Baseline for developing a general OpenFOAM solver for magnetohydrodynamic (MHD) flows

Lorenzo Melchiorri

DIAEE - Nuclear Section, Sapienza University of Rome, Rome, Italy

21/01/2022

Fusion reactors

Figure: ITER experiment

Liquid metal blankets are the leading candidate for tritium production in MCF reactors. Interaction between LM and magnetic field cause transition to magnetohydrodynamic flow

MHD-related issues

- High pressure drops
- Enhanced corrosion rates
- Turbulence suppression
- etc.

Codes for MHD

To support the blanket desing a CFD software able to model MHD flows is needed

Required parameters

- $Ha = 10^4$
- $Re = 10^4$
- $Gr = 10^{12}$

No mature MHD code is currently available.

Figure: MHD calculations progress (Smolentsev, 2015)

MHD governing equations

A laminar, isothermal and incompressible flow is assumed

$$\nabla \cdot \mathbf{u} = 0 \tag{1}$$

$$\frac{D\mathbf{u}}{Dt} = -\nabla(p/\rho) + \nu \nabla^2 \mathbf{u} + (\mathbf{J} \times \mathbf{B})/\rho \tag{2}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \frac{1}{\mu \, \sigma} \nabla^2 \mathbf{B} \tag{3}$$

$$\mathbf{J} = \frac{1}{\mu} \nabla \times \mathbf{B} \tag{4}$$

This set is called the *B-formulation* of the MHD governing equations

Inductionless approximation

The equation (3) can be simplified, reducing the u-B coupling non-linearity, if the self-induced magnetic field is negligible. This corresponds to the *inductionless* condition

$$R_m \ll 1$$

The parameter $R_m=u_0\,L/\mu\,\sigma$ is called the magnetic Reynolds number. For the typical values encountered in LM flows the condition is valid and the magnetic field can be uncoupled from the fluid velocity, i.e. it depends just by the boundary conditions.

Electric potential formulation

A Poisson equation for the electric potential and the Ohm's law substitute (3) and (4)

$$\nabla \cdot \mathbf{u} = 0 \tag{1}$$

$$\frac{D\mathbf{u}}{Dt} = -\nabla(p/\rho) + \nu \nabla^2 \mathbf{u} + (\mathbf{J} \times \mathbf{B})/\rho \tag{2}$$

$$\nabla^2(\sigma\phi) = \sigma\nabla \cdot (\mathbf{u} \times \mathbf{B}) \tag{5}$$

$$\mathbf{J} = \sigma(-\nabla\phi + \mathbf{u} \times \mathbf{B}) \tag{6}$$

The new set is called the ϕ -formulation of the MHD equations

Parameters for incompressible LM MHD flow

Hartmann number: adimensional measure of the magnetic field intensity

$$Ha = BL\sqrt{\frac{\sigma}{\rho\nu}} \tag{7}$$

Wall conductance ratio: measures relative electrical conductivity of the wall compared to the fluid

$$c = \frac{\sigma_w}{\sigma} \frac{t}{L} \tag{8}$$

Fundamental phenomena - insulated

Figure: MHD bounded flow features (Müller and Bühler, 2001)

Fundamental phenomena - other configurations

Figure: 3D normalized velocity distribution (Rao and Sankar, 2011). a) Insulated side walls $(c_s = 0)$ and perfectly conductive Hartmann ones $(c_h = \infty)$. b) Fully conductive channel $(c_s = c_h = \infty)$.

In fusion applications $10^{-3} < c < 2 \cdot 10^{-1}$

Some existing MHD solvers The built-in solver

The solver mhdFoam (PISO-loop based) relies on B-formulation of MHD equations. To access the source code: cd \$FOAM_SOLVERS/electromagnetics/mhdFoam

Solvers

Upsides

- The solver works properly
- It is able to represent self-induced field

Drawbacks

- Very (computationally) expensive for high Ha
- It can handle only laminar and isothermal problems
- Complex boundary conditions, not well suited to represent conductive walls

Some existing MHD solvers

Alternative useful tools

Solver epotFoam described by Tassone (2017)

Upsides

- \blacksquare It employs the ϕ -formulation
- induction-less

Drawbacks

 It models only perfectly insulating or conducting walls Solver Q2DmhdFoam developed by Iraola (2021)

Upsides

- Temperature field is resolved (buoyancy effects)
- Fast

Drawbacks

- It can only model 2D cases
- It does not solve electric potential and current density

Why employ a solver based on the ϕ -formulation?

Advantages

- Faster
- More stable
- Simpler boundary conditions
- More accurate for coarse mesh

Drawbacks

- Requirement on **J** interpolation
- Nonconservative treatment of Lorentz force
- Constrain on charge conservation $\nabla \cdot \mathbf{J} = 0$

Modified Four Step Projection Method (Ni, 2007) employed for the OpenFOAM implementation.

The MhdPisoFoam solver

Coupling solvers strategies

Coupling grid strategy or *monolithic* approach:

- Found in conjugateHeatFoam (only foam-extend)
- Direct coupling between fluid/solid domains
- Solving a unique matrix system
- Disadvantage: slower at solver level

Segregated method:

- Found in chtMultiRegionFoam (in both FE and OpenFOAM)
- Coupling through internal boundary conditions
- Solving a separated matrix system
- Disadvantage: iterative process at the interface

The conjugateHeatFoam solver has been chosen for the derivation of MhdPisoFoam

Implementation - variables

createFields.H and createSolidField.H additions

```
Info<< "Reading field signa\n" << endl;
       volScalarField sigma
112
            IOobject
               "sigma".
               runTine.timeName().
               mesh.
               IOobject::MUST_READ,
119
               IOobject::AUTO_WRITE
120
121
           nesh
122
122
       Info<< "Reading field PotE\n" << endl:
125
       volScalarField PotE
126
            IDobject
128
               "PotE".
               runTine.timeName(),
               IOobject::MUST_READ,
               IOobject::AUTO WRITE
135
```

```
//mhd modelling
Info<< "Reading field PotEsolid\n" << endl:
volScalarField PotEsolid
    IOobject
       "PotE",
       runTine.tineName(),
       solidMesh.
       IOobject::MUST_READ
       IOobject::AUTO_WRITE
    nolidMesh
Info<< "Reading solid electrical conductivity sigma_w\n" << endl;
volScalarField sigmasolid
    IOobject
       "signa_v".
       runTine.tineName(),
       solidMesh,
       IOobject::MUST READ
       IOobject::AUTO WRITE
    solidMesh
```

readTransportProperties.H addition

```
//applied magnetic field
2
      dimensionedVector BO(laminarTransport.lookup("BO"));
3
```

Solvers 000000 The MhdPisoFoam solver

Implementation - Lorentz force term

In MhdPisoFoam.C initialize Lorentz force

```
Info<< "\nStarting time loop\n" << endl;

// Lorentz force estimate
volVectorField lorentz = sigma * (-fvc::grad(PotE) ^ B0) + sigma * ((U ^ B0) ^ B0);
```

In UEqn. H modify the momentum equation

```
// Solve the momentum equation

fvVectorMatrix UEqn

fvm::ddt(U)

fvm::div(phi, U)

+ turbulence->divDevReff()

- (1.0/rho) * lorentz

);

UEqn.relax();
```

Implementation - Electric potential

In solvePotE.H rearrange Eq. 5 $\nabla^2(\sigma\phi) = \sigma\nabla\cdot(\mathbf{u}\times\mathbf{B})$:

Solvers

000000

```
//calculate cross-product of velocity and magnetic field
      surfaceScalarField psiub = fvc::interpolate(U ^ B0) & mesh.Sf();
      surfaceScalarField sigmasolidF = fvc::interpolate(sigmasolid);
      while (simpleSolid.correctNonOrthogonal())
          coupledFvScalarMatrix PotEqns(2);
          // Add fluid equation
          PotEans.set
              new fvScalarMatrix
                  fvm::laplacian(sigma, PotE) - sigma * fvc::div(psiub)
          );
          // Add solid equation
          PotEqns.set
              new fvScalarMatrix
                 fvm::laplacian(sigmasolidF, PotEsolid)
32
          PotEqns.solve();
```

$$\psi = (\mathbf{u} \times \mathbf{B}) \cdot \mathbf{S}_f \qquad (9)$$

$$\nabla^2(\sigma\phi) - \sigma\nabla \cdot \psi = 0$$
 (10)

$$\nabla^2(\sigma_w \phi) = 0 \qquad (11)$$

The MhdPisoFoam solver

Implementation - current density

Interpolation scheme for current density

```
//consistent and conservative scheme for current density (Ni, 2007)
34
       surfaceScalarField in = -(fvc::snGrad(PotE) * mesh.magSf()) + psiub;
35
36
       surfaceVectorField jnv = jn * mesh.Cf();
37
38
      volVectorField jfinal = fvc::surfaceIntegrate(jnv) - fvc::surfaceIntegrate(jn) * mesh.C();
39
40
       ifinal.correctBoundaryConditions():
41
42
      //update lorentz field, maybe here we should just use lorentz.correct();
43
      lorentz = sigma * (jfinal ^ B0);
44
45 }
```

$$j_f = -\nabla_{sn}\phi \cdot S_f + \psi \tag{12}$$

$$J_c = \frac{1}{\Omega_p} \sum_{f=1}^{nf} j_f(\mathbf{r}_f - \mathbf{r}_p) \cdot \mathbf{S}_f$$
 (13)

$$lorentz = \sigma(\mathbf{J}_c \times \mathbf{B}) \tag{14}$$

Tutorial set-up

Test cases: 2 MHD flows 1 hydrodynamic

Figure: 2D Sketch

- Characteristic length L = 0.5m (Half-length *y*-direction)
- Axial length 20L

A "dummy" materials are assumed:

Cases parameters

- \blacksquare Ha = 50
- Arr Re = 4 (laminar)
- $\mathbf{c}_s = 0$ (insulated)
- $c_h = 0.1 \text{ or } 0.4$
- Isothermal (273 K)

Velocity BC

- Inlet = fixedValue
- Outlet = zeroGradient
- Walls = noSlip

Remember Eq.8:

$$c = \frac{\sigma_w}{\sigma} \ \frac{t}{L}$$

Electric potential BC

- Hartmann-walls = regionCoupling (uniform value)
- Side-walls = zeroGradient
- Inlet = zeroGradient
- Outlet = zeroGradient

Non-uniform structured mesh:

$$\delta_{\mathrm{Ha}} = \frac{1}{\mathrm{Ha}} \qquad (15)$$

$$\delta_{\mathrm{Ha}} = \frac{1}{\mathrm{Ha}}$$
 (15)
$$\delta_{\mathrm{Side}} = \frac{1}{\sqrt{\mathrm{Ha}}}$$
 (16)

Figure: 2D view (outlet) of the mesh grid

hex (0 1 2 3 4 5 6 7) (60 70 70) simpleGrading (1 ((50 50 36.17701855) (50 50 0.02764)) $((50\ 50\ 36.17701855)(50\ 50\ 0.02764)))$

Mesh grid

- \sim 7 elements $\delta_{\rm Ha}$
- ≈ 35 elements δ_{Side}
- Total mesh grid $\approx 5.5 \cdot 10^5$ (!!)

Figure: Layers refinement

Running the tutorial case

Run the TopoMesh script in the tutorial folder (NOT with foam-extend):

```
Tut="Ha50c01 Ha50c04 Hydro"
for folder in $Tut;
do
   cd $folder;
   blockMesh -region solid;
   setSet -region solid -batch solid.setSet;
   setsToZones -region solid -noFlipMap;
   blockMesh:
   setSet -batch fluid.setSet:
   setsToZones -noFlipMap;
   cd ..:
done
```

Running the tutorial case

Source foam-extend now and run the ParaRun script in the tutorial folder:

```
Tut="
Ha50c01
Ha50c04
decomposePar -case Hydro;
decomposePar -case Hydro -region solid;
mpirun -np 2 MhdPisoFoam -case Hydro -parallel > Hydro/log &
for folder in $Tut;
 do
   decomposePar -case $folder;
   decomposePar -case $folder -region solid;
  mpirun -np 3 MhdPisoFoam -case $folder -parallel > $folder/log &
done
```

Running the tutorial case - simulation control

Simulation convergence must be controlled by the user changing the time-step from the controlDict, paying attention that this will not cause a divergent trend.

- Default $\Delta t = 1 \cdot 10^{-3}$
- Might be increased to $\Delta t = 7 \cdot 10^{-3}$

Post-process

Run the graph script in the tutorial folder:

```
cases="Ha50c01 Ha50c04 Hvdro"
mkdir Results
for folder in $cases:
dο
    reconstructPar -case $folder:
   reconstructPar -case $folder -region solid;
    latestTime=$(ls $folder -1 | sort -n | tail -n 1):
    sample -case $folder;
   Uref=$(sort -nk 1 $folder/postProcessing/sets/$latestTime/CentralVelocity_U.xy \
    | head -n 1 | awk '{print $2}');
   GraphName="Velocity Pofiles_$folder.png"
      gnuplot<<Velocity
        set terminal pngcairo font "helvetica.20" size 1000, 1000
        set output 'Results/$GraphName'
        set key center top outside
        set kev horizontal
        set xlabel "non-dimensional channel height z/2a"
        set ylabel "non-dimensional velocity U/U0"
        set grid
        plot \
         "$folder/postProcessing/sets/$latestTime/SideLayerProfiles_U.xy" u 1:(\$2/$Uref) w lines
          lw 2 lc rgb "red" title "foam-extend", \
         "SloanSol$folder" u 1:2 w points pt 7 ps 1.5 lc rgb "midnight-blue" title "Analytical"
     Velocity
done
```

Outcomes

(b) MHD case $\mathrm{Ha} = 50$ and c = 0.4

Outcomes

(a) Potential outlet contour

В

(b) Electric potential between the side walls in Volt.

Follow-up activities

An MHD coupled solver has been developed for foam-extend. The new MhdPisoFoam it is able to model the influence of finite electrical conductive walls.

- Simplify the tutorial case through symmetry and periodic patches
- Optimization of the current density conservation scheme (Ni second method)
- Extend the V&V procedure of the solver with experimental results and further analytical solutions
- Far far future: MHD turbulence modelling

Thank you for your attention

Questions?