The mesh object is created.

gammaMagSf object is created as a
surfaceSclaraField which is
diffusion coefficient time surface
area magnitude (γf |sf |).

magSf() is a member function of
fvMesh class that return the mesh
face areas.

Then, fmvLaplacianUncorrected
function is called that receives
three arguments. It is responsible
for the implicit orthogonal part of
the Laplacian discretized equation.

template<> \

Foam::tmp<Foam::fvMatrix<Foam::Type>> \

Foam::fv::gaussLaplacianScheme<Foam::Type, Foam::scalar>::fvmLaplacian \

( \

const GeometricField<scalar, fvsPatchField, surfaceMesh>& gamma, \

const GeometricField<Type, fvPatchField, volMesh>& vf \

) \

{ \

const fvMesh& mesh = this->mesh(); \

\

GeometricField<scalar, fvsPatchField, surfaceMesh> gammaMagSf \

( \

gamma*mesh.magSf() \

); \

\

tmp<fvMatrix<Type>> tfvm = fvmLaplacianUncorrected \

( \

gammaMagSf, \

this->tsnGradScheme_().deltaCoeffs(vf), \

vf \

); \

fvMatrix<Type>& fvm = tfvm.ref(); \

deltaCoeffs function returns the term 1
d·nf

in the Laplacian equation. It is slightly

different as it is a stabilized form for very bad meshes. We will show it in Doxygen.
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fmvLaplacianUncorrected (implicit orthogonal)

∑
f

γf |sf |
(
φN − φP

d · nf

)
=
∑
f

γf |sf |
d · nf

φN −
∑
f

γf |sf |
d · nf

φP

tvfm object is created as a
tmp<fvMatrix<Type>>, using new operator
with correct dimensions. Then the ref()

function is called to get a non-const reference.

The first term in the above equation is the
contribution of the neighbors which will fill
the off-diagonal members of the fvMtarix.
Therefore, the upper() values are set to the
first term. The lower() is not set here, since
Laplacian creates a symmetric matrix.

The second term is the contribution of the
owners which will change the diagonal
members of the coefficient matrix.

If one loops all the faces of one cell, φP does
not change and the second term becomes

−φP
∑
f
γf |sf |
d·nf

template<class Type, class GType>

tmp<fvMatrix<Type>>

gaussLaplacianScheme<Type, GType>::fvmLaplacianUncorrected

(

const surfaceScalarField& gammaMagSf,

const surfaceScalarField& deltaCoeffs,

const GeometricField<Type, fvPatchField, volMesh>& vf

)

{

tmp<fvMatrix<Type>> tfvm

(

new fvMatrix<Type>

(

vf,

deltaCoeffs.dimensions()*gammaMagSf.dimensions

()*vf.dimensions()

)

);

fvMatrix<Type>& fvm = tfvm.ref();

fvm.upper() = deltaCoeffs.primitiveField()*gammaMagSf.

primitiveField();

fvm.negSumDiag();

Therefore, for each cell, one can sum up all the off-diagonal members and negate the value
to calculate the diagonal coefficient. This is exactly done inside negSumDiag().
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fmvLaplacianUncorrected, boundary conditions

In OpenFOAM, all boundary conditions are a mix of fixedValue and fixedGradient

conditions. Here we will only present the fixedValue condition and leave the
fixedGradient as a practice for you.

For a cell containing both internal and boundary faces (not coupled) the discretized equation
gives: ∑

fi

γfi |sfi |
(
φN − φP
di · nfi

)
︸ ︷︷ ︸

Internal faces

+
∑
fb

γfb |sfb |
(
φb − φP
db · nfb

)
︸ ︷︷ ︸

Boundary faces

The second term of the above equation can be rewritten as∑
fb

γfb |sfb |
db · nfb

φb −
∑
fb

γfb |sfb |
db · nfb

φP

For a fixedValue type BC, The first term is a constant value and thus contributes to the
source term (right-hand side of the linear system). The second term has a contribution from
owners and affects the diagonal coefficients.

Generally, the boundary conditions only affect the diagonal coefficients and/or the source
terms. In OpenFOAM, the contribution of BCs to the diagonal coefficients is stored via
internalCoeffs while boundaryCoeffs is responsible for contributions of BCs to the source
terms.
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fmvLaplacianUncorrected, boundary conditions

A forAll loop is performed on
the boundary patches.

The diagonal contribution is not
directly added to the coefficient
matrix. They are just stored and
later will be added to the
diagonal coefficients (just before
obtaining the solution).

pGamma is value of gammaMagSf
on the boundary patch, i.e.,
γfb |sfb |.

forAll(vf.boundaryField(), patchi)

{

const fvPatchField<Type>& pvf = vf.boundaryField()[patchi];

const fvsPatchScalarField& pGamma = gammaMagSf.boundaryField()[patchi];

const fvsPatchScalarField& pDeltaCoeffs =

deltaCoeffs.boundaryField()[patchi];

if (pvf.coupled())

{

fvm.internalCoeffs()[patchi] =

pGamma*pvf.gradientInternalCoeffs(pDeltaCoeffs);

fvm.boundaryCoeffs()[patchi] =

-pGamma*pvf.gradientBoundaryCoeffs(pDeltaCoeffs);

}

else

{

fvm.internalCoeffs()[patchi] = pGamma*pvf.gradientInternalCoeffs();

fvm.boundaryCoeffs()[patchi] = -pGamma*pvf.gradientBoundaryCoeffs();

}

}

The rest of equation is implemented inside the functions gradientInternalCoeffs and
gradientBoundaryCoeffs. These are virtual functions that are overridden for each boundary
condition.

The minus sign of the boundaryCoeffs is because it is moved to the right hand side.∑
fb

γfb |sfb |
db · nfb

φb −
∑
fb

γfb |sfb |
db · nfb

φP
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fixedValue boundary conditions

The functions gradientInternalCoeffs

and gradientBoundaryCoeffs are
implemenetd inside the basic boundary
conditions (e.g., fixedValue,
fixedGradient, mixed, etc.). Derived
boundary conditions are subclasses of the
basics and picks up their implementation.

Here we will have a look at the
implementation of these functions inside
fixedValueFvPatchField. Later, you can
assess other boundary conditions.

One can see the consistency of theory and
implementation.

template<class Type>

Foam::tmp<Foam::Field<Type>>

Foam::fixedValueFvPatchField<Type>::

gradientInternalCoeffs() const

{

return -pTraits<Type>::one*this->patch().

deltaCoeffs();

}

template<class Type>

Foam::tmp<Foam::Field<Type>>

Foam::fixedValueFvPatchField<Type>::

gradientBoundaryCoeffs() const

{

return this->patch().deltaCoeffs()*(*this);

}

∑
fb

γfb |sfb |
db · nfb

φb−
∑
fb

γfb |sfb |
db · nfb

φP =
∑
fb

γfb |sfb |︸ ︷︷ ︸
pGamma

φb

db · nfb︸ ︷︷ ︸
gradientBoundaryCoeffs

−
∑
fb

γfb |sfb |︸ ︷︷ ︸
pGamma

1

db · nfb︸ ︷︷ ︸
gradientInternalCoeffs

φP
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Explicit non-orthogonal correction

Now that the implicit orthogonal (i.e., uncorrected) part of the Laplacian is fully calculated,
let’s calculate the explicit non-orthogonal correction term. Recall∫

V
∇ · (γ∇φ) dV =

∑
f

γf |sf |
(
φN − φP

d · nf

)
︸ ︷︷ ︸

Implicit orthogonal

+
∑
f

γf |sf |
(
k · (∇φ)f

)
︸ ︷︷ ︸

Explicit non-orthogonal

The corrected() function returns a boolean that specifies whether non-orthogonal
correction is required. For instance, it returns true for corrected scheme.

After that, we have another if statement
that checks the fluxRequired flag in the
fvSchemes. It specifies whether the
non-orthogonal correction should be
performed for the flux() function.

The flux() method of fvMatrix class is
used to correct the face fluxes. In the
pressure velocity coupling algorithm for
incomrepssible flows, the flux() method
is called on the p:

phi = phiHbyA - pEqn.flux();

if (this->tsnGradScheme_().corrected()) \

{ \

if (mesh.fluxRequired(vf.name())) \

{ \

fvm.faceFluxCorrectionPtr() = new \

GeometricField<Type, fvsPatchField, surfaceMesh> \

( \

gammaMagSf*this->tsnGradScheme_().correction(vf) \

); \

\

fvm.source() -= \

mesh.V()* \

fvc::div \

( \

*fvm.faceFluxCorrectionPtr() \

)().primitiveField(); \

} \
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Face flux correction

fluxRequired flag is set in the fvSchemes. For example:

fluxRequired

{

default no;

p ;

}

The above dictionary specifies that if we are discretizing a Laplacian term for p and we need
to perform the non-orthogonal correction, we should include this correction for the flux()

function of p.

Usually solvers overrides the fluxRequired flag to true for pressure field. For instance, the
end of createFileds.H of icoFoam reads:

mesh.setFluxRequired(p.name());

Finally, when the faceFluxCorrectionPtr_ is appropriately constructed, it is used to correct
the fieldFlux in flux() method of fvMatrix as

if (faceFluxCorrectionPtr_)

{

fieldFlux += *faceFluxCorrectionPtr_;

}
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Explicit non-orthogonal correction

We derived the Non-orthogonal correction
term as

∑
f γf |sf |

(
k · (∇φ)f

)
.

The faceFluxCorrectionPtr() is
dynamically allocated as a
GeometricField and set to

gammaMagSf︸ ︷︷ ︸
γf |sf |

* this->tsnGradScheme ().correction(vf)︸ ︷︷ ︸
k·(∇φ)f

One can see that the correction term is
constructed accurately. Here, we will not
show the details of the correction(vf)

function.

if (this->tsnGradScheme_().corrected()) \

{ \

if (mesh.fluxRequired(vf.name())) \

{ \

fvm.faceFluxCorrectionPtr() = new \

GeometricField<Type, fvsPatchField, surfaceMesh> \

( \

gammaMagSf*this->tsnGradScheme_().correction(vf) \

); \

\

fvm.source() -= \

mesh.V()* \

fvc::div \

( \

*fvm.faceFluxCorrectionPtr() \

)().primitiveField(); \

} \

The divergence of the correction term is calculated explicitly and multiplied by the cell
volumes (because of volume integration) and subtracted from the discretized equation source
term (moved to the right-hand side).

As you can see the non-orthogonal correction is an explicit term that contributes to the
right-hand side. Therefore, applying non-orthogonal correction makes the whole linear
system more explicit and so it needs more loops to converge.
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Explicit non-orthogonal correction

If the fluxRequired flag is inactive (as it is in fvm::laplacian(nu,U)), the else statement
activates.

else \

{ \

fvm.source() -= \

mesh.V()* \

fvc::div \

( \

gammaMagSf*this->tsnGradScheme_().correction(vf) \

)().primitiveField(); \

} \

} \

\

return tfvm; \

It is basically similar calculations without creating and storing faceFluxCorrectionPtr().
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