
Cite as: Phanindra.P.Thummala: reactingTwoPhaseEulerFoam description. In Proceedings of CFD with

OpenSource Software, 2016, Edited by Nilsson. H.,

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2016

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Description of
reactingTwoPhaseEulerFoam solver with
a focus on mass transfer modeling terms

Developed for OpenFOAM-4.x

Author:
Phanindra Prasad
Thummala
Anadolu University, Turkey
phanindrapt@anadolu.edu.tr

Peer reviewed by:
Fynn Jerome Ashmoneit

Håkan Nilsson

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone

through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

January 1, 2017



Learning outcomes

The reader will learn:

How to use it:

• how to use reactingTwoPhaseEulerFoam solver.

The theory of it:

• the theory of mass transfer and correlations used in mass transfer

How it is implemented:

• A detail description of the reactingTwoPhaseEulerFoam Source Code

• A tutorial, bubbleColumnEvaporatingReacting Tutorial, to apply this code

How to modify it:

• implement new mass transfer model in the reactingTwoPhaseEulerFoam code

1



Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• Fundementals of Heat and mass Tranfer , Book by Frank.P Incropera

• Dimensional groups like Sherwood number,Reynolds,Number,Prandtl Number, Schmidt Num-
ber and Lewis Number

• Run standard document tutorials like damBreak tutorial

• It is strongly recommonded to gain a brief insight into the physics of two phase reactive flows
from the following journal (if accessable):

D. Darmana et.al.,2007. Detailed modelling of hydrodynamics, mass transfer and chemical
reactions in a bubble column using a discrete bubble model: Chemisorption of CO 2 into NaOH
solution, numerical and experimental study.Chemical Engineering Science 62,2556 to 2575

2



Overview

The report is arranged in five chapters:

• Introduction

• Various classes involved in the reactingTwoPhaseEulerFoam solver and their significance

• bubbleColumnEvaporatingReacting Tutorial

• Implementing Higbie mass transfer model

• Study questions

3



Chapter 1

Introduction

Mass transfer in multiphase (gas-liquid-solid) systems is one of the most critical processes occurring
in chemical, petrochemical, and environmental engineering applications. Generally, it entails trans-
port of species among phases through diffusion (physical) and/or chemical reactions in a special unit
operation (reactor), allowing such a process to take place. Chemical reactions, often used to speed
up the mass transfer rate, occur whenever species of different chemical potentials are brought into
contact.In multiphase systems, the species mass transfer rate is controlled not only by the system
pressure and temperature, but also by the conductance of mass transfer, concentration gradients,
reaction kinetics, activation energy, etc. In some cases, either the conductance of mass transfer or
the reaction kinetics could control the overall mass transfer rate; and the slowest one will be the
rate limiting or controlling step. For instance, CO2 transfer from the polluted (gas) to the aqueous
solution (liquid Mono Ethyl Amine) in absorption reactors could be the overall rate limiting step.
In any case, understanding mass transfer behavior in multiphase systems requires precise knowledge
of all aspects affecting the overall mass transfer rate.

In order to understand the the basic mass tranfer process let us define the follwing acronyms :
Rate of Mass transfer = RMT
mass transfer coefficient= MTC
interfacial area = ai
concentration gradient = dY
volume fraction of gas = αg

sauter diameter = Ds
diffusivity = Df

Then the, Rate of mass transfer can be written as:

RMT = MTC ∗ ai ∗ dY

i.e., the rate of mass transfer is directly proportional to concentration gradient (dY) and interfacial
area (ai) and all other terms which can influence these two aspects.Generally, the terms which
influence the ai,dY are diffusion , convection and thermodynamic state of the fluid at the instant
of observation.Since it is difficult to measure the indvidual effect of these terms on RMT, the net
effect was measured using experiments and was defined as MTC. Excellent research was carried out
by many researchers to find the value of this MTC in terms of measurable quantities like velocity,
temperature and other fluid properties. Also, the results of their work was presented in terms of
dimensional groups which are useful in further investigations like scale up.

The most useful dimesnional groups in mass transfer calculations are Sherwood number, Reynolds
number , Schmidt number and Prandtl number, Lewis number.In our current study we will use one
of the most familiar correlation of mass transfer given by Frossling (Details are presented in chapter
2).

Majority of the correlations are based upon the experiments where, only lumped parameters

4



CHAPTER 1. INTRODUCTION

can be measured.Measuring the quantities like interfacial area, dY across interface independently by
experiment procedure is very difficult. Even if possible, the expiremintal setup will be expensive for
an industrial scale reactor. In order to over come this limitation researchers started using numerical
approaches for modeling these reactors and study the reactors performance at extreme conditions.

CFD modeling is one such numerical approach which plays a vital role in understanding the
impact of various hydrodynamic parameters on overall efficiency of the multiphase systems.In order
to use this technique in general we need to have commercial software which are again expensive.
But thanks to many engineers across globe who initiated open source softwares which are avaialble
at free of cost. One of the most famous CFD open source software is OpenFoam and it has many
capabilities of CFD interest ( user is encouraged to visit the OpenFoam website for further info).

reactingTwoPhaseEulerFoam one of the CFD modeling capabilities of OpenFoam, which helps in
understanding the specie mass transfer between two phases and in this project we try to understand
its source code in detail from the perspective of mass transfer modeling. The bubbleColumnEvap-
oratingReacting tutorial in the default tutorials of the openfoam tutorial list will be used for the
purpose of demonstration of the code.Also, we will try to code and implement Higbie mass transfer
model , which isn’t available by default.

5



Chapter 2

Various classes involved in the
reactingTwoPhaseEulerFoam
solver and their significance

The source code of the solver is located at:

$FOAM_APP/solvers/multiphase/reactingEulerFoam/reactingTwoPhaseEulerFoam/

reactingTwoPhaseEulerFoam.C

The classes involved in the code and their significance:
#include"fvCFD.H:- This file brings in the most fundamental tools for performing any finite

volume calculation.Â It includes declaration of namespace Foam and controls for time.
#include"twoPhaseSystem.H":- Class which solves the volume fraction equations for two phases
#include"phaseCompressibleTurbulenceModel.H":- its a type definition for PhaseCompress-

ibleTubulence template abstract class. PhaseCompressibleTurbulence is an abstract base class for
multiphase compressible turbulence models

#include"fixedFluxPressureFvPatchScalarField.H":- its a class used to calculate the pres-
sure field near boundary conditions based on velocity specifications

#include"pimpleControl.H":- this class refers to the PIMPLE alogorithm that is used for
pressure-velocity coupling. The controls of this algorithm are specified by user in casedirectory/sys-
tem/fvsolution file

#include"localEulerDdtScheme.H":- class is used to use the local time step (LTS) approach for
transient calculations. It is mentioned in casedirectory/system/fvschemes under ddtschemes option.

#include"fvcSmooth.H":- class is used to smooth spread and sweep the values in order to
improve the stability.

#include"setRootCase.H":- it executes checkrootcase function which is used to verify whether
the given case is setup is done properly or not. If any file is missing it will return Fatalerror and
stops the execution of the program

#include"createTime.H":- helps in reading the time control values from the controldict file in
casedirectory/system folder

#include"createMesh.H":- it helps in reading the mesh and adds a time stamp to it
#include"createTimeControls.H":- initiates the functions which are useful in adjusting the

times step during the runtime.
#include "createRDeltaT.H":-calculates the timestep for each mesh cell if LTS scheme is en-

abled (if localEuler is selected as ddt scheme)
#include"createFields.H":- creates the matrix for all variables U,p from initial conditions.Also

initializes other dependent variables like phi (mass flux) and others important for calculations. It also
creates an object fluid of two phase system class. Using this object we can easily call functions like

6



CHAPTER 2. VARIOUS CLASSES INVOLVED IN THE
REACTINGTWOPHASEEULERFOAM SOLVER AND THEIR SIGNIFICANCE

correctTurbulence(), correctKinematics() of twophasesystem class.Also the phases are defined
as fluid.phase1,fluid.phase2. The details can be found in createFields.H file located in:

$FOAM_APP/solvers/multiphase/reactingEulerFoam/

reactingTwoPhaseEulerFoam/createFields.H

#include "pUf/createDDtU.H":- it is createDDTU.H in pUf folder. It calculates the time
derivate terms of phase1 and phase2 equations

#include "readTimeControls.H":- reads the controls for time step given by setDeltat settimgs
like adjustTimeStep,maxCo and maxDeltat

An important observation from developers documentation regarding face moemntum condition:
Facemomentum formulation provides C-grid like pressure-flux staggering on an unstructured mesh
which is hugely beneficial for Euler-Euler multiphase equations as it allows for all forces to be
treated in a consistent manner on the cell-faces which provides better balance, stability and accuracy.
However, to achieve face-force consistency the momentum transport terms must be interpolated to
the faces reducing accuracy of this part of the system but this is offset by the increase in accuracy
of the force-balance. Currently it is not clear if this face-based momentum equation formulation is
preferable for all Euler-Euler simulations so I have included it on a switch to allow evaluation and
comparison with the previous cell-based formulation.

The facemomentum formulation can be activated by explicitly specifying in PIMPLE

controls in casedirectory/system/fvsolution file as follows:

PIMPLE

{

nOuterCorrectors 3;

nCorrectors 1;

nNonOrthogonalCorrectors 0;

faceMomentum yes;

}

In general the default collocated approach is used by the code involving two or more phases.
#include "YEqns.H":- this is the header file responsible for species transport including mass

transfer of species.
The species transport equation YEqns.H in detail:
The header file of #includes "YEqns.H" is located at:

$FOAM_APP/solvers/multiphase/reactingEulerFoam/reactingTwoPhaseEulerFoam/YEqns.H

The header file connects to a pointer where the mass transfer rates table will be defined for the
given species. : autoPtr<phaseSystem::massTransferTable> The definition of this pointer can be
found in the InterfaceCompositionPhaseChangePhaseSystem.C file located at:

$FOAM_APP/solvers/multiphase/reactingEulerFoam/phaseSystems/PhaseSystems/

InterfaceCompositionPhaseChangePhaseSystem/

InterfaceCompositionPhaseChangePhaseSystem.C

Using the code in this file the amount of mass transfer of the species/phase as a whole is
calculated. The term referring to the mass transfer rate is given by dmdt. The definition of
mass transfer involved in other phase systems like HeatandMassTransferphasesystem and Thermal-
PhaseChangephasesystem is one and same like this.

The default available mass transfer models are : Frossling and Speherical. Their definition can
be found at:

$FOAM_APP/solvers/multiphase/reactingEulerFoam/

interfacialCompositionModels/massTransferModels

7



CHAPTER 2. VARIOUS CLASSES INVOLVED IN THE
REACTINGTWOPHASEEULERFOAM SOLVER AND THEIR SIGNIFICANCE

The frossling equation is given by: Sh= 2+0.552∗Re1/2∗Sc1/3
Even though we mention the Sc for every individual phase in phaseprperties file in casedirecto-

ry/constant folder, the Sc (Schmidt number) in OpenFoam is calculated from Prandtl Number(Pr)
and Lewis number(Le) as: Sc= Le∗Pr

The Le is read from the phase properties file in case directory/constant folder and the Pr is
calculated from phasePair properties read calculated for pair of inetracting phases located at:

$FOAM_APP/solvers/multiphase/reactingEulerFoam/phaseSystems/phasePair/phasePair.C

The way the mass transfer coefficient is derived from Sherwood number is bit tricky in Open-
FOAM and is explained here:

Using the acronyms defined in Chapter1 , for a gas liquid two phase flow, the interfacial area can
be defined as:

ai = 6 ∗ αg/Ds

Substituting this definition of ai in the definition of RMT, we get
RMT = MTC∗6∗αg∗dY/Ds

The Sherwood number by definition is:
Sh= MTC∗Ds/Df
⇒ MTC=Sh∗Df/Ds

Substituting the MTC definition in RMT equations gives:
RMT = Sh ∗ Df ∗ 6 ∗ αg ∗ dY/Ds2

Since the diffusivity and concentration gradient are calculated as part of solution, all the remain-
ing terms are combined and calculated in the MTC term andwe have the return argument of MTC,
K() function in the Frossling model as:

6 ∗ αg∗Sh/Ds2

in the code it is written as:

Foam::massTransferModels::Frossling::K() const

{

volScalarField Sh(scalar(2) + 0.552*sqrt(pair_.Re())*cbrt(Le_*pair_.Pr()));

return 6.0*pair_.dispersed()*Sh/sqr(pair_.dispersed().d());

}

where:

pair_.dispersed()= volume fraction of dispersed phase

pair_.dispersed().d() = Sauter diameter of the dispersed phase

Similiarly,the Spherical mass transfer coefficient is based upon the

assumption of laminar flow where Sh=10

And hence have return statement as:

Foam::massTransferModels::spehrical::K() const

{

return 60.0*pair_.dispersed()/sqr(pair_.dispersed().d());

}

8



CHAPTER 2. VARIOUS CLASSES INVOLVED IN THE
REACTINGTWOPHASEEULERFOAM SOLVER AND THEIR SIGNIFICANCE

Once the mass transfer terms are calculated as described above, the solution proceeds to source
these dmdt term in the place *massTransfer[Y1[i].name()] of the equation and proceed for
solving the equation of the code:

Y1iEqn == *massTransfer[Y1[i].name()]+ fvOptions(alpha1, rho1, Y1[i])

The left hand side of this equation is a species fraction equation which is createddepending upon
the phase model that has been selected. For example, if the phase model of gas is reactingPhase-
Model then on reading the command the OpenFoam creates the equations for all individual species
as described in:

$FOAM_APP/solvers/multiphase/reactingEulerFoam/phaseSystems/phaseModel/

MultiComponentPhaseModel/MultiComponentPhaseModel.C

template<class BasePhaseModel>

Foam::tmp<Foam::fvScalarMatrix>

Foam::MultiComponentPhaseModel<BasePhaseModel>::YiEqn

(

volScalarField& Yi

)

{

if

(

(inertIndex_ != -1)

&& (

Yi.name()

== IOobject::groupName

(

this->thermo_->composition().species()[inertIndex_],

this->name()

)

)

)

{

return tmp<fvScalarMatrix>();

}

const volScalarField& alpha = *this;

const surfaceScalarField& alphaRhoPhi = this->alphaRhoPhi();

const volScalarField& rho = this->rho();

return

(

fvm::ddt(alpha, rho, Yi)

+ fvm::div(alphaRhoPhi, Yi, "div(" + alphaRhoPhi.name() + ",Yi)")

- fvm::Sp(this->continuityError(), Yi)

- fvm::laplacian

(

fvc::interpolate(alpha)

*fvc::interpolate(this->turbulence().nut()*rho/Sc_),

Yi

9



CHAPTER 2. VARIOUS CLASSES INVOLVED IN THE
REACTINGTWOPHASEEULERFOAM SOLVER AND THEIR SIGNIFICANCE

)

==

this->R(Yi)

+ fvc::ddt(residualAlpha_*rho, Yi)

- fvm::ddt(residualAlpha_*rho, Yi)

);

}

The term R(Yi) is the source due to reaction term. If the gas is reacting (as we decided the gas
as reacting gas) then the term R(Yi) is derived from the code:

$FOAM_APP/solvers/multiphase/reactingEulerFoam/phaseSystems/

phaseModel/ReactingPhaseModel/ReactingEulerFoam.C

template<class BasePhaseModel, class ReactionType>

Foam::tmp<Foam::fvScalarMatrix>

Foam::ReactingPhaseModel<BasePhaseModel, ReactionType>::R

(

volScalarField& Yi

) const

{

return reaction_->R(Yi);

}

where the "reaction_" term is a table of species,their reaction,thermo information retireved
using "foamChemistryReader" key word. The source term R(Yi) is calculated using combustion
models available for ”rhoCombustionModel” setting through combustion properties. They are called
upon when the fluid model (phase model) is ”ReactingPhaseModel” as defined in:

$FOAM_APP/solvers/multiphase/reactingEulerFoam/phaseSystems/

phaseModel/phaseModel/phaseModels.C

The combustion model intern refers to the Chemistry model setting which will be described in a
seperate chemistry file corresponding to the phase. The chemistry models will generate the source
terms R(Yi) and feed back to the species code. The details of the various templates available for
chemistry models and corresponding solvers can be found at:

$FOAM_SRC/thermophysicalModels/chemistryModel/chemistryModel/

chemistryModel/chemistryModel.H

10



Chapter 3

bubbleColumnEvaporatingReacting
Tutorial

3.1 Introduction

This tutorial describes how to pre-process, run and post-process a Water Gas Shift Reaction (WGSR)taking
place in a 3D bubble column reactor.The reacting fluids were multicomponent gas (AIR,CO) and
pure liquid water.The products formed were CO2 and H2 along with water vapor.The flow of phases
were modeled with Eulerian-Eulerian Solver. ALso,Seperate species mass fraction transport equa-
tions were solved for all the individual species involved:CO,H2O,AIR,CO2,H2. The tutorial helps in
understanding the modeling of multiphase reactive fluids involving reaction, heat and mass transfer
between phases.

The geometry consists of a 3D block with a 0.15x0.1 m2 base and a length of 1m (figure 3.1).
The reactor is filled with water till height of 0.5m and assumed to have 0.1% dissolved air. Air
enters from the bottom inlet at 400K. The system is initally assumed to be at 400K. The overall
reaction involved is:

0.93CO + 0.24H2O → 0.69CO2 +H2 (3.1)

Figure 3.1: Geometry of the bubbleColumnEvaporatingReacting tutorial case.

11



3.2. PRE-PROCESSING
CHAPTER 3. BUBBLECOLUMNEVAPORATINGREACTING TUTORIAL

3.2 Pre-processing

This section covers the necessary setup needed to get the bubbleColumnEvaporatingReacting case
run with reaction,heat and mass transfer. The tutorial also covers a brief introduction to modeling
of multiphase reacting flows in OpenFoam with detailed emphasis on modeling mass transfer.

3.2.1 Getting started

Copy the bubbleColumnEvaporatingReacting tutorial to the run directory and open the tutorial
directory.

cp -r $FOAM_TUTORIALS/multiphase/reactingTwoPhaseEulerFoam/RAS/

bubbleColumnEvaporatingReacting $FOAM_RUN

cd $FOAM_RUN/bubbleColumnEvaporatingReacting

The file structure of the bubbleColumnEvaporatingReacting case is similar to other OpenFOAM
tutorials where the case directory has a /0, /constant and /system directory. As usual in Open-
FOAM tutorials; the solver-, write- and time-control can be found in the /system directory and the
mesh setup in /constant/polyMesh.

3.2.2 Boundary and initial conditions

The boundary conditions for the bubbleColumnEvaporatingReacting tutorial are very simple. All
walls are modeled as adiabatic.The multicomponent gas enetrs from the bottom of the column at a
speed of 0.1m/s. The AIR mass fraction in the inlet gas is 0.9 and that of CO is 0.1. The presence
of water initially upto a height of 0.5m is declared by using setFieldsDict (given in system folder)
functionionality as given below:

defaultFieldValues

(

volScalarFieldValue alpha.gas 1

volScalarFieldValue alpha.liquid 0

);

regions

(

boxToCell

{

box (0 0 0) (0.15 0.501 0.1);

fieldValues

(

volScalarFieldValue alpha.gas 0.01

volScalarFieldValue alpha.liquid 0.99

);

}

);

Note:-For undesrtanding the usage of setFieldsDict the user is recommended to look into the
OpenFoam basic damBreak tutorial

The initial specie mass fraction for all the species over the entire geometry field distribution can
be found in the 0 folder.

12



3.2. PRE-PROCESSING
CHAPTER 3. BUBBLECOLUMNEVAPORATINGREACTING TUTORIAL

3.2.3 Physical properties

In the cd $FOAM_RUN/bubbleColumnEvaporatingReacting/constant directory,the properties files
for chemistry,environmental, combustion, reaction, combustion, RAS and thermophysical. All the
properties are thoroughly described in the OpenFOAM user guide and are therefore not described
here. The properties files are summarized in table 3.1.

Properties file General content
chemistryProperties Chemical reactions are included if chemistry is switched on

Specification and settings for the discretization
scheme used to solve the chemistry ODEs

environmentalProperties Gravity
combustionProperties models used for combustion are specified. In this tutorial

PaSR(Partially Stirred Reactor Combustion Model) is used
thermophysicalProperties Specify the mixture type, properties and which gas phase reaction scheme

to use. Also inert species present (if any) are declared
phaseProperties models describing the interaction between the phases are specified here

Table 3.1: Properties files and general content for the bubbleColumnEvaporatingReacting tutorial

Some important observations on the the script in phaseProperties file in tutorial folder,cd $FOAM_RUN/bubbleColumnEvaporatingReacting/constant

:

// Phases that will interact. By default the phases are read in same order given here.

That is phase1= dispersed phase= gas,phase2=continuousphase=liquid.

phases (gas liquid);

//the phase is a reacting phase and creates corresponding equations for all the

//components involved including their reactions and reads their initial value

gas

{

type reactingPhaseModel;

diameterModel isothermal; //the change in the diameter of the gas due to reactions

isothermalCoeffs

{

d0 3e-3; // size of the diameter of the gas bubble.

// It must be lesser than mesh cell size

p0 1e5; //initial pressure used as reference for

//calculating the changes in diameter model

}

Sc 0.7; // Schmidt number used to calculate mass diffusivity internally

residualAlpha 1e-6;

}

//the liquid phase is a purephase and is initialized with

//all component mass fraction equating to zero

liquid

{

type purePhaseModel;

diameterModel constant; //no composition change

13



3.2. PRE-PROCESSING
CHAPTER 3. BUBBLECOLUMNEVAPORATINGREACTING TUTORIAL

constantCoeffs

{

d 1e-4;

}

residualAlpha 1e-6;

}

//models which dictate the sudden jump in the value of gas mass fraction at interface

//due to gas solubility in liquid

interfaceComposition

(

(gas in liquid)

{

type Saturated; //interface model name

species ( H2O ); //Species considered to be at Saturation (usually liquid)

Le 1.0;

//Le=1.0emphasis MTC is approximately equals to HTC. hence deltaT =deltaY

//and deltaT is calculated using the difference between starurated pressure

//and local pressure

saturationPressure

{

type ArdenBuck; //calculates the saturation pressure using ArdenBuck correlation

}

}

);

//models used to find the mass transfer coeffieint (MTC) for component transfer

//within the gas phase (from bulk to interface)

massTransfer.gas

(

(gas in liquid) //MTC to find the amount of mass transfered from gas to liquid

//when gas as dispersed phase

{

type spherical;

Le 1.0;

//Lewis number used find Schmidt number which is used to find Sherwood number

//from which MTC is derived

}

(liquid in gas) //MTC to find the amount of mass transfered from liquid to gas

//when liquid is the dispersed phase

{

type Frossling;

Le 1.0;

}

);

14



3.2. PRE-PROCESSING
CHAPTER 3. BUBBLECOLUMNEVAPORATINGREACTING TUTORIAL

massTransfer.liquid //mass transfer in liquid phase is negligible in this case

(

);

Note:- When calculating these interface terms for each phase, Ex:- "massTransfer.gas" we

mentioned "(gas in liquid)" and "(liquid in gas)" and I mentioned that one of these terms

are used depending upon the dispersed phase and continuous phase derived based on the phase

fractions at each cell volume locally.

OpenFoam decides the the despersed phase and continuous phase locally (for each cell) by using

"blending method" specifications given in the same phase properties file as below:

blending

{

........

massTransfer

{

type linear;

minFullyContinuousAlpha.gas 1;

minPartlyContinuousAlpha.gas 0;

minFullyContinuousAlpha.liquid 1;

minPartlyContinuousAlpha.liquid 0;

}

}

Here the minFullyContinuousAlpha.gas means the minimum volume fraction of a phase to be

considered as continuous phase and by default the other phase will become dispersed phase

Similiarly, the minPartlyContinuousAlpha.gas means the minimum volume fraction of the gas phase

in a cell volume , for which it can be treated as partial phase(dispersed phase).

The calculations involved in blending method can be found in the file located at:

$FOAM_APP/solvers/multiphase/reactingEulerFoam/phaseSystems/BlendedInterfacialModel/

BlendedInterfacialModel.C

where in which for this file the fuction weightage values f1 and f2 are determined using

blending methods. In our bubbleColumnEvaporatingReacting tutorial, we are using linear

blending method.

The calculation of weightage values f1 and f2 for this linear method are described in:

$FOAM_APP/solvers/multiphase/reactingEulerFoam/phaseSystems/BlendedInterfacialModel/

blendingMethods/linear/liner.C

Bothe files are self descriptive and the user is encouraged to visit them for better

understanding of the solver code.

The reaction in gaseous mixture is specified in the thermophysical proerties of the gas as following:

thermoType heRhoThermo<reactingMixture>;

foamChemistryFile "$FOAM_CASE/constant/reactions.gas";

foamChemistryThermoFile "$FOAM_CASE/constant/thermo.gas";

15



3.2. PRE-PROCESSING
CHAPTER 3. BUBBLECOLUMNEVAPORATINGREACTING TUTORIAL

In this tutorial we will use the predefined reactingMixture together with the thermophysical
model heRhoThermo which calculates enthalpy for reacting mixture. The thermophysicalProperties
file also contains information on where the gas phase reactions are defined as well which thermo dy-
namic data base to use. The gas phase reactions are specified in the ""$FOAM_CASE/constant/reactions.gas""
file and the thermo dynamic data base in the "$FOAM_CASE/constant/thermo.gas" file.

The reaction and the resulting species are declared in the "reaction.gas" file as species list:
CO,CO2,H2,H2O,AIR. The thermal data for the species in "thermo.gas" is also mentioned in the
same order. The reaction is a reversible reaction of Arhenius type.

The overall reaction is:

0.93CO + 0.24H2O → 0.69CO2 +H2 (3.2)

The entries behind the reaction in the reaction.gas file are Arrhenius coefficient that are used
to calculate the chemical reaction rate. The type of the reaction is reversibleArrheniusReaction
and the chemical reaction rate will be calculated according to the Arhenius equilibrium reaction
coeff as given below and and as described in the introduction part.

k = AT b · exp
(
−Ea

RT

)
(3.3)

Where k is the equilibrium reaction coefficient, A pre exponential factor, b temperature exponent,
Ea activation energy, R ideal gas coefficient and T temperature.

With out going into great detail regarding thermodynamics it is possible to realize that the
reaction is mildly endothermic and takes place at high temperatures. The thermodynamic properties
associated with reaction are mentioned in thermo+ file in casedirectory/constant folder.The file
structure is like:

• The first row contains species name, date (not used in the code), atomic symbols and for-
mula, phase of species (S, L, or G for gas), low temperature, high temperature and common
temperature (if needed).

• The second row contains coefficients a1 − a5 in equation 3.4 for upper temperature interval.

• The third row contains coefficients a6, a7 for upper temperature interval, and a1, a2, and a3
for lower.

• The fourth row contains coefficients a4, a5, a6, a7 for lower temperature interval.

From these constants, (NASA) polynomials for specific heat Cp, enthalpy H and entropy S can be
calculated.

Cp

R
= a1 + a2 · T + a3 · T 2 + a4 · T 3 + a5 · T 4 (3.4)

H

RT
= a1 +

a2T

2
+
a3T

2

3
+
a4T

3

4
+
a5T

4

5
+
a6
T

(3.5)

S

R
= a1lnT + a2T +

a3T
2

2
+
a4T

3

3
+
a5T

4

4
+ a7 (3.6)

The specific heat Cp, enthalpy H and entropy S are then used in the code to solve the conservation
equations.

The combustion model for this tutorial is a partially stirred reactor concept model developed at
Chalmers Gothenburg described by equations 3.7 and 3.8

CSTi =
τchem

τmix + τchem
ω̇i (3.7)

16



3.3. RUNNING THE CODE
CHAPTER 3. BUBBLECOLUMNEVAPORATINGREACTING TUTORIAL

Where CSTi is the chemical source term, τchem chemical time ∝ 1
kf

and τmix mixing time. The

mixing time τmix is calculated according to

τmix = Cmix

√
µeff

ρε
. (3.8)

Where Cmix is a constant specified in the /constant/combustionProperties-file, µeff is the effec-
tive viscosity, ρ density and ε rate of dissipation of turbulent kinetic energy.

3.3 Running the code

Turn chemistry on in the /constant/chemistryProperties file

chemistry on;

and combustion "active true" in the /constant/combustionProperties file.
Mesh the geometry using blockMesh, and start the reactingTwoPhaseEulerFoam solver.

cd $FOAM_RUN/bubbleColumnEvaporatingReacting

blockMesh

reactingTwoPhaseEulerFoam

The solution is only 0.001 seconds long, however, due to the fast chemistry a minimum of 100 time
steps are needed to resolve it.

17



3.4. POST-PROCESSING
CHAPTER 3. BUBBLECOLUMNEVAPORATINGREACTING TUTORIAL

3.4 Post-processing

The post-processing is quite simple and straightforward. As described in any standard tutorial
the post-processing can be initiated by paraFoam command and the following results can be seen
immidiately. After completion of the run the results are as shown below:

Figure 3.2: Velocity distribution of gas after five time steps

18



3.4. POST-PROCESSING
CHAPTER 3. BUBBLECOLUMNEVAPORATINGREACTING TUTORIAL

Figure 3.3: Temperature distribution of gas after five time steps

19



3.4. POST-PROCESSING
CHAPTER 3. BUBBLECOLUMNEVAPORATINGREACTING TUTORIAL

Figure 3.4: H2O gas(water vapor) distribution after five time steps

20



3.4. POST-PROCESSING
CHAPTER 3. BUBBLECOLUMNEVAPORATINGREACTING TUTORIAL

Figure 3.5: CO gas distribution after five time steps

21



Chapter 4

Implementing Higbie mass transfer
model

The Higbie mass transfer equation is given by:

Sh = 1.13∗Re1/2∗Sc1/2

Let us now try to implement and use this in our bubbleColumnEvaporatingReactingTutorial.

4.0.1 Copy the existing code

Run the following commands in terminal in order to copy the existing code:

OF4x

foam

cp -r --parents applications/solvers/multiphase/reactingEulerFoam $WM_PROJECT_USER_DIR

4.0.2 Clone existing Frossling model file and rename the clone as Higbie

cd $WM_PROJECT_USER_DIR/applications/solvers/multiphase/reactingEulerFoam/interfacialCompositionModels/massTransferModels

cp -R Frossling Higbie/

cd Higbie/

mv Frossling.C Higbie.C

mv Frossling.H Higbie.H

sed -i s/Frossling/Higbie/g Higbie.C

sed -i s/Frossling/Higbie/g Higbie.H

4.0.3 Edit the Higbie.C file

cd $WM_PROJECT_USER_DIR/applications/solvers/multiphase/reactingEulerFoam/interfacialCompositionModels/massTransferModels/Higbie

gedit Higbie.C

////Change the member function as shown below///

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

Foam::tmp<Foam::volScalarField>

Foam::massTransferModels::Higbie::K() const

{

volScalarField Sh(1.13*sqrt(pair_.Re())*sqrt(Le_*pair_.Pr()));

22



CHAPTER 4. IMPLEMENTING HIGBIE MASS TRANSFER MODEL

return 6.0*pair_.dispersed()*Sh/sqr(pair_.dispersed().d());

}

save and quit

4.0.4 Compile the Higbie.C file

cd $WM_PROJECT_USER_DIR/applications/solvers/multiphase/reactingEulerFoam/interfacialCompositionModels

sed -i s/FOAM_LIBBIN/FOAM_USER_LIBBIN/g Make/files

sed -i '4 i\massTransferModels/Higbie/Higbie.C' Make/files

wmakeLnIncludeAll

wmake

cd $WM_PROJECT_USER_DIR/applications/solvers/multiphase/reactingEulerFoam

wmakeLnIncludeAll

4.0.5 Modify reactingTwoPhaseEulerFoam code and create it’s library

cd $WM_PROJECT_USER_DIR/applications/solvers/multiphase/reactingEulerFoam/reactingTwoPhaseEulerFoam

mv reactingTwoPhaseEulerFoam.C myreactingTwoPhaseEulerFoam.C

sed -i s/FOAM_APPBIN/FOAM_USER_APPBIN/g Make/files

sed -i s/reactingTwoPhaseEulerFoam/myreactingTwoPhaseEulerFoam/g Make/files

cd Make

gedit options

After EXE_LIB add the line as shown below in order to direct the wmake to look for the presence
of any library file before searching in source code installation folders.

EXE_LIBS = \

-L$(FOAM_USER_LIBBIN)\

After adding the above line the options file must look like:

EXE_INC = \

-ItwoPhaseSystem/lnInclude \

-I../phaseSystems/lnInclude \

-I../interfacialModels/lnInclude \

-I../interfacialCompositionModels/lnInclude \

-ItwoPhaseCompressibleTurbulenceModels/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \

-I$(LIB_SRC)/transportModels/compressible/lnInclude \

-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \

-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \

-I$(LIB_SRC)/TurbulenceModels/phaseCompressible/lnInclude \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/sampling/lnInclude

EXE_LIBS = \

-L$(FOAM_USER_LIBBIN)\

-lreactingPhaseSystem \

-lreactingTwoPhaseSystem \

-lreactingEulerianInterfacialModels \

23



CHAPTER 4. IMPLEMENTING HIGBIE MASS TRANSFER MODEL

-lreactingEulerianInterfacialCompositionModels \

-ltwoPhaseReactingTurbulenceModels \

-lfiniteVolume \

-lfvOptions \

-lmeshTools \

-lsampling

close the options file and type wmake

4.0.6 Using Higbie mass transfer code in tutorial

Open the tutorial directory:

cd $FOAM_RUN/bubbleColumnEvaporatingReacting

Open the controlDict file in tutorial directory by typing the following command:

gedit system/controlDict

next to application command type myreactingTwoPhaseEulerFoam as below:

application myreactingTwoPhaseEulerFoam;

save and close the controlDict file.
Open the phaseProperties file in tutorial directory by typing the following command:

gedit constant/phaseProperties

In mass transfer for gas options delete Frossling and write Higbie. After writing it should look
as follows:

massTransfer.gas

(

(gas in liquid)

{

type spherical;

Le 1.0;

}

(liquid in gas)

{

type Higbie;

Le 1.0;

}

);

4.0.7 Running the tutorial

Run the tutorial by typing myreactingTwoPhaseEulerFoam and post-process as described in previous
chapter

24



Chapter 5

Study questions

• What are default mass transfer models available?

• The mass transfer models return the mass transfer coefficient or something else?

• Which equation in reactingTwoPhaseEulerFoam.C represent species transport?

• The Y values in species transport equation represent mole fraction or mass fraction?

25


