
Open-Source CFD Course

A course at Chalmers University of Technology

Taught by Håkan Nilsson

Based on OpenFOAM v2112

Presenter:

Saeed Salehi

Division of Fluid Dynamics

Department of Mechanics and Maritime Sciences

Chalmers University of Technology

September 2022

DF

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

PIMPLE algorithm and pimpleFoam solver

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

The main steps are similar for both SIMPLE and
PISO pressure correction algorithms.

Solve momentum equation for u

au
P uP +

∑
au

N uN = r−∇p

Calculate velocity without

pressure gradient (au
P)−1H(u)

Solve pressure equation

∇·
(

(au
P)−1∇p

)
= ∇·

(
(au

P)−1H(u)
)

Correct velocity explicitly

uP = (au
P)−1(H(u)−∇p)

SI
M

PL
E

PI
SO

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

The main steps are similar for both SIMPLE and
PISO pressure correction algorithms.

SIMPLE algorithm, originally developed for
steady physics, does not care about the fact the
H(u) operator was constructed using a velocity
that did not fulfill continuity.

SIMPLE goes all the way back to the beginning
of the loop and proceeds in time.

Solve momentum equation for u

au
P uP +

∑
au

N uN = r−∇p

Calculate velocity without

pressure gradient (au
P)−1H(u)

Solve pressure equation

∇·
(

(au
P)−1∇p

)
= ∇·

(
(au

P)−1H(u)
)

Correct velocity explicitly

uP = (au
P)−1(H(u)−∇p)

SI
M

PL
E

PI
SO

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

The main steps are similar for both SIMPLE and
PISO pressure correction algorithms.

SIMPLE algorithm, originally developed for
steady physics, does not care about the fact the
H(u) operator was constructed using a velocity
that did not fulfill continuity.

SIMPLE goes all the way back to the beginning
of the loop and proceeds in time (iteration).

PISO was developed for unsteady physics and is
intended to provide time accurate results.

PISO goes back to correction of H(u) and
performs the momentum corrector step again.
Then it proceeds in time.

Solve momentum equation for u

au
P uP +

∑
au

N uN = r−∇p

Calculate velocity without

pressure gradient (au
P)−1H(u)

Solve pressure equation

∇·
(

(au
P)−1∇p

)
= ∇·

(
(au

P)−1H(u)
)

Correct velocity explicitly

uP = (au
P)−1(H(u)−∇p)

SI
M

PL
E

PI
SO

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

The main steps are similar for both SIMPLE and
PISO pressure correction algorithms.

SIMPLE algorithm, originally developed for
steady physics, does not care about the fact the
H(u) operator was constructed using a velocity
that did not fulfill continuity.

SIMPLE goes all the way back to the beginning
of the loop and proceeds in time (iteration).

PISO was developed for unsteady physics and is
intended to provide time accurate results.

PISO goes back to correction of H(u) and
performs the momentum corrector step again.
Then it proceeds in time.

Solve momentum equation for u

au
P uP +

∑
au

N uN = r−∇p

Calculate velocity without

pressure gradient (au
P)−1H(u)

Solve pressure equation

∇·
(

(au
P)−1∇p

)
= ∇·

(
(au

P)−1H(u)
)

Correct velocity explicitly

uP = (au
P)−1(H(u)−∇p)

SI
M

PL
E

PI
SO

What is the drawback with the PISO algorithm for unsteady problems?

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

The main steps are similar for both SIMPLE and
PISO pressure correction algorithms.

SIMPLE algorithm, originally developed for
steady physics, does not care about the fact the
H(u) operator was constructed using a velocity
that did not fulfill continuity.

SIMPLE goes all the way back to the beginning
of the loop and proceeds in time (iteration).

PISO was developed for unsteady physics and is
intended to provide time accurate results.

PISO goes back to correction of H(u) and
performs the momentum corrector step again.
Then it proceeds in time.

Solve momentum equation for u

au
P uP +

∑
au

N uN = r−∇p

Calculate velocity without

pressure gradient (au
P)−1H(u)

Solve pressure equation

∇·
(

(au
P)−1∇p

)
= ∇·

(
(au

P)−1H(u)
)

Correct velocity explicitly

uP = (au
P)−1(H(u)−∇p)

SI
M

PL
E

PI
SO

What is the drawback with the PISO algorithm for unsteady problems?

The momentum predictor is only solved once at each time step. The linearized momentum
equation uses fluxes and pressure gradient from the previous time-step. This assumption is
only acceptable for very small time-steps (Comax < 1). Under-relaxation cannot be used.

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

PIMPLE algorithm merges PISO (inner
corrector) and SIMPLE (outer corrector) loops.

The main idea behind the PIMPLE loop is to
seek a fully converged steady-state solution with
under-relaxation in each time step and proceed
in time.

PIMPLE works for Comax >> 1.

If only one outer correction loop with multiple
inner loops are performed, the PIMPLE loop
resembles PISO.

Performing one inner corrector with multiple
outer loops makes the procedure similar to the
SIMPLE algorithm (in each time step).

Under-relaxations can be used to have a smooth
convergence in each time step.

Solve momentum equation for u

au
P uP +

∑
au

N uN = r−∇p

Calculate velocity without

pressure gradient (au
P)−1H(u)

Solve pressure equation

∇·
(

(au
P)−1∇p

)
= ∇·

(
(au

P)−1H(u)
)

Correct velocity explicitly

uP = (au
P)−1(H(u)−∇p)

O
ut

er
co

rr
ec

tio
n

In
ne

r
co

rr
ec

tio
n

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

PIMPLE algorithm is widely used in OpenFOAM. In fact, 59 solvers out of total of 108
OpenFOAM solvers employ this pressure correction algorithm, such as: pimpleFoam,
buoyantPimpleFoam, rhoPimpleFoam, sonicFoam, fireFoam, reactingFoam, sprayFoam,
engineFoam, interFoam, twoPhaseEulerFoam, compressibleInterIsoFoam,
cavitatingFoam, interPhaseChangeFoam

grep -irl "while (pimple.loop())" $FOAM_SOLVERS | wc -l

pimpleFoam is a more sophisticated unsteady solver compared to icoFoam and enables
several additional functionalities, such as
X outer correction, inner correction, and non-orthogonal correction loops

X Mesh motion

X Adjustable time step (based on Courant number)

X CorrectPhi

X Turbulence modeling

X Multiple Reference Frame (MRF)

X fvOptions (such as porosity)

X Under-relaxations

X Residual control

pimpleFoam provides a high level of flexibility using different switches and parameters.

All switches and parameters can be set inside the PIMPLE dictionary of fvSolution.

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

PIMPLE switches and parameters

Parameter Type Default Description

nOuterCorrectors Integer 1 Maximum number of outer correction loops

nCorrectors Integer 1 Maximum number of inner (PISO) correction loops

nNonOrthogonalCorrectors Integer 0 Number of non-orthogonal correction loops

momentumPredictor Boolean true Indicates whether to solve for momentum

transonic Boolean false Indicates whether to use transonic algorithm (compressible
solvers)

consistent Boolean false Indicates whether to use “consistent” approach (SIMPLEC)

frozenFlow Boolean false Indicates whether the flow system of equations should not
be evolved

turbOnFinalIterOnly Boolean true Indicates whether to only solve turbulence on final outer
loop

finalOnLastPimpleIterOnly Boolean false Indicates whether the final solver is used only on the final
PIMPLE loop

ddtCorr Boolean true Indicates whether the ddtCorr should be applied

correctPhi Boolean Dynamic mesh? Perform flux correction functions to ensure continuity before
solving momentum equation.

checkMeshCourantNo Boolean false Calculate Courant number of the mesh motion

moveMeshOuterCorrectors Boolean false Indicates whether to perform dynamic mesh calculations in
each outer loop

solveFlow Boolean true Indicates whether to solve the flow (only in sprayFoam)

SIMPLErho Boolean false indicate whether to update density in SIMPLE rather than
PISO (In a few solvers e.g. rhoPimpleFoam)

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Flowchart of the pimpleFoam solver (some details are omitted in this flowchart, e.g., correctPhi,
fvOptions, MRF, etc.)

Outer correction loop

Inner correction loop

StartCreate time, mesh,
initialize fields, etc.

Execute function objects,
calculate Co. and ∆t,

update time (++runTime)

First outer
correction?

Dynamic
mesh?

Update mesh
(move points)

Calculate mesh
motion fluxes
(meshPhi) using
swept volumes

Construct, relax, and
solve momentum

equation (UEqn) with
previous pressure

Calculate velocity
without ∇p and its

flux (HbyA and
phiHbyA)

Solve pressure
equation pEqn

Update explicit
non-orthog. correction
in ∇ ·

(
(au

P)−1∇p
)

Final
non-orthogonal

correction?

Calculate
conservative fluxes

relax p field

Correct velocity
field explicitly

Dynamic
mesh?

Make fluxes
relative to

mesh motion

Continue
inner

correction?

Turbulence
on final outer

iter only?

Final
outer?

Solve turbulence
equations and update
Reynolds stress tensor

Continue
outer

correction?

End time? End

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Included header files before the main function

 #include "fvCFD.H"

 #include "dynamicFvMesh.H"

 #include "singlePhaseTransportModel.H"

 #include "turbulentTransportModel.H"

 #include "pimpleControl.H"

 #include "CorrectPhi.H"

 #include "fvOptions.H"

 #include "localEulerDdtScheme.H"

 #include "fvcSmooth.H"

pimpleControl.H

 #ifndef pimpleControl_H

 #define pimpleControl_H

 #include "solutionControl.H"

 //- Declare that pimpleControl will be used

 #define PIMPLE_CONTROL

Outer correction loop

Inner correction loop

StartCreate time, mesh,
initialize fields, etc.

Execute function objects,
calculate Co. and ∆t,

update time (++runTime)

First outer
correction?

Dynamic
mesh?

Update mesh
(move points)

Calculate mesh
motion fluxes
(meshPhi) using
swept volumes

Construct, relax, and
solve momentum

equation (UEqn) with
previous pressure

Calculate velocity
without ∇p and its

flux (HbyA and
phiHbyA)

Solve pressure
equation pEqn

Update explicit
non-orthog. correction
in ∇ ·

(
(au

P)−1∇p
)

Final
non-orthogonal

correction?

Calculate
conservative fluxes

relax p field

Correct velocity
field explicitly

Dynamic
mesh?

Make fluxes
relative to

mesh motion

Continue
inner

correction?

Turbulence
on final outer

iter only?

Final
outer?

Solve turbulence
equations and update
Reynolds stress tensor

Continue
outer

correction?

End time? End

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Create time, mesh, fields, etc.

 int main(int argc, char *argv[])

 {

 argList::addNote

 (

 "Transient solver for incompressible,

turbulent flow"

 " of Newtonian fluids on a moving mesh."

);

 #include "postProcess.H"

 #include "addCheckCaseOptions.H"

 #include "setRootCaseLists.H"

 #include "createTime.H"

 #include "createDynamicFvMesh.H"

 #include "initContinuityErrs.H"

 #include "createDyMControls.H"

 #include "createFields.H"

 #include "createUfIfPresent.H"

 #include "CourantNo.H"

 #include "setInitialDeltaT.H"

 turbulence->validate();

createDynamicFvMesh.H

 Info<< "Create mesh for time = "

 << runTime.timeName() << nl << endl;

 autoPtr<dynamicFvMesh> meshPtr(dynamicFvMesh::New(args

, runTime));

 dynamicFvMesh& mesh = meshPtr();

Outer correction loop

Inner correction loop

StartCreate time, mesh,
initialize fields, etc.

Execute function objects,
calculate Co. and ∆t,

update time (++runTime)

First outer
correction?

Dynamic
mesh?

Update mesh
(move points)

Calculate mesh
motion fluxes
(meshPhi) using
swept volumes

Construct, relax, and
solve momentum

equation (UEqn) with
previous pressure

Calculate velocity
without ∇p and its

flux (HbyA and
phiHbyA)

Solve pressure
equation pEqn

Update explicit
non-orthog. correction
in ∇ ·

(
(au

P)−1∇p
)

Final
non-orthogonal

correction?

Calculate
conservative fluxes

relax p field

Correct velocity
field explicitly

Dynamic
mesh?

Make fluxes
relative to

mesh motion

Continue
inner

correction?

Turbulence
on final outer

iter only?

Final
outer?

Solve turbulence
equations and update
Reynolds stress tensor

Continue
outer

correction?

End time? End

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

createDyMControls.H

 bool correctPhi

 (

 pimple.dict().getOrDefault("correctPhi", true)

);

 bool checkMeshCourantNo

 (

 pimple.dict().getOrDefault("checkMeshCourantNo",

false)

);

 bool moveMeshOuterCorrectors

 (

 pimple.dict().getOrDefault("

moveMeshOuterCorrectors", false)

);

 bool massFluxInterpolation

 (

 pimple.dict().getOrDefault("massFluxInterpolation"

, false)

);

 bool adjustFringe

 (

 pimple.dict().getOrDefault("oversetAdjustPhi",

false)

);

 bool ddtCorr

 (

 pimple.dict().getOrDefault("ddtCorr", true)

);
Outer correction loop

Inner correction loop

StartCreate time, mesh,
initialize fields, etc.

Execute function objects,
calculate Co. and ∆t,

update time (++runTime)

First outer
correction?

Dynamic
mesh?

Update mesh
(move points)

Calculate mesh
motion fluxes
(meshPhi) using
swept volumes

Construct, relax, and
solve momentum

equation (UEqn) with
previous pressure

Calculate velocity
without ∇p and its

flux (HbyA and
phiHbyA)

Solve pressure
equation pEqn

Update explicit
non-orthog. correction
in ∇ ·

(
(au

P)−1∇p
)

Final
non-orthogonal

correction?

Calculate
conservative fluxes

relax p field

Correct velocity
field explicitly

Dynamic
mesh?

Make fluxes
relative to

mesh motion

Continue
inner

correction?

Turbulence
on final outer

iter only?

Final
outer?

Solve turbulence
equations and update
Reynolds stress tensor

Continue
outer

correction?

End time? End

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

createControl.H

 #if defined(NO_CONTROL)

 #elif defined(PISO_CONTROL)

 #include "createPisoControl.H"

 #elif defined(PIMPLE_CONTROL)

 #include "createPimpleControl.H"

 #elif defined(SIMPLE_CONTROL)

 #include "createSimpleControl.H"

 #endif

createPimpleControl.H

 pimpleControl pimple(mesh);

Outer correction loop

Inner correction loop

StartCreate time, mesh,
initialize fields, etc.

Execute function objects,
calculate Co. and ∆t,

update time (++runTime)

First outer
correction?

Dynamic
mesh?

Update mesh
(move points)

Calculate mesh
motion fluxes
(meshPhi) using
swept volumes

Construct, relax, and
solve momentum

equation (UEqn) with
previous pressure

Calculate velocity
without ∇p and its

flux (HbyA and
phiHbyA)

Solve pressure
equation pEqn

Update explicit
non-orthog. correction
in ∇ ·

(
(au

P)−1∇p
)

Final
non-orthogonal

correction?

Calculate
conservative fluxes

relax p field

Correct velocity
field explicitly

Dynamic
mesh?

Make fluxes
relative to

mesh motion

Continue
inner

correction?

Turbulence
on final outer

iter only?

Final
outer?

Solve turbulence
equations and update
Reynolds stress tensor

Continue
outer

correction?

End time? End

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Function object, Co., ∆t, update time

 while (runTime.run())

 {

 #include "readDyMControls.H"

 if (LTS)

 {

 #include "setRDeltaT.H"

 }

 else

 {

 #include "CourantNo.H"

 #include "setDeltaT.H"

 }

 ++runTime;

runTime is an instance of class Time.
createTime.H

 Foam::Info<< "Create time\n" << Foam::endl;

 Foam::Time runTime(Foam::Time::controlDictName, args);

Outer correction loop

Inner correction loop

StartCreate time, mesh,
initialize fields, etc.

Execute function objects,
calculate Co. and ∆t,

update time (++runTime)

First outer
correction?

Dynamic
mesh?

Update mesh
(move points)

Calculate mesh
motion fluxes
(meshPhi) using
swept volumes

Construct, relax, and
solve momentum

equation (UEqn) with
previous pressure

Calculate velocity
without ∇p and its

flux (HbyA and
phiHbyA)

Solve pressure
equation pEqn

Update explicit
non-orthog. correction
in ∇ ·

(
(au

P)−1∇p
)

Final
non-orthogonal

correction?

Calculate
conservative fluxes

relax p field

Correct velocity
field explicitly

Dynamic
mesh?

Make fluxes
relative to

mesh motion

Continue
inner

correction?

Turbulence
on final outer

iter only?

Final
outer?

Solve turbulence
equations and update
Reynolds stress tensor

Continue
outer

correction?

End time? End

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

run function of class Time returns a boolean about
whether the simulation should be continued or not.
It also invokes function objects.

Can you spot the small difference between code
and flowchart?

run function

...

if (timeIndex_ == startTimeIndex_)

{

addProfiling(functionObjects, "functionObjects.

start()");

functionObjects_.start();

}

else

{

addProfiling(functionObjects, "functionObjects.

execute()");

functionObjects_.execute();

}

...

Outer correction loop

Inner correction loop

StartCreate time, mesh,
initialize fields, etc.

Execute function objects,
calculate Co. and ∆t,

update time (++runTime)

First outer
correction?

Dynamic
mesh?

Update mesh
(move points)

Calculate mesh
motion fluxes
(meshPhi) using
swept volumes

Construct, relax, and
solve momentum

equation (UEqn) with
previous pressure

Calculate velocity
without ∇p and its

flux (HbyA and
phiHbyA)

Solve pressure
equation pEqn

Update explicit
non-orthog. correction
in ∇ ·

(
(au

P)−1∇p
)

Final
non-orthogonal

correction?

Calculate
conservative fluxes

relax p field

Correct velocity
field explicitly

Dynamic
mesh?

Make fluxes
relative to

mesh motion

Continue
inner

correction?

Turbulence
on final outer

iter only?

Final
outer?

Solve turbulence
equations and update
Reynolds stress tensor

Continue
outer

correction?

End time? End

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Function object, Co., ∆t, update time

 while (runTime.run())

 {

 #include "readDyMControls.H"

 if (LTS)

 {

 #include "setRDeltaT.H"

 }

 else

 {

 #include "CourantNo.H"

 #include "setDeltaT.H"

 }

 ++runTime;

readDyMControls.H

 #include "readTimeControls.H"

 correctPhi = pimple.dict().getOrDefault

 (

 "correctPhi",

 correctPhi

);

 checkMeshCourantNo = pimple.dict().getOrDefault

 (

 "checkMeshCourantNo",

 checkMeshCourantNo

);

 moveMeshOuterCorrectors = pimple.dict().getOrDefault

 (

 "moveMeshOuterCorrectors",

 moveMeshOuterCorrectors

);

Outer correction loop

Inner correction loop

StartCreate time, mesh,
initialize fields, etc.

Execute function objects,
calculate Co. and ∆t,

update time (++runTime)

First outer
correction?

Dynamic
mesh?

Update mesh
(move points)

Calculate mesh
motion fluxes
(meshPhi) using
swept volumes

Construct, relax, and
solve momentum

equation (UEqn) with
previous pressure

Calculate velocity
without ∇p and its

flux (HbyA and
phiHbyA)

Solve pressure
equation pEqn

Update explicit
non-orthog. correction
in ∇ ·

(
(au

P)−1∇p
)

Final
non-orthogonal

correction?

Calculate
conservative fluxes

relax p field

Correct velocity
field explicitly

Dynamic
mesh?

Make fluxes
relative to

mesh motion

Continue
inner

correction?

Turbulence
on final outer

iter only?

Final
outer?

Solve turbulence
equations and update
Reynolds stress tensor

Continue
outer

correction?

End time? End

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Function object, Co., ∆t, update time

 while (runTime.run())

 {

 #include "readDyMControls.H"

 if (LTS)

 {

 #include "setRDeltaT.H"

 }

 else

 {

 #include "CourantNo.H"

 #include "setDeltaT.H"

 }

 ++runTime;

Increment time with “++” overloaded operator

++runTime or runTime++?

Both have the same effect. However, in C++
pre-increment (++i) first increases i and then
return the value but post-increment (i++) first
return the value and then increase it.

The performance of overloaded operator++ could
be significantly affected since post-increment
needs the creation of the temporary object.

Form OpenFOAM-v1812 the runTime increment
operator switched to pre-increment (only in ESI
version).

Foam::Time& Foam::Time::operator++()

...

setTime(value() + deltaT_, timeIndex_ + 1);

...

Outer correction loop

Inner correction loop

StartCreate time, mesh,
initialize fields, etc.

Execute function objects,
calculate Co. and ∆t,

update time (++runTime)

First outer
correction?

Dynamic
mesh?

Update mesh
(move points)

Calculate mesh
motion fluxes
(meshPhi) using
swept volumes

Construct, relax, and
solve momentum

equation (UEqn) with
previous pressure

Calculate velocity
without ∇p and its

flux (HbyA and
phiHbyA)

Solve pressure
equation pEqn

Update explicit
non-orthog. correction
in ∇ ·

(
(au

P)−1∇p
)

Final
non-orthogonal

correction?

Calculate
conservative fluxes

relax p field

Correct velocity
field explicitly

Dynamic
mesh?

Make fluxes
relative to

mesh motion

Continue
inner

correction?

Turbulence
on final outer

iter only?

Final
outer?

Solve turbulence
equations and update
Reynolds stress tensor

Continue
outer

correction?

End time? End

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Start of outer (PIMPLE) loop

 while (pimple.loop())

 {

 if (pimple.firstIter() ||

moveMeshOuterCorrectors)

 {

 // Do any mesh changes

 mesh.controlledUpdate();

All the dynamic mesh calculations happen in the
controlledUpdate function.

How about static mesh? (Hint: dynamic binding)

controlledUpdate calls the correct update

function on the mesh.

update function of dynamicMotionSolverFvMesh class

...

fvMesh::movePoints(motionPtr_->newPoints());

...

movePoints function of fvMesh class

...

phi.primitiveFieldRef() =

scalarField::subField(sweptVols, nInternalFaces());

phi.primitiveFieldRef() *= rDeltaT;

... Outer correction loop

Inner correction loop

StartCreate time, mesh,
initialize fields, etc.

Execute function objects,
calculate Co. and ∆t,

update time (++runTime)

First outer
correction?

Dynamic
mesh?

Update mesh
(move points)

Calculate mesh
motion fluxes
(meshPhi) using
swept volumes

Construct, relax, and
solve momentum

equation (UEqn) with
previous pressure

Calculate velocity
without ∇p and its

flux (HbyA and
phiHbyA)

Solve pressure
equation pEqn

Update explicit
non-orthog. correction
in ∇ ·

(
(au

P)−1∇p
)

Final
non-orthogonal

correction?

Calculate
conservative fluxes

relax p field

Correct velocity
field explicitly

Dynamic
mesh?

Make fluxes
relative to

mesh motion

Continue
inner

correction?

Turbulence
on final outer

iter only?

Final
outer?

Solve turbulence
equations and update
Reynolds stress tensor

Continue
outer

correction?

End time? End

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Including UEqn in pimpleFoam

 #include "UEqn.H"

UEqn.H

 // Solve the Momentum equation

 MRF.correctBoundaryVelocity(U);

 tmp<fvVectorMatrix> tUEqn

 (

 fvm::ddt(U) + fvm::div(phi, U)

 + MRF.DDt(U)

 + turbulence->divDevReff(U)

 ==

 fvOptions(U)

);

 fvVectorMatrix& UEqn = tUEqn.ref();

 UEqn.relax();

 fvOptions.constrain(UEqn);

 if (pimple.momentumPredictor())

 {

 solve(UEqn == -fvc::grad(p));

 fvOptions.correct(U);

 }

UEqn is constructed.

It is implicitly relaxed (will be discussed later).

If momentumPredictor is true, UEqn is solved.

“==” operator

Outer correction loop

Inner correction loop

StartCreate time, mesh,
initialize fields, etc.

Execute function objects,
calculate Co. and ∆t,

update time (++runTime)

First outer
correction?

Dynamic
mesh?

Update mesh
(move points)

Calculate mesh
motion fluxes
(meshPhi) using
swept volumes

Construct, relax, and
solve momentum

equation (UEqn) with
previous pressure

Calculate velocity
without ∇p and its

flux (HbyA and
phiHbyA)

Solve pressure
equation pEqn

Update explicit
non-orthog. correction
in ∇ ·

(
(au

P)−1∇p
)

Final
non-orthogonal

correction?

Calculate
conservative fluxes

relax p field

Correct velocity
field explicitly

Dynamic
mesh?

Make fluxes
relative to

mesh motion

Continue
inner

correction?

Turbulence
on final outer

iter only?

Final
outer?

Solve turbulence
equations and update
Reynolds stress tensor

Continue
outer

correction?

End time? End

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Pressure corrector loop (PISO)

 // --- Pressure corrector loop

 while (pimple.correct())

 {

 #include "pEqn.H"

 }

Velocity without pressure gradient ((au
P)−1H,

HByA) and its corresponding flux (phiHByA) are
constructed.

ddtCorr correction is applied in case needed.

From OpenFOAM-v2006 the ddtCorr switch is
added. The else statement throws dimensionality
check error (run time error).

Details on MRF, pressure reference, and consistent
PIMPLE are not shown and explained here.

Beginning of pEqn.H

 volScalarField rAU(1.0/UEqn.A());

 volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));

 surfaceScalarField phiHbyA("phiHbyA", fvc::flux(HbyA));

 if (pimple.ddtCorr())

 {

 phiHbyA += MRF.zeroFilter(fvc::interpolate(rAU)*fvc

::ddtCorr(U, phi, Uf));

 }

 MRF.makeRelative(phiHbyA);

Outer correction loop

Inner correction loop

StartCreate time, mesh,
initialize fields, etc.

Execute function objects,
calculate Co. and ∆t,

update time (++runTime)

First outer
correction?

Dynamic
mesh?

Update mesh
(move points)

Calculate mesh
motion fluxes
(meshPhi) using
swept volumes

Construct, relax, and
solve momentum

equation (UEqn) with
previous pressure

Calculate velocity
without ∇p and its

flux (HbyA and
phiHbyA)

Solve pressure
equation pEqn

Update explicit
non-orthog. correction
in ∇ ·

(
(au

P)−1∇p
)

Final
non-orthogonal

correction?

Calculate
conservative fluxes

relax p field

Correct velocity
field explicitly

Dynamic
mesh?

Make fluxes
relative to

mesh motion

Continue
inner

correction?

Turbulence
on final outer

iter only?

Final
outer?

Solve turbulence
equations and update
Reynolds stress tensor

Continue
outer

correction?

End time? End

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Non-orthogonal pressure corrector loop

 // Non-orthogonal pressure corrector loop

 while (pimple.correctNonOrthogonal())

 {

 fvScalarMatrix pEqn

 (

 fvm::laplacian(rAtU(), p) == fvc::div(phiHbyA)

);

 pEqn.setReference(pRefCell, pRefValue);

 pEqn.solve(mesh.solver(p.select(pimple.

finalInnerIter())));

 if (pimple.finalNonOrthogonalIter())

 {

 phi = phiHbyA - pEqn.flux();

 }

 }

The pressure (continuity) equation is constructed as

∇ ·
(
(a

u
P)

−1∇p
)

= ∇ ·
(
(a

u
P)

−1
H(u)

)
The appropriate solver is read from fvSolution

based on p.select(pimple.finalInnerIter())

that returns a word type which is either p or
pFinal.

In each loop the explicit non-orthogonal correction
term is updated. In other words, the
non-orthogonal correction loop only updates the
left-hand side of pEqn, while in the pressure
corrector loop both sides are updated.

In the final non-orthogonal correction loop, the
conservative face fluxes are calculated.

Outer correction loop

Inner correction loop

StartCreate time, mesh,
initialize fields, etc.

Execute function objects,
calculate Co. and ∆t,

update time (++runTime)

First outer
correction?

Dynamic
mesh?

Update mesh
(move points)

Calculate mesh
motion fluxes
(meshPhi) using
swept volumes

Construct, relax, and
solve momentum

equation (UEqn) with
previous pressure

Calculate velocity
without ∇p and its

flux (HbyA and
phiHbyA)

Solve pressure
equation pEqn

Update explicit
non-orthog. correction
in ∇ ·

(
(au

P)−1∇p
)

Final
non-orthogonal

correction?

Calculate
conservative fluxes

relax p field

Correct velocity
field explicitly

Dynamic
mesh?

Make fluxes
relative to

mesh motion

Continue
inner

correction?

Turbulence
on final outer

iter only?

Final
outer?

Solve turbulence
equations and update
Reynolds stress tensor

Continue
outer

correction?

End time? End

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

End of pEqn.H

 p.relax();

 U = HbyA - rAtU*fvc::grad(p);

 U.correctBoundaryConditions();

 fvOptions.correct(U);

 // Correct Uf if the mesh is moving

 fvc::correctUf(Uf, U, phi);

 // Make the fluxes relative to the mesh motion

 fvc::makeRelative(phi, U);

field p is relaxed explicitly using the stored value
from the previous PIMPLE iteration (will be
discussed later).

Velocity field is corrected through new pressure.

In the case of mesh motion, the conservative fluxes
are made relative to the mesh motion (meshPhi).

Definition of makeRelative in fvcMeshPhi.C

void Foam::fvc::makeRelative

(

surfaceScalarField& phi,

const volVectorField& U

)

{

if (phi.mesh().moving())

{

phi -= fvc::meshPhi(U);

}

}

Outer correction loop

Inner correction loop

StartCreate time, mesh,
initialize fields, etc.

Execute function objects,
calculate Co. and ∆t,

update time (++runTime)

First outer
correction?

Dynamic
mesh?

Update mesh
(move points)

Calculate mesh
motion fluxes
(meshPhi) using
swept volumes

Construct, relax, and
solve momentum

equation (UEqn) with
previous pressure

Calculate velocity
without ∇p and its

flux (HbyA and
phiHbyA)

Solve pressure
equation pEqn

Update explicit
non-orthog. correction
in ∇ ·

(
(au

P)−1∇p
)

Final
non-orthogonal

correction?

Calculate
conservative fluxes

relax p field

Correct velocity
field explicitly

Dynamic
mesh?

Make fluxes
relative to

mesh motion

Continue
inner

correction?

Turbulence
on final outer

iter only?

Final
outer?

Solve turbulence
equations and update
Reynolds stress tensor

Continue
outer

correction?

End time? End

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

End of PIMPLE loop

 if (pimple.turbCorr())

 {

 laminarTransport.correct();

 turbulence->correct();

 }

If turbCorr() returns true, the turbulence
equations are solved and the Reynolds stress tensor
is updated.

Definition of turbCorr in pimpleControlI.H

inline bool Foam::pimpleControl::turbCorr()

{

...

return !turbOnFinalIterOnly_ || finalIter();

}

Outer correction loop

Inner correction loop

StartCreate time, mesh,
initialize fields, etc.

Execute function objects,
calculate Co. and ∆t,

update time (++runTime)

First outer
correction?

Dynamic
mesh?

Update mesh
(move points)

Calculate mesh
motion fluxes
(meshPhi) using
swept volumes

Construct, relax, and
solve momentum

equation (UEqn) with
previous pressure

Calculate velocity
without ∇p and its

flux (HbyA and
phiHbyA)

Solve pressure
equation pEqn

Update explicit
non-orthog. correction
in ∇ ·

(
(au

P)−1∇p
)

Final
non-orthogonal

correction?

Calculate
conservative fluxes

relax p field

Correct velocity
field explicitly

Dynamic
mesh?

Make fluxes
relative to

mesh motion

Continue
inner

correction?

Turbulence
on final outer

iter only?

Final
outer?

Solve turbulence
equations and update
Reynolds stress tensor

Continue
outer

correction?

End time? End

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Under relaxation factors

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Under-relaxations are required to improve the stability of computations by decreasing the
change of variables between iterations.

They should be chosen low enough to ensure stability but high enough to have a fast
convergence.

In OpenFOAM, the numerical solution is relaxed in two different ways, i.e., fields and
equations.

An exmaple of relaxationFactors dictionary in the fvSolution

relaxationFactors
{

fields
{

p 0.6;
}
equations
{

"(U|k|omega)" 0.7; //table ((0 0.4) (0.5 0.7));
"(U|k|omega)Final" 1.0;

}
}

For instance, in PIMPLE loop, UEqn and p are relaxed using UEqn.relax() and p.relax().

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

UEqn is a fvVectorMatrix which represents an equation. UEqn.relax() calls the relax()

function defined in fvMatrix class.

p is a volScalarField which represents a field. p.relax() calls the relax() function
defined in GeometricField class.

Note that UEqn equation is first relaxed and then solved, while a solution for p is first
obtained and then the field is relaxed.

Relaxing equations are also known as implicit relaxation while applying under-relaxation
factor on a field is an explicit relaxation.

UEqn.H

 tmp<fvVectorMatrix> tUEqn

 (

 fvm::ddt(U) + fvm::div(phi, U)

 + MRF.DDt(U)

 + turbulence->divDevReff(U)

 ==

 fvOptions(U)

);

 fvVectorMatrix& UEqn = tUEqn.ref();

 UEqn.relax();

 fvOptions.constrain(UEqn);

 if (pimple.momentumPredictor())

 {

 solve(UEqn == -fvc::grad(p));

 fvOptions.correct(U);

 }

pEqn.H

 // Non-orthogonal pressure corrector loop

 while (pimple.correctNonOrthogonal())

 {

 fvScalarMatrix pEqn

 (

 fvm::laplacian(rAtU(), p) == fvc::div(phiHbyA)

);

 pEqn.setReference(pRefCell, pRefValue);

 pEqn.solve(mesh.solver(p.select(pimple.

finalInnerIter())));

 if (pimple.finalNonOrthogonalIter())

 {

 phi = phiHbyA - pEqn.flux();

 }

 }

 #include "continuityErrs.H"

 // Explicitly relax pressure for momentum corrector

 p.relax();

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Implicit relaxation, theory

Implicit relaxation method is also known as Patankar’s Under-relaxation.

It is shown in the linear algebra that increasing diagonal dominance of a linear system
enhances the stability of the iterative linear solver.

For example, the Jacobi and Gauss-Seidel methods only converge when the matrix is strictly
diagonally dominant.

Consider the following discretized equation for the general variable φ

aPφ
n
P +

∑
N

aNφ
n
N = r

The diagonal dominance of this linear system could be improved by adding artificial terms to
both sides of equation

aPφ
n
P +

1− α

α
aPφ

n
P +

∑
N

aNφ
n
N = r+

1− α

α
aPφ

n−1
P

aP

α
φnP +

∑
N

aNφ
n
N = r+

(aP
α

− aP

)
φn−1
P

φn−1
P : value of φ from the previous iteration α: under-relaxation factor

If the linear system reaches an adequate steady-state convergence (i.e., φn−1
P ≈ φnP), the

artificial terms cancel out and the linear system will be equivalent to the original one.

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Implicit relaxation, implementation

relax() function in fvMatrix class

 template<class Type>
 void Foam::fvMatrix<Type>::relax()
 {
 word name = psi_.select
 (
 psi_.mesh().data::template getOrDefault<bool>
 ("finalIteration", false)
);

 if (psi_.mesh().relaxEquation(name))
 {
 relax(psi_.mesh().equationRelaxationFactor(name));
 }
 }

The correct name is first constructed based on the outer correction state (e.g., U or UFinal).

relax() reads the value of under-relaxation from fvSolution and then calls the
relax(const scalar alpha) (with argument) function.

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Implicit relaxation, implementation

aP

α
φnP +

∑
N

aNφ
n
N = r+

(aP
α

− aP

)
φn−1
P

relax(const scalar alpha) function first
store the current diagonal coefficients (D0).

Regardless of α value the matrix diagonal
equality/dominance is ensured.

The diagonal coefficients are replaced by
the maximum value of absolute diagonal
coefficients and sum of absolute
off-diagonals. This step is carried out
regardless of α value.

The matrix is relaxed by dividing diagonal
members by α.

The contribution of relaxation is added to
the source term. It can be easily shown that
with the current implementation, any
manipulation can be done to D as long as
its corresponding contribution is added to
the source term.

relax(const scalar alpha) in fvMatrix class

...

Field<Type>& S = source();

scalarField& D = diag();

// Store the current unrelaxed diagonal for use in

updating the source

scalarField D0(D);

// Calculate the sum-mag off-diagonal from the

interior faces

scalarField sumOff(D.size(), Zero);

sumMagOffDiag(sumOff);

...

// Ensure the matrix is diagonally dominant...

// Assumes that the central coefficient is positive

and ensures it is

forAll(D, celli)

{

D[celli] = max(mag(D[celli]), sumOff[celli]);

}

// ... then relax

D /= alpha;

...

// Finally add the relaxation contribution to the

source.

S += (D - D0)*psi_.primitiveField();

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Implicit relaxation, implementation

It is seen that relaxing an equation manipulates the source term and makes the equation
more explicit.

More iterations (outer corrections) should be performed to make sure that the convergence is
achieved. The under-relaxation should be used only if they are needed.

Regardless of α value, implicit relaxation guarantees matrix diagonal equality/dominance.

Therefore, it is common to have relaxationFactors dictionary as

An exmaple of relaxationFactors dictionary in the fvSolution

relaxationFactors
{

equations
{

".*" 1;
}

}

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Explicit relaxation

The explicit relaxation is applied on the fields (e.g., p.relax()).

In each iteration, after obtaining a new solution, the field is relaxed using the value from
previous iteration:

φnrelaxed = φn−1 + α
(
φn − φn−1

)

Here again, the correct name is
first constructed based on the
outer correction state (e.g., p or
pFinal).

The value of under-relaxation is
read and the
relax(const scalar alpha)

function is subsequently called.

relax() function in GeometricField class

 void Foam::GeometricField<Type, PatchField, GeoMesh>::relax()

 {

 word name = this->name();

 if

 (

 this->mesh().data::template getOrDefault<bool>

 (

 "finalIteration",

 false

)

)

 {

 name += "Final";

 }

 if (this->mesh().relaxField(name))

 {

 relax(this->mesh().fieldRelaxationFactor(name));

 }

 }

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Explicit relaxation

relax(const scalar alpha) function in GeometricField class

 void Foam::GeometricField<Type, PatchField, GeoMesh>::relax(const scalar alpha)
 {
 DebugInFunction
 << "Relaxing" << nl << this->info() << " by " << alpha << endl;

 operator==(prevIter() + alpha*(*this - prevIter()));
 }

φnrelaxed = φn−1 + α
(
φn − φn−1

)
The value from the previous iteration is called using prevIter().

What exactly does the previous iteration mean?

In PIMPLE different iterations/loops exists (Time step, outer correction, inner correction,
non-orthogonal correction, linear solver iteration).

prevIter() returns the value of fieldPrevIterPtr_ pointer. i.e,
return *fieldPrevIterPtr_;.

The pointer itself is set inside storePrevIter() function of the same class. Therefore, one
should look for the place that storePrevIter() is called inside the solver.

PIMPLE algorithm and pimpleFoam solver Under relaxation factors

Explicit relaxation

The loop() function is called on the pimple object at the beginning of each PIMPLE outer
correction loop, while (pimple.loop()).

In the loop() function, the storePrevIterFields() from solutionControl is executed:

storePrevIterFields() function in solutionControl

 void Foam::solutionControl::storePrevIterFields() const
 {
 // storePrevIter<label>();
 storePrevIter<scalar>();
 storePrevIter<vector>();
 storePrevIter<sphericalTensor>();
 storePrevIter<symmTensor>();
 storePrevIter<tensor>();
 }

storePrevIterFields calls the storePrevIter.

Therefore, the explicit relaxation in PIMPLE loop uses contribution from previous outer
corrector loop.

Unlike implicit relaxations of equations, setting explicit relaxation of fields to α = 1 does not
have any effects.

	PIMPLE algorithm and pimpleFoam solver
	Under relaxation factors

