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In this tutorial we shall solve a problem of cavitating flow around a 2 dimensional NACA hydrofoil using a user
modified version of a standard OpenFOAM-1.5 multiphase solver interPhaseChangeFoam. Flow modeling is
achieved by Large Eddy Simulation (LES). The phase interface is taken care of using a Volume of Fluid (VOF)
approach where the transport equation for the volume fraction 7, is incorporated into the filtered equations of
continuity and momentum. Cavitation is modeled by certain mass transfer models modeling the mass transfer source
term appearing in the continuity equation. The author does not intend to go into details about the mechanism of
different mass transfer models and the comparison between these models falls out of the scope of this tutorial.

1. Governing Equations and Implementations
11 Flow modeling

By applying low-pass filtering to Navier-Stokes Equations, using a pre-defined filter kernel function G = G(x,A), the
LES equations are derived as:

V-ov=m,

a,(;)w.(v@v):_%w.(s_g)mz

where the over-bar denotes the low-pass filtered dependent variables. S =2vD is the filtered viscous stress tensor,
D is the filtered rate-of-strain-tensor D = %(Vv + VvT). B= (v®_v - 1_/) is the subgrid stress tensor, representing
the influence of the small, unresolved eddy scales on the larger, resolved flow scales. The commutation error terms,
m =V- v-V-vand m,=V- (v ® v) -V-(v®v)+ V; —V_p ~V-S+V-S are expected to be significantly smaller

than the subgrid terms therefore these terms will be set to zero. Based on Boussinesq hypothesis, a subgrid viscosity
Vv, is considered and the resulting term in the LES equations becomes B =—2v, D so that the whole viscous term can

be described as a function of the effective viscosity (summation of the molecular viscosity and subgrid viscosity) and
rate-of-strain tensor.

1.2 Cavitation modeling
In the VOF approach, the physical properties of the fluid are scaled by a volume fraction, y=volume liquid/total

volume, which is the liquid volume equation fraction, with y=1 corresponding to pure water. It is defined as

Y = lim

!
d—-0 5Vl + 5‘/‘,
and is used to scale the physical properties of vapour and liquid as
{p =i +(1-7)p,
p=my + (=7,

Using the VOF approach, a transport equation for the volume fraction needs to be incorporated into the filtered
equations of continuity and momentum. Besides, when the flow starts to cavitate, the governing equations become no
longer divergence free and are evolved as:

m
,y+V-vy=—
' Pi

Vov=s,

8l(p;)+V ~(p;®1_z) :—V;+V-p(§—8)

where S, = (p[1 -p, l)rh , the mass transfer rate m is to be modeled by mass transfer models.
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The implemented mass transfer models in interPhaseChangeFoam are Merkle, Kunz and SchnerrSauer mass transfer
model. The governing equations are respectively:

Merkle mass transfer model:
- 1 2 . -
m :(C"/EU“’ tw)/pfymm[o,p—pv]
. 1 ) _
m =|C, /EUOQ t, |py /P -}/[l—y]max[o,p—pv]

Kunz’ mass transfer model:

mt = (cv /%U,ftm )pv /p, -y min[0,p—p, |
m™=(Cc/t.)p, - v?[1-7]

Kunz mass transfer model is based on the work by Merkle et al. , with a modification that corresponds to the behavior
of a fluid near the transition point. The final form of the model can be considered as based on fairly intuitive, ad hoc
arguments. The destruction of liquid, or creation of vapour, 7", is modeled to be proportional to the amount by
which the pressure is below the vapour pressure and the destruction of vapour m™ is based on a third order
polynomial function of the volume fraction. The specific mass transfer rate is computed asm =m* +m~, 1_9 is the
filtered pressure, p,is the vaporization pressure andC,,,;, Cypy» U, and 1, are empirical constants based on the
mean flow.

SchnerrSauer mass transfer model:

lp, 1l

. 4 . 2
m=_3pvvn0§”(a2_aS(l_pv/pl))slgn(pv_p) 5 p
i

Sauer’s model is based on bubble dynamics and the amount of vapour in a control volume is calculated from the
number of nesting vapour bubbles and an average radius of these bubbles. In the above equation n, stands for the
number density of micro bubbles and a=volume vapour/total volume is the vapour volume fraction defined as

o = lim

14
50 6‘/\/ + 6‘/1
1.3 Implementations

First we are going to take a look at the inplementation at the original solver interPhaseChangeFoam under

$WM_PROJECT DIR/applications/solvers/multiphase/interPhaseChangeFoam/.

In the VOF method, we solve the momentum equation and continuity equation for the two phase mixture. The

momentum equation takes the form:

2,(pU)+V -(pUU) -V -uVU — pg =-Vp - F,

where Fj is the surface tension force which takes place only at the free surfaces. The surface tension is computed as

F,=ok(x)n

where n is a unit vector normal to the interface that can be calculated from
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_Vr
"V

and x is the curvature of the interfae that can be calculated from
k(x)=V-n
The volume fraction is solved by a separate transport equation with an extra artificial compression term to perform

necessary compression of the surface. It takes the form:

m"+m”

dy+V-(W)+V-(y(1-7)U,) >

where U, is a velocity field suitable to compress the interface. This artificial term is active only in the interface region
due to the term y(1-y).
Different LES models are implemented respectively under $FOAM SRC/turbulenceModels/LES/incompressible.

The original source code of interPhaseChangeFoam.C looks:
/******************interphaseChangeFoam.C******************/

Info<< "\nStarting time loop\n" << endl;
while (runTime.run())

{
#include "readPISOControls. H"

#include "read TimeControls. H"

#include "CourantNo.H"

#include "setDeltaT.H"

runTime++;

Info<< "Time =" << runTime.timeName() << nl << end];
twoPhaseProperties->correct();

#include "gammaEqnSubCycle. H"

turbulence->correct();

// --- Outer-corrector loop

for (int 0Corr=0; oCorr<nOuterCorr; oCorr++)

{
#include "UEqn.H"
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// --- PISO loop
for (int corr=0; corr<nCorr; corr++)

{
#include "pEqn.H"

#include "continuityErrs. H"

runTime.write();
Info<< "ExecutionTime =" << runTime.elapsedCpuTime() << " s"
<< " ClockTime =" << runTime.elapsedClockTime() << " s"

<< nl << end]

Info<< "End\n" << endl;

return(0);

When the time iteration loop starts, the solver first calculates the correction of PISO loop around the y phase. Then

the courant number is calculated and based on the courant number value, the new time step size is adjusted.

In the gammaEqnSubCycle.H, the solver looks for the number of correctors to the loop around the gamma equation
and the number to sub-cycles. Then, two phase properties are calculated in gammaEqn.H (included in
gammaEqnSubCycle.H) for the prescribed number of sub-cycles. The algorithm to solve for gamma equation uses a
technique called interfaceCompression to resolve some of the fundamental problems of the traditional VOF interface
compression methods. Finally the density of the mixture is calculated using the weighted averaged of the gamma
field.

/******************gammaEanubCyCle.H******************/
surfaceScalarField rhoPhi
(
IOo0bject
(
"rhoPhi",
runTime.timeName(),
mesh
)
mesh,

dimensionedScalar("0", dimensionSet(1, 0, -1, 0, 0), 0)
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label nGammaCorr

(
readLabel(piso.lookup("nGammaCorr"))

label nGammaSubCycles

(
readLabel(piso.lookup("nGammaSubCycles"))

surfaceScalarField phic = mag(phi/mesh.magSf());

phic = min(interface.cGamma()*phic, max(phic));

volScalarField divU = fvc::div(phi);

dimensionedScalar totalDeltaT = runTime.deltaT();

if (nGammaSubCycles > 1)

{

for

subCycle<volScalarField> gammaSubCycle(gamma, nGammaSubCycles);

!(++gammaSubCycle).end();

# include "gammaEqn.H"

else

# include "gammaEqn.H"

if (nOuterCorr == 1)

{

interface.correct();

rho == gamma¥*rhol + (scalar(l) - gamma)*rho?2;

/******************gammaEqnAH******************/

{
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word gammaScheme("div(phi,gamma)");

word gammarScheme("div(phirb,gamma)");

surfaceScalarField phir("phir", phic*interface.nHatf());

for (int gCorr=0; gCorr<nGammaCorr; gCorr++)
{
surfaceScalarField phiGamma =
fve:flux
(
phi,
gamma,

gammaScheme

+ fvenflux

-fve::flux(-phir, scalar(l) - gamma, gammarScheme),
gamma,

gammarScheme

Pair<tmp<volScalarField> > vDotAlphal =
twoPhaseProperties->vDotAlphal();
const volScalarField& vDotcAlphal = vDotAlphal[0]();

const volScalarField& vDotvAlphal = vDotAlphal[1]();

volScalarField Sp
(
IOo0bject
(
||Spﬂ,
runTime.timeName(),
mesh

),
vDotvAlphal - vDotcAlphal

volScalarField Su

(
IOo0bject

(
"Su",

runTime.timeName(),
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mesh
),
divU*gamma
+ vDotcAlphal

)

MULES::implicitSolve(oneField(), gamma, phi, phiGamma, Sp, Su, 1, 0);

rhoPhi +=
(runTime.deltaT()/totalDeltaT)

*(phiGamma*(rhol - rho2) + phi*rho2);

Info<< "Liquid phase volume fraction ="

<< gamma.weightedAverage(mesh. V()).value()

<<" Min(gamma) = " << min(gamma).value()
<<" Max(gamma) =" << max(gamma).value()
<< endl;

MULES:implicitSolve(oneField(),gamma, phi, phiGamma, Sp, Su, 1,0) asks for:
gamma: actual value of y to be solved

phi: normal convective flux

phiGamma: =y(1-y)Uy

Sp: implicit source term

Su: divergence term

1,0: maximum and minimum value of ¥

In the UEqn.H the discretized momentum equation is solved to compute an intermediate velocity field. The first part
of the UEqn.H is the left hand side of the momentum equation. Term fvm::Sp(fvc::ddt(rho)+fvc::div(rhoPhi),U) takes
the form of Sp(a,b), it takes a scalar linearized field for the first argument and the field which are solved for as the
second. It is used to create a larger diagonal term (to aid the solver) so it only can be used if the linearization of the
source term has a negative dependency on the variable being solved for. In the second part the algorithm solves the

LHS of the momentum equation to be equal to the gravity and surface tension forces.

/ UEqn.H /
surfaceScalarField muf =
twoPhaseProperties->muf])

+ fvciinterpolate(rho*turbulence->nuSgs());

fvVectorMatrix UEqn
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fvm::ddt(rho, U)
+ fvm::div(rhoPhi, U)
- fvm::Sp(fve::ddt(rho) + fve::div(rhoPhi), U)
- fvm::laplacian(muf, U)
- (fvegrad(U) & fve::grad(muf))
/ /- fvendivimuf¥(fve:interpolate(dev2(fve::grad(U))) & mesh.Sf()))
)

UEqn.relax();

if (momentumPredictor)

{

solve

fveiireconstruct

(

fvc:interpolate(interface.sigmaK())*fve::snGrad(gamma)
- ghf*fve::isnGrad(rho)
- fve:isnGrad(pd)

) * mesh.magSf{)

In the pEqn.H, the mass fluxes at the cells faces are calculated and the pressure equation is thereafter solved, then the
mass fluxes at the cell faces are corrected by the prescribed number of inner PISO loops. After performing the
momentum corrector step on the basis of the new pressure field, the continuity error is computed. Repeat from
solving the momentum equation for the prescribed number of times of the outer corrector loop.

/ pEqn.H /
{
volScalarField rUA = 1.0/ UEqn.A();

surfaceScalarField rUAf = fvc:interpolate(rUA);
U = rUA*UEqn.H();
surfaceScalarField phiU

(
"phiUH s
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(fve:interpolate(U) & mesh.SK))
+ fvc::ddtPhiCorr(rUA, rho, U, phi)

)

phi = phiU +

(

fvc:interpolate(interface.sigmaK())*fve::snGrad(gamma)
- ghf*fve:snGrad(rho)

J¥rUAf*mesh.magSf();

adjustPhi(phi, U, pd);

Pair<tmp<volScalarField> > vDotP = twoPhaseProperties->vDotP();
const volScalarField& vDotcP = vDotP[0]();

const volScalarField& vDotvP = vDotP[1]();

for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

{
fvScalarMatrix pdEqn

(

fve::div(phi) - fvm::laplacian(rUAf, pd)

+ (vDotvP - vDotcP)*(rho*gh - pSat) + fvm::Sp(vDotvP - vDotcP, pd)

)
pdEqn.setReference(pdRefCell, pdRefValue);
if (corr == nCorr-1 && nonOrth == nNonOrthCorr)
{

pdEqn.solve(mesh.solver(pd.name() + "Final"));

else

pdEqn.solve(mesh.solver(pd.name()));

if (nonOrth == nNonOrthCorr)

{
phi += pdEqn.flux();

p = pd + rho*gh;
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U += rUA*fvcireconstruct((phi - phiU)/rUAf);

U.correctBoundaryConditions();

All the variables used in the mass transfer models are defined in

SFOAM APP/solvers/multiphaselinterPhaseChangeFoam/phaseChangeTwoPhaseMixtures/PhaseChangeTwoPhase

Mixture.H. According to the definition, in the following mass transfer models implementations, mDotAlphal() returns

the mass condensation and vaporization rates as a coefficient to multiply (1-alphal) for the condensation rate and a

coefficient to multiply alphal for the vaporization rate; while mDotP() returns the mass condensation and

vaporization rates as an explicit term for the condensation rate and a coefficient to multiply (p-pSat) for the

vaporization rate.

Mass transfer models are implemented under

SFOAM APP/solvers/multiphaselinterPhaseChangeFoam/phaseChangeTwoPhaseMixtures/<Model>/<Model>.C.

Jhkkkkkkk kR kkkxtx Merkle.C ** %kt kkkkkxkk/
J/ kA ER R Rk kR kR kR ok ok k k Congstructors ¥ ¥ * k¥ k kkkkkkkkx //
Foam::phaseChangeTwoPhaseMixtures::Merkle::Merkle

const volVectorField& U,

const surfaceScalarField& phi,

const word& alphalName

phaseChangeTwoPhaseMixture(typeName, U, phi, alphalName),

Ulnf_(phaseChangeTwoPhaseMixtureCoeffs_.lookup("UlInf")),
tInf_(phaseChangeTwoPhaseMixtureCoeffs_.lookup("tInf")),
Cc_(phaseChange TwoPhaseMixtureCoeffs_.lookup("Cc")),

Cv_(phaseChangeTwoPhaseMixtureCoeffs_.lookup("Cv")),

p0_("0", pSat().dimensions(), 0.0),
mcCoeff_(Cc_/(0.5%sqr(UInf_)*tInf_)),

mvCoeff_(Cv_*rho1()/(0.5*sqr(UInf_)*tInf_ *rho2()))

correct();

}

J/ FEE Rk kK kR kR k%% Nember Functions * *¥ * k¥ &k k& kkkkkkk //
Foam::Pair<Foam::tmp<Foam::volScalarField> >

Foam::phaseChange TwoPhaseMixtures::Merkle:mDotAlphal() const

{
const volScalarField& p = alphal_.db().lookupObject<volScalarField>("p");
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return Pair<tmp<volScalarField> >
(
mcCoefl_*max(p - pSat(), p0_),

mvCoefl_*min(p - pSat(), p0_)

Foam::Pair<Foam:tmp<Foam::volScalarField> >
Foam::phaseChangeTwoPhaseMixtures::Merkle:mDotP() const
{

const volScalarField& p = alphal_.db().JookupObject<volScalarField>("p");

volScalarField limitedAlphal = min(max(alphal_, scalar(0)), scalar(1));

return Pair<tmp<volScalarField> >
(
mcCoeff_*(1.0 - limitedAlphal)*pos(p - pSat()),

(-mvCoefl_)*limitedAlphal*neg(p - pSat())

[rkEkkkkkkkkkkkkkkk Kunz C**kkkkkkkkhhhk/

//****************Conslructors**************//

Foam::phaseChangeTwoPhaseMixtures::Kunz::Kunz
(

const volVectorField& U,

const surfaceScalarField& phi,

const word& alphalName

phaseChangeTwoPhaseMixture(typeName, U, phi, alphalName),

Ulnf_(phaseChangeTwoPhaseMixtureCoeffs_.lookup("UlInf")),

tInf_(phaseChangeTwoPhaseMixtureCoeffs_.lookup("tInf")),

Cc_(phaseChangeTwoPhaseMixtureCoeffs_.lookup("Cc")),

Cv_(phaseChangeTwoPhaseMixtureCoeffs_.lookup("Cv")),

p0_("0", pSat().dimensions(), 0.0),

mcCoefl_(Cc_*rho2()/tInf_),

mvCoefl__(Cv_*rho2()/(0.5*rho1()*sqr(Ulnf_)*tInf_))

correct();
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J/ FEE Rk kR kR Gk kK k% Nember Functions ¥ ¥k kk &k kkkkkk //
Foam::Pair<Foam:tmp<Foam::volScalarField> >
Foam::phaseChangeTwoPhaseMixtures::Kunz::mDotAlphal() const
{

const volScalarField& p = alphal_.db().lookupObject<volScalarField>("p");

volScalarField limitedAlphal = min(max(alphal_, scalar(0)), scalar(1));

return Pair<tmp<volScalarField> >
(
mcCoefl_*sqr(limitedAlphal)

*max(p - pSat(), p0_)/max(p - pSat(), 0.01*pSat()),

mvCoefl_*min(p - pSat(), p0_)

Foam::Pair<Foam::tmp<Foam::volScalarField> >
Foam::phaseChangeTwoPhaseMixtures::Kunz::mDotP() const
{

const volScalarField& p = alphal_.db().lookupObject<volScalarField>("p");

volScalarField limitedAlphal = min(max(alphal_, scalar(0)), scalar(1));

return Pair<tmp<volScalarField> >

(
mcCoefl_*sqr(limitedAlphal)*(1.0 - limitedAlphal)

*pos(p - pSat())/max(p - pSat(), 0.01*pSat()),

(-mvCoefl_)*limitedAlphal*neg(p - pSat())

Note that different from the theoretical governing equations of the Merkle and Kunz mass transfer models, the

implementations use 0.01*pSat instead of a value 0 to trigger the condensation and vaporization constants to be

active.
Jxxkkrhkkkhkk%%SchnerrSauer.CF¥ % sk kddkhkhdhx/

//****************COHSU"UCLOI‘S **************//

Foam::phaseChangeTwoPhaseMixtures::SchnerrSauer::SchnerrSauer

(
const volVectorField& U,

const surfaceScalarField& phi,

const word& alphalName
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phaseChangeTwoPhaseMixture(typeName, U, phi, alphalName),

n_(phaseChangeTwoPhaseMixtureCoeffs_.lookup("n")),
dNuc_(phaseChangeTwoPhaseMixtureCoeffs_.lookup("dNuc")),
Cc_(phaseChange TwoPhaseMixtureCoeffs_.lookup("Cc")),

Cv_(phaseChangeTwoPhaseMixtureCoeffs_.lookup("Cv")),

p0_("0", pSat().dimensions(), 0.0)

correct();

/) % % % % s sk ok % %k ok % % % Member Functions * % % % % % ks k k k sk sk x //
Foam::tmp<Foam::volScalarField>
Foam::phaseChangeTwoPhaseMixtures::SchnerrSauer::rRb
(

const volScalarField& limitedAlphal
) const

{

return pow

(
(4*mathematical Constant::pi*n_)/3)
*limitedAlphal/(1.0 + alphaNuc() - limitedAlphal),

1.0/3.0

Foam::dimensionedScalar
Foam::phaseChangeTwoPhaseMixtures::SchnerrSauer::alphaNuc() const
{

dimensionedScalar Vnuc = n_*mathematicalConstant::pi*pow3(dNuc_)/6;

return Vnuc/(1 + Vnuc);

Foam::tmp<Foam::volScalarField>
Foam::phaseChangeTwoPhaseMixtures::SchnerrSauer::pCoefl
(

const volScalarField& p

) const

{
volScalarField limitedAlphal = min(max(alphal_, scalar(0)), scalar(1));
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volScalarField rho =

(limitedAlphal*rhol() + (scalar(l) - limitedAlphal)*rho2());

return
(3*rho(frho2()*sqrt(2/(3*rho1())

*rRb(limitedAlphal)/(rho*sqrt(mag(p - pSat()) + 0.01*pSat()));

Foam::Pair<Foam:tmp<Foam::volScalarField> >

Foam::phaseChangeTwoPhaseMixtures::SchnerrSauer::mDotAlphal() const

{
const volScalarField& p = alphal_.db().lookupObject<volScalarField>("p");

volScalarField limitedAlphal = min(max(alphal_, scalar(0)), scalar(1));

volScalarField pCoeff = this->pCoefl(p);

return Pair<tmp<volScalarField> >

(
Cc_*limitedAlphal*pCoeff*max(p - pSat(), p0_),

Cv_*(1.0 + alphaNuc() - limitedAlphal *pCoeff*min(p - pSat(), p0_)

Foam::Pair<Foam:tmp<Foam::volScalarField> >

Foam::phaseChangeTwoPhaseMixtures::SchnerrSauer::mDotP() const

{
const volScalarField& p = alphal_.db().lookupObject<volScalarField>("p");

volScalarField limitedAlphal = min(max(alphal_, scalar(0)), scalar(1));

volScalarField apCoeff = limitedAlphal*pCoeff{p);

return Pair<tmp<volScalarField> >

(

Cc_*(1.0 - limitedAlphal *pos(p - pSat()/*apCoefT,

(-CGv_)*(1.0 + alphaNuc() - limitedAlphal)*neg(p - pSat()/*apCoefl
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14 Modification to the original code

In order to create a user modified version of the solver, it is suggested that the user copy the original solver to
$WM PROJECT USER DIR/applications/solvers meanwhile rename it to ooodlesInterPhaseChange for further
modifications which are described below.

First, a slight modification was suggested to better prove the near wall behavior of the code by modifying the wall

viscosity. The law implemented is Spalding.

1 . K,2u+2 K3u+3
yr=ut+—<" | 1+rut + St

where kappa and B are model constants.

This is done in a user created header file wallViscosity.H put under the main solver directory which is executed
before solving the momentum equation.

The other modification was made to the Kunz mass transfer model implementation. In the source code
ooodlesInterPhaseChange/phaseChangeTwoPhaseMixtures/Kunz.C, the mass condensation rate and vaporization rate
coefficient are computed as the following:

mDotAlphal()
return Pair<tmp<volScalarField> >
(
mcCoefl_*sqr(limitedAlphal)
*max(p - pSat(),p0_)/max(p - pSat(), 0.001*mag(pSat())),
//*max(p - pSat(), p0_)/max(p - pSat(), 0.01*pSat()),
mvCoefl_*min(p - pSat(), p0_)
)
mDotP()
return Pair<tmp<volScalarField> >
(
mcCoeff_*sqr(limitedAlphal)*(1.0 - limitedAlphal)
*pos(p - pSat())/max(p - pSat(),0.001*mag(pSat())),
//*pos(p - pSat())/max(p - pSat(), 0.01*pSat()),
(-mvCoefl_)*limitedAlphal*neg(p - pSat())
)
The condensation and vaporization coefficients, mcCoeff and mvCoeff, are implemented in such a way that when the
local pressure is lower than the vaporization pressure pSat, the condensation rate becomes active, while the pressure
is lower than pSat, the vaporization rate is triggered. The modification is made due to the fact that using a O value for

the reference pressure will require the pSat to be negative. Therefore the magnitude of the vaporization is taken
instead of the value.

1.5 Compile the code

Copy the source code to the user’s working directory
cp ooodlesInterPhaseChange.tar §WM_PROJECT_USER_DIR /application/solvers

tar xvf ooodlesInterPhaseChange.tar

Modify the Make/files to write the executable in SFOAM_USER_APPBIN
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EXE = §(FOAM_USER_APPBIN)/ooodlesInterPhaseChange

Compile the code
wclean
rm -r Make/linux*

wmake

2. A test case

A test case nacal5_test_case is provided to the users. Copy the case to the working directory
cp nacalb_test_case.tar fWM_PROJECT_USER_DIR/run

tar xvf nacalb_test_case.tar

As usual the case contains three folders 0/, constant/ and system/.

2.1 Mesh description

With the chord length ¢=200mm. the NACAO0O015 profile is rotated 6° around the center of gravity and set in the
domain of 1400 x 570 mm, extending 2 chord lengths ahead of the leading edge, ending 4 chord lengths behind the
trailing edge (in relation to 0° angle of attack) and with a vertical extent reflecting the size of the cavitation tunnel.
The grid is a C-grid type consisted of 53,478 cells generated by ANSYS ICEMCFD with one cell in the z direction
saved in a Fluent mesh format. To use a converter to convert the mesh into FOAM mesh one should have the
fluent.msh file under the case directory.

fluentMeshToFoam fluent.msh —scale 0.001

A scale factor of 0.001 is applied since the mesh is generated in mm in ICEMCFD and OpenFOAM uses the standard
SI unit meter.

Figure 1 and 2 show respectively the view of the whole domain and a close-up view around the foil.

200

1400
| (o] .

Figure 1 Computational domain Figure 2 Grid around the wing

22 Boundary and initial conditions

Boundary conditions are defined in the /constant/polyMesh/boundary file after the convertion is done. There are five
boundary entries in the the boundary file. Proper type are chosen in order to set a fixed velocity of 6m/s at the inlet
and fixed pressure of 0 Pa at the outlet. A fixed very close to one is given as the initial condition for gamma for
numerical reasons. Top and bottom boundaries are set as symmetryPlane with zeroGradient for all the quantities to
mimic no flux through the interface, front and back boundaries to be empty by default.
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23 Fluid properties
In the constant directory locate three property files, environmentalProperties transportProperties and LESProperties.

The environmentalProperties dictionary specifies the gravity acceleration vector, in this case it is neglected therefore
the value is set to be (0,0,0).

The transportProperites file specifies the material properties for each fluid, separated into two subdictionaries phasel
(water, corresponding to y=1) and phase2 (vapour, corresponding to y=0). Densities are specified under the keyword
rho while kinematic viscosity is under keyword nu. The viscosity parameters for the other models are specified with
reference to the tutorial Breaking of a dam. The mass transfer model is specified under the keyword
phaseChangeTwoPhaseMixture and the model coefficients are determined in the subdictionary <model>Coeffs. In
this test case the Kunz mass transfer model is selected. The mass transfer model constants are chosen under the
principle of as strong as possible but since these are practical parameters they should always be checked and tuned to
better couple the pressure field with the vapor field. The vapourization pressure is defined in the cavitation
subdictionary under the keyword pSat, startN controls the number of time steps ran before the cavitation source is
turned on, while rampN controls the number of time steps during which the cavitation source is added into the
continuity equation to assure numerical stability. By specifying yes under the keyword restart, the simulation of
caviatating flow can be continued with the values of startN and rampN being neglected (which means the source term
is already activated).

The LESProperties determines the subgrid model under the keyword LESModel and the model coefficients are
specified in the <model>Coeffs subdictionaries. Note that in this test case the LESModel entry is specified to be
laminar, which implies that the subgrid model employed here is an implicit LES model, considering the action of the
subgrid scale is equivalent to a strictly dissipative action, and letting the leading order truncation error in the
discretization of the fluxes emulate the energy dissipation.

24 Time step control

Courant number has a significant impact on the reliability and stability of the unstable flow simulation.
Recommended by OpenFOAM, the upper limit of the Co should be around 0.2. Therefore a detlaT of 2e-05 seconds
is specified in the /system/controDict file. Note that the cavitating flow calculation should always be started from a
converged wetted flow ( field. When the cavitation is toggled on, simulation needs to be restarted from the latest
resolution.

2.5 Discretisation schemes

The free surface treatment in OpenFOAM does not account for the effects of turbulence. All free surface simulations
can be viewed as a direct numerical simulation (DNS) of fluid flow. Therefore there is a high requirement for the
mesh resolution of the interface.

The solver uses the multidimensional universal limiter for explicit solution (MULES) method, to maintain
boundedness of the phase fraction independent of underlying numerical scheme, mesh structure, etc.. The choice of
schemes for convection is therefore not restricted to those that are strongly stable or bounded, e.g. upwind
differencing.

2.6 Solution and algorithm control

The /system/fvSolution file controls the equation solvers, tolerance and algorithms. In this case it contains two
subdictionaries: solvers and PISO.

In the first subdictionary, solver, each linear-solver used for each discretised equation is specified. This is done by
specifying the solver of each variable being solved, in this case which are: pcorr (pressure corrector), pd, pdFinal
(the final value of pressure after the correction), U, k, B, nuTilda, and gamma. The variable name is followed by the
solver name and a dictionary containing the parameters that the solver uses. The pressure variables and turbulence
quantities are solved by solver Preconditioned (bi-) conjugate gradient (PCG/PBiCG), velocity is solved by a solver
using a smoother (smoothSolver), and volume fraction gamma by MULESImplicit which is described already in
section 2.5. Solver tolerance, tolerance, and ratio of current to initial residuals, relTol, are specified afterwards. The
solver stops if either of the tolerance falls below the specified value. Preconditioning of matrices in the conjugate
gradient solvers is specified by the keyword preconditioner. In our test case the Geometric-algebraic multi-grid
(GAMG) method and Diagonal incomplete-LU (DILU) is used. The principle of GAMG is to generate a quick
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solution on a mesh with a small number of cells, map this solution onto a finer mesh, use it as an initial guess to
obtain an accurate solution on the fine mesh. It starts with the mesh specified by the user and coarsens/refines the
mesh in stages. The user is required to specify an approximate mesh size at the most coarse level in terms of the
number of cells nCellsInCoarsetestLevel. The agglomeration of cells is performed by the algorithm specified by the
agglomerator keyword and faceAreaPair method is used as recommended. Agglomeration can be cached by the
cacheAgglomeration switch. Smoothing is specified by the smoother, generally GaussSeidel is the most reliable
option, but for bad matrices DIG offers better convergence. The number of sweeps used by the smoother at different
levels of mesh density are specified by the nPreSweeps, nPostSweeps and nFinestSweeps. The nPreSweeps entry is
used as the algorithm is coarsening the mesh, is nPostSweeps used as the algorithm is refining, and nFinestSweeps is
used when the solution is at its finest level. The mergeLevels keyword controls the speed at which coarsening or
refinement levels is performed. It is often best to do so only at one level at a time by setting the level of 1.

In the second subdictionary, PISO, which is an algorithm of iterative procedures for solving equations for velocity
and pressure of transient problems, the number of correctors is specified by keyword nCorrectors. To account for
mesh non-orthogonality, the number of non-orthogonal correctors is specified by the nNonOrthogonalCorrectors
keyword. A mesh is orthogonal if, for each face within it, the face normal is parallel to the vector between the centres
of the cells that the face connects, e.g. a mesh of hexahedral cells whose faces are aligned with a Cartesian coordinate
system. nGammaCorr specifies the number of correctors to the loop around the gamma equation. Of particular
interest are the nGammaSubCycles and cGamma. nGammaSubCycles represents the number of sub-cycles within the
gamma equation; sub-cycles are additional solutions to an equation within a given time step. It is used to enable the
solution to be stable without reducing the time step and vastly increasing the solution time. Here we specify 4 sub-
cycles, which means that the gamma equation is solved in 4 x quarter length time steps within each actual time step.
The cGamma keyword is a factor that controls the compression of the interface. In this case it is chosen to be
enhanced compression by a value of 2.

2.7 Running the code
Go to the case directory $FOAM_RUN/nacal5_test_case and run the command:
ooodlesInterPhaseChange &> log

The simulation of wetted flow should be long enough to get the stabilized pressure distribution. To be able to judge if
the solution is stabilized or not, one can add some probes in the domain or plot lift/drag coefficient with time
sequence. This can be realized by adding functions in the system/controlDict file.

28 Post-processing

The post-processing is done by Fieldview. Firstly the FOAM data needs to be converted to a readable format for
Fieldview by

foamToFieldview9

Different computational surfaces and plots can be created in Fieldview to visualize the flow field. In the following
section a 2D plot of the pressure coefficient along the hydrofoil is examined, and the computational surface of the
volume fraction gamma is created to illustrate the development of the cavity by the transient data control.

2.8.1 Wetted Flow

Figure 3 illustrates the pressure coefficient distribution along the foil of the wetted flow. The pressure coefficient is
defined as

C _p_pref
14 l U2
2P o

The lower side of the closed curve represents the suction side and the upper part of the curve represents the pressure
side of the foil.
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Figure 3 Cp distribution of wetted flow
28.2  Cavitating Flow

The next step is to determine at which cavitation number the cavitating flow simulation should be carried out.

By definition, cavitation number: ¢ = ref ~ Py
|
2 PU=

where P is the reference pressure, p, is the vaporization pressure, U, is the reference velocity and p is the density of
the liquid. In our test case, the reference pressure takes the value of outlet pressure O Pa and reference velocity is the
inlet velocity 6 m/s. Usually in experiments, to achieve the desired cavitation number, the pressure is decreased
gradually but in computations vaporization pressure is tuned to match the chosen cavitation number, in our test case
o=1 which is reached by setting pSat to be -18000 Pa.

Many interesting features of cavitating flow are able to be captured by the computations, such as re-entrant jets and
periodic shedding. A sequence of instantaneous vapour volume fraction illustrating the periodic shedding of
cavitation is presented in Figure 4. A sheet cavity starts at the leading edge, whereby the cavity is transported along
the surface of the foil and when it exceeds a certain size, it becomes unstable and sheds periodically. This process is
controlled by a re-entrant jet which is forming downstream of the cavity and travels in the opposite direction to the
outer flow towards the leading edge. The re-entrant jet cuts the cavity resulting in a shedding of cloud cavitation
which is transported with the free stream towards the trailing edge.
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Figure 4 Development of cavities by FIELDVIEW
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