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1 Introduction

The aim of this tutorial is to explain to the new users of OpenFOAM how to
use an existing tutorial in the release of OpenFOAM and modify it to suit
a user case. The focus here is to use the existing tutorials for the iterFoam
and rasInterFoam to solve laminar and turbulent free surface cases.

This tutorial demonstrates how to do the following:

- Set up and solve a transient problem using the VOF model.

- Modify the damBreak tutorial to solve for any VOF case.

- Change the geometry in OpenFOAM.

- Set up the properties of the two fluids.

- Initialize the flow.

- Choose the turbulent model.

- Brief explanation of the interFoam code.

2 Description of the problem

The problem considers the transient filling of water in a bottle initially
filled with air as shown in Figure 1. For simplicity we will consider a two
dimensional case by assuming that the geometry has an infinite length in
the z-direction. The domain consists of two regions: an inlet chamber and
a bottle. The dimensions are shown in Figure 1.

Initially, the bottle is filled with air and the inlet chamber is filled with
water. At time zero, the water will move to fill the bottle. The inlet velocity
of the water at the inlet section to the inlet chamber is 0.1 m/s. The time
needed for filling the bottle with water is about 10 sec.

3 Available solvers in OpenFOAM

The case is a free surface problem, where a sharp interface between the two
fluids exists. There are three different available solvers able to handle this
case in OpenFOAM: interFoam, rasInterFoam and lesInterFoam.

interFoam: solver for 2 incompressible fluids capturing the interface using a VOF
method. No turbulence model is used. Solution may be viewed as a
DNS if the mesh is fine enough for DES otherwise it is laminar solver.

rasInterFoam: solver for 2 incompressible fluids capturing the interface using a VOF
method. Turbulence is modeled using a runtime selectable incompress-
ible RANS model.
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Figure 1: Schematic of the Problem

lesInterFoam: solver for 2 incompressible fluids capturing the interface using a VOF
method. Turbulence is modeled using a runtime selectable incompress-
ible LES model.

In this tutorial, we will use interFoam and rasInterFoam to solve the filling
problem. Compression between the laminar solution using interFoam and
the turbulent solution using rasInterFoam will be shown at the end of the
tutorial.

4 The damBreak case

Now we will take a look at the directories and files in the original tutorial
damBreak. The folder has three sub-directories, 0, constant and system.

4.1 The constant sub-directory

The folder contains all properties for the two fluids as will as the informa-
tion required to build the mesh and the gravitational acceleration. It has
three different files, transportProperties, enviromentalProperties and dy-
namicMeshDict, and one folder, polyMesh. The transportProperties file is a
dictionary that contains information about the properties of the two phases
as shown below.

\*-------------------------transportProperties------------------------------*/
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FoamFile

{

version 2.0;

format ascii;

root "";

case "";

instance "";

local "";

class dictionary;

object transportProperties;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

phase1

{

transportModel Newtonian;

nu nu [0 2 -1 0 0 0 0] 1e-06;

rho rho [1 -3 0 0 0 0 0] 1000;

CrossPowerLawCoeffs

{

nu0 nu0 [0 2 -1 0 0 0 0] 1e-06;

nuInf nuInf [0 2 -1 0 0 0 0] 1e-06;

m m [0 0 1 0 0 0 0] 1;

n n [0 0 0 0 0 0 0] 0;

}

BirdCarreauCoeffs

{

nu0 nu0 [0 2 -1 0 0 0 0] 0.0142515;

nuInf nuInf [0 2 -1 0 0 0 0] 1e-06;

k k [0 0 1 0 0 0 0] 99.6;

n n [0 0 0 0 0 0 0] 0.1003;

}

}

phase2

{

transportModel Newtonian;

nu nu [0 2 -1 0 0 0 0] 1.48e-05;

rho rho [1 -3 0 0 0 0 0] 1;

CrossPowerLawCoeffs

{

nu0 nu0 [0 2 -1 0 0 0 0] 1e-06;

nuInf nuInf [0 2 -1 0 0 0 0] 1e-06;

m m [0 0 1 0 0 0 0] 1;

n n [0 0 0 0 0 0 0] 0;

}

BirdCarreauCoeffs

{

nu0 nu0 [0 2 -1 0 0 0 0] 0.0142515;

nuInf nuInf [0 2 -1 0 0 0 0] 1e-06;

k k [0 0 1 0 0 0 0] 99.6;

n n [0 0 0 0 0 0 0] 0.1003;

}

}

sigma sigma [1 0 -2 0 0 0 0] 0.07;

// ************************************************************************* //
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The dictionary sets the transport model for the two phases to be New-
tonian and then gives information about the viscosity and density of the
phases. It gives also some coefficients for two power laws used for the inter-
polation for the gamma function. At the end of the dictionary, the surface
tension coefficient between the two phases is set. The dictionary environ-
mentalProperties sets the value and direction of the gravitational accelera-
tion as shown below.

\*--------------------environmentalProperties-------------- ---------------*/

FoamFile

{

version 2.0;

format ascii;

root "";

case "";

instance "";

local "";

class dictionary;

object environmentalProperties;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

g g [0 1 -2 0 0 0 0] (0 -9.81 0);

// ************************************************************************* //

Here, the gravitational acceleration has a value of 9.81 m/s2 in the neg-
ative direction of y-axes.

The third dictionary in the constant folder is dynamicMeshDict which
specify if the mesh is dynamic or static as follow.

\*---------------------------dynamicMeshDict----------------------------*/

FoamFile

{

version 2.0;

format ascii;

root "";

case "";

instance "";

local "";

class dictionary;

object motionProperties;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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dynamicFvMesh staticFvMesh;

// ************************************************************************* //

As seen in the dynamicMeshDict, the mesh is set to be staticFvMesh.
The constant directory contains the sub-directory polyMesh where in-

formation about the mesh should be there in the dictionary blockMeshDict
as shown below.

\*------------------------------blockMeshDict---------------------------*/

FoamFile

{

version 2.0;

format ascii;

root "";

case "";

instance "";

local "";

class dictionary;

object blockMeshDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

convertToMeters 0.146;

vertices

(

(0 0 0)

(2 0 0)

(2.16438 0 0)

(4 0 0)

(0 0.32876 0)

(2 0.32876 0)

(2.16438 0.32876 0)

(4 0.32876 0)

(0 4 0)

(2 4 0)

(2.16438 4 0)

(4 4 0)

(0 0 0.1)

(2 0 0.1)

(2.16438 0 0.1)

(4 0 0.1)

(0 0.32876 0.1)

(2 0.32876 0.1)

(2.16438 0.32876 0.1)

(4 0.32876 0.1)

(0 4 0.1)

(2 4 0.1)

(2.16438 4 0.1)

(4 4 0.1)

);

blocks

(
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hex (0 1 5 4 12 13 17 16) (23 8 1) simpleGrading (1 1 1)

hex (2 3 7 6 14 15 19 18) (19 8 1) simpleGrading (1 1 1)

hex (4 5 9 8 16 17 21 20) (23 42 1) simpleGrading (1 1 1)

hex (5 6 10 9 17 18 22 21) (4 42 1) simpleGrading (1 1 1)

hex (6 7 11 10 18 19 23 22) (19 42 1) simpleGrading (1 1 1)

);

edges

(

);

patches

(

wall leftWall

(

(0 12 16 4)

(4 16 20 8)

)

wall rightWall

(

(7 19 15 3)

(11 23 19 7)

)

wall lowerWall

(

(0 1 13 12)

(1 5 17 13)

(5 6 18 17)

(2 14 18 6)

(2 3 15 14)

)

patch atmosphere

(

(8 20 21 9)

(9 21 22 10)

(10 22 23 11)

)

);

mergePatchPairs

(

);

// ************************************************************************* //

The dictionary starts by setting a conversion to meter. If the dimensions in
this dictionary are in mm then the first line should be

convertToMeters 0.001;

to convert it to meter.
The domain is divided into numbers blocks. Each block should have 8

vertices. All the vertices for all the blocks are sorted under vertices dic-
tionary. Each vertex has x, y and z coordinate value. The vertices are
numbered in ordered starting from zero for the first vertex.

The blocks are defined under the blocks directory. Each block has 8
vertices. These vertices are specified by there number according to their
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appearance in the vertices dictionary. The line for each block start with
the word hex meaning that the mesh will be hexahedral followed by the
number of the 8 vertices connecting the block. After specifying the vertices
connecting one block comes the number of grid points in the three direction
x, y and z. At the end of this line a specification of the mesh grading in the
three dimensions x, y and z is set. The grading in the damBreak tutorial is
simpleGrading (1 1 1) meaning that the mesh is uniform mesh without any
stretching. In this case, the domain has 5 hexa blocks.

Following the block dictionary is the edge dictionary where a curvature
for any edge connecting two vertices can be specified. If this dictionary is
empty then the edge will be a straight line in the mesh.

The patches dictionary specifies the boundary patches in the mesh. Each
boundary face should be connected by four vertices. First the type of the
boundary condition is specified for a patch and then the name of the patch.
If a boundary patch is sharing many blocks, an entry for each peace of the
patch in each block should be specified under the patch dictionary.

In our laminar fill bottle tutorial we will keep the same setting for all
the dictionaries in the constant folder except the blockMeshDict. We will
change this dictionary to fit or mesh in our tutorial for filling a bottle.

4.2 The system sub-directory

This folder contains five dictionaries, controlDict, decomposeParDict, fvSchemes
and setFieldsDict. All the settings for starting, end and time step as well
as the methods of saving data are in the contolDict. This dictionary takes
the format shown below.

\*-------------------------------contolDict--------------------------------*/

FoamFile

{

version 2.0;

format ascii;

root "";

case "";

instance "";

local "";

class dictionary;

object controlDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

application interFoam;

startFrom startTime;

startTime 0;

stopAt endTime;
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endTime 1;

deltaT 0.001;

writeControl adjustableRunTime;

writeInterval 0.05;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo 0.5;

maxDeltaT 1;

// ************************************************************************* //

The solver is specified at the beginning of the dictionary to be interFoam.
The start time is zero and the end time is 1 sec. The simulation will stop
at the end time which is 1 sec. The time step is set to be 0.001 sec but the
adjustableTimeStep option is yes meaning that the time step will change
during the simulation to keep the CFL number below the max value specified
in maxCo. An out put file will be written every 0.05 sec. The simulation
will adjust the time step to write exactly every 0.05 sec as specified in the
commands

writeControl adjustableRunTime;

and

runTimeModifiable yes;

All the descritization schemes are set in the dictionary fvSchemes shown
below. For the dambreak tutorial the VanLeer scheme is used for the discriti-
zation of the divergence terms in the U-equations and in Gamma equation.
The laplacian terms are descretized using the centeral difference scheme.

\*--------------------------fvSchemes-------------------------------*/

FoamFile

{
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version 2.0;

format ascii;

root "";

case "";

instance "";

local "";

class dictionary;

object fvSchemes;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

ddtSchemes

{

default Euler;

}

gradSchemes

{

default Gauss linear;

grad(U) Gauss linear;

grad(gamma) Gauss linear;

}

divSchemes

{

div(rho*phi,U) Gauss limitedLinearV 1;

div(phi,gamma) Gauss vanLeer;

div(phirb,gamma) Gauss interfaceCompression;

}

laplacianSchemes

{

default Gauss linear corrected;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default corrected;

}

fluxRequired

{

default no;

pd;

pcorr;

gamma;

}

// ************************************************************************* //
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The snGradSchemes sets the descritization for calculating the normal
vector to the surface. In order to get a sharp interface, an interface com-
pression scheme is used.

All the settings for the solver as the maximum residuals and number of
iterations are in the dictionary fvSolution shown below.

\*--------------------------fvSolution------------------------------*/

FoamFile

{

version 2.0;

format ascii;

root "";

case "";

instance "";

local "";

class dictionary;

object fvSolution;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

solvers

{

pcorr PCG

{

preconditioner DIC;

tolerance 1e-10;

relTol 0;

};

pd PCG

{

preconditioner DIC;

tolerance 1e-7;

relTol 0.05;

};

pdFinal PCG

{

preconditioner DIC;

tolerance 1e-7;

relTol 0;

};

U PBiCG

{

preconditioner DILU;

tolerance 1e-06;

relTol 0;

};

}

PISO

{

momentumPredictor no;

nCorrectors 3;

nNonOrthogonalCorrectors 0;

nGammaCorr 1;

nGammaSubCycles 2;

cGamma 1;
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}

// ************************************************************************* //

The number of correction for the pressure in the PISO algorithm is 3.
Four sub-cycles corrections are required for the gamma solver. the momen-
tumPredictor is set to no.

In the free surface problems, the initial condition for the volume fraction
of the two fluids needs to be well defined. If we specify uniform internal fields,
then only one fluid will occupy the entire domain. Instead, the setFieldsDict
divides the domain into two parts and give different gamma value for each
region. The setFieldsDict is shown below.

\*----------------------------setFieldsDict--------------------------*/

FoamFile

{

version 2.0;

format ascii;

root "";

case "";

instance "";

local "";

class dictionary;

object setFieldsDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

defaultFieldValues

(

volScalarFieldValue gamma 0

volVectorFieldValue U (0 0 0)

);

regions

(

boxToCell

{

box (0 0 -1) (0.1461 0.292 1);

fieldValues

(

volScalarFieldValue gamma 1

);

}

);

// ************************************************************************* //
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If we do not have the regions section then the default values will be
activated. In this case the default values are 0 for gamma and 0 for U. In
the regions dictionary, a box is defined with the form

box (minX minY minZ) (maxX maxY maxZ);

After we defined the box, the values for gamma inside the box is defined
to be 1 as

fieldValues

(

volScalarFieldValue gamma 1

);

It is possible also to set the values of the vector U inside the box.
The last dictionary in the sub-folder is the decomposeParDict which

descibe the decomposition of the geometry and data in case of running the
solver in parallel.

4.3 The 0 subdirectory

In this subdirectory, all the boundary values are given. All the patches
that have been named in the polyMeshDict should assign a value here. The
gamma dictionary is shown below.

\*-----------------------------Gamma field Dict-----------------------------*/

FoamFile

{

version 2.0;

format ascii;

root "/home/hassan/OpenFOAM/hassan-1.4.1/run/interFoam";

case "damBreak";

instance "0";

local "";

class volScalarField;

object gamma;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 0 0 0 0 0 0];

internalField uniform 0;

boundaryField

{

leftWall

{

type zeroGradient;

}

rightWall

{
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type zeroGradient;

}

lowerWall

{

type zeroGradient;

}

atmosphere

{

type inletOutlet;

inletValue uniform 0;

value uniform 0;

}

defaultFaces

{

type empty;

}

}

The same structure is applicable for the other dictionary U, that gives
boundary conditions for the velocity fields, and pd, that gives boundary
conditions for the pressure.

5 Setting the case

5.1 interFoam solver

The case is similar to the existing tutorial supplied by the OpenFoam dis-
tributors damBreak. A copy of this tutorial should be placed in the run
directory as follow:

- run

- mkdir laminarFilling

- cd laminarFilling

- cp -r $WM PROJECT DIR/tutorials/interFoam/damBreak ./lamFill-
Bottle

We will keep the setting as it is for all the dictionary except polyMesh-
dict, setFieldsDict and the boundary dictionaries in the subfolder 0 to suit
our case. The geometry is divided into six blocks as shown in Figure 2.

The new polyMeshDict for our case is shown below.

\*---------------------------blockMeshDict----------------------------------*/

FoamFile

{

version 2.0;

format ascii;
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Figure 2: Different blocks in the domain

root "";

case "";

instance "";

local "";

class dictionary;

object blockMeshDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

convertToMeters 0.001;

vertices

(

(-10 230 0)

(10 230 0)

(10 220 0)

(-10 220 0)

(5 210 0)

(-5 210 0)

(5 200 0)

(-5 200 0)

(5 0 0)

(-5 0 0)

(50 200 0)

(50 0 0)

(-50 200 0)

(-50 0 0)

(-10 230 1)
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(10 230 1)

(10 220 1)

(-10 220 1)

(5 210 1)

(-5 210 1)

(5 200 1)

(-5 200 1)

(5 0 1)

(-5 0 1)

(50 200 1)

(50 0 1)

(-50 200 1)

(-50 0 1)

);

blocks

(

hex (3 2 1 0 17 16 15 14) (10 5 1) simpleGrading (1 1 1)

hex (5 4 2 3 19 18 16 17) (10 5 1) simpleGrading (1 1 1)

hex (7 6 4 5 21 20 18 19) (10 5 1) simpleGrading (1 1 1)

hex (9 8 6 7 23 22 20 21) (10 100 1) simpleGrading (1 1 1)

hex (8 11 10 6 22 25 24 20) (40 100 1) simpleGrading (1 1 1)

hex (13 9 7 12 27 23 21 26) (40 100 1) simpleGrading (1 1 1)

);

edges

(

);

patches

(

patch inlet

(

(0 1 15 14)

)

wall inletWall

(

(0 3 17 14)

(3 5 19 17)

(5 7 21 19)

(1 2 16 15)

(2 4 18 16)

(4 6 20 18)

)

wall bottleWall

(

(10 11 25 24)

(11 8 22 25)

(8 9 23 22)

(9 13 27 23)

(13 12 26 27)

)

patch atmosphere

(

(6 10 24 20)

(12 7 21 26)

)

empty frontAndBack

(

(0 1 2 3)

(3 2 4 5)

(4 6 7 5)
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(6 10 11 8)

(6 8 9 7)

(7 9 13 12)

(14 15 16 17)

(17 16 18 19)

(19 18 20 21)

(20 24 25 22)

(20 22 23 21)

(21 23 27 26)

)

);

mergePatchPairs

(

);

// ************************************************************************* //

Here we have four patches, inlet, bottleWall, inletWall, atmosphere amd
frontAndBack specifying the inlet of the water, the wall of the bottle, the
wall of the inlet pipe, the opening at the top of the bottle to the atmosphere
and the front and back faces, respectively. The front and the back faces will
be assigned empty type boundary condition in the boundary dictionaries to
simplify the problem as 2D. Note the rotation between the different vertices
to specify the corresponding block. It should be consistent for all the blocks.
In this tutorial, the rotation is a right handed rotation around the positive
z-axes.

The second dictionary to change is the setFieldsDict in the system sub-
folder. Here we need the inlet chamber to be filled with water at the beg-
gining of the simulation while the bottle is filled with air. In this case, the
setFieldsDict is modified to have a box around the inlet chamber as shown
below.

\*------------------------------setFieldsDict--------------------------------*/

FoamFile

{

version 2.0;

format ascii;

root "";

case "";

instance "";

local "";

class dictionary;

object setFieldsDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

defaultFieldValues

(

volScalarFieldValue gamma 0
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volVectorFieldValue U (0 0 0)

);

regions

(

boxToCell

{

box (-0.01 0.2 -1) (0.01 0.23 1);

fieldValues

(

volScalarFieldValue gamma 1

);

}

);

// ************************************************************************* //

Note that the bounding box might be large and extended outside the
domain. When we set the fields using the setFields utility, the cells inside
the box will be only assigned the value of gamma equal to 1.

We need also to change the boundary patches in the boundary dictio-
naries in the sub-folder 0. The gamma dictionary is shown below.

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

root "/home/hassan/OpenFOAM/hassan-1.4.1/run/interFoam";

case "fillBottle";

instance "0";

local "";

class volScalarField;

object gamma;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 0 0 0 0 0 0];

internalField uniform 0;

boundaryField

{

inlet

{

type fixedValue;

value uniform 1;

}

inletWall

{

type zeroGradient;

}

18



bottleWall

{

type zeroGradient;

}

atmosphere

{

type inletOutlet;

inletValue uniform 0;

value uniform 0;

}

frontAndBack

{

type empty;

}

}

// ************************************************************************* //

We should also change by the same way the dictionaries U and pd.

5.1.1 Generating the mesh

The mesh will be generated by running the utility blockMesh. Go the di-
rectory laminarFilling and run the utility for the case lamFillBottle as

blockMesh . lamFillBottle

After running the utility we see some other files in the directory con-
stant/polyMesh. These files contains information about the coordinates of
the mesh points and cell boundaries and so on.

5.1.2 Setting the initial and boundary conditions of γ

If we start the run with the existing sitting of γ the initial field will be filled
with only air. To initialize the solution with water in the inlet pipe and air
in the bottle we need to run the setFields utility on our case as follow:

setFilds . lamFillBottle

Take a look at the gamma dictionary in the 0 sub-folder to see the
difference.

5.1.3 Start the simulation

The simulation is ready now to start. The user can start the simulation by
typing the name of the solver followed by the root of the case and then the
case name as shown below.

interFoam . lamFillBottle > out.log&

The output information in each time step will be in the file out.log.
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5.2 rasInterFoam solver

This solver solve for two phase flow separated by sharp interface. The differ-
ence between resInterFoam and interFoam is that RANS turbulence models
are implemented in rasInterFoam solver. The settings for the rasInterFoam
solver are similar to that for the interFoam solver. All the dictionaries are
the same except the turbulenceProperties dictionary which is located in the
sub-folder constant. This dictionary is shown below.

// * * * * * * * * * * * *turbulenceProperties* * * * * * * * * * * * * * * //

turbulenceModel kEpsilon;

turbulence on;

laminarCoeffs

{

}

kEpsilonCoeffs

{

Cmu Cmu [0 0 0 0 0 0 0] 0.09;

C1 C1 [0 0 0 0 0 0 0] 1.44;

C2 C2 [0 0 0 0 0 0 0] 1.92;

alphaEps alphaEps [0 0 0 0 0 0 0] 0.76923;

}

RNGkEpsilonCoeffs

{

Cmu Cmu [0 0 0 0 0 0 0] 0.0845;

C1 C1 [0 0 0 0 0 0 0] 1.42;

C2 C2 [0 0 0 0 0 0 0] 1.68;

alphak alphaK [0 0 0 0 0 0 0] 1.39;

alphaEps alphaEps [0 0 0 0 0 0 0] 1.39;

eta0 eta0 [0 0 0 0 0 0 0] 4.38;

beta beta [0 0 0 0 0 0 0] 0.012;

}

NonlinearKEShihCoeffs

{

Cmu Cmu [0 0 0 0 0 0 0] 0.09;

C1 C1 [0 0 0 0 0 0 0] 1.44;

C2 C2 [0 0 0 0 0 0 0] 1.92;

alphak alphak [0 0 0 0 0 0 0] 1;

alphaEps alphaEps [0 0 0 0 0 0 0] 0.76932;

A1 A1 [0 0 0 0 0 0 0] 1.25;

A2 A2 [0 0 0 0 0 0 0] 1000;

Ctau1 Ctau1 [0 0 0 0 0 0 0] -4;

Ctau2 Ctau2 [0 0 0 0 0 0 0] 13;

Ctau3 Ctau3 [0 0 0 0 0 0 0] -2;

alphaKsi alphaKsi [0 0 0 0 0 0 0] 0.9;

}

LienCubicKECoeffs

{

C1 C1 [0 0 0 0 0 0 0] 1.44;

C2 C2 [0 0 0 0 0 0 0] 1.92;

alphak alphak [0 0 0 0 0 0 0] 1;
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alphaEps alphaEps [0 0 0 0 0 0 0] 0.76923;

A1 A1 [0 0 0 0 0 0 0] 1.25;

A2 A2 [0 0 0 0 0 0 0] 1000;

Ctau1 Ctau1 [0 0 0 0 0 0 0] -4;

Ctau2 Ctau2 [0 0 0 0 0 0 0] 13;

Ctau3 Ctau3 [0 0 0 0 0 0 0] -2;

alphaKsi alphaKsi [0 0 0 0 0 0 0] 0.9;

}

QZetaCoeffs

{

Cmu Cmu [0 0 0 0 0 0 0] 0.09;

C1 C1 [0 0 0 0 0 0 0] 1.44;

C2 C2 [0 0 0 0 0 0 0] 1.92;

alphaZeta alphaZeta [0 0 0 0 0 0 0] 0.76923;

anisotropic no;

}

LaunderSharmaKECoeffs

{

Cmu Cmu [0 0 0 0 0 0 0] 0.09;

C1 C1 [0 0 0 0 0 0 0] 1.44;

C2 C2 [0 0 0 0 0 0 0] 1.92;

alphaEps alphaEps [0 0 0 0 0 0 0] 0.76923;

}

LamBremhorstKECoeffs

{

Cmu Cmu [0 0 0 0 0 0 0] 0.09;

C1 C1 [0 0 0 0 0 0 0] 1.44;

C2 C2 [0 0 0 0 0 0 0] 1.92;

alphaEps alphaEps [0 0 0 0 0 0 0] 0.76923;

}

LienCubicKELowReCoeffs

{

Cmu Cmu [0 0 0 0 0 0 0] 0.09;

C1 C1 [0 0 0 0 0 0 0] 1.44;

C2 C2 [0 0 0 0 0 0 0] 1.92;

alphak alphak [0 0 0 0 0 0 0] 1;

alphaEps alphaEps [0 0 0 0 0 0 0] 0.76923;

A1 A1 [0 0 0 0 0 0 0] 1.25;

A2 A2 [0 0 0 0 0 0 0] 1000;

Ctau1 Ctau1 [0 0 0 0 0 0 0] -4;

Ctau2 Ctau2 [0 0 0 0 0 0 0] 13;

Ctau3 Ctau3 [0 0 0 0 0 0 0] -2;

alphaKsi alphaKsi [0 0 0 0 0 0 0] 0.9;

Am Am [0 0 0 0 0 0 0] 0.016;

Aepsilon Aepsilon [0 0 0 0 0 0 0] 0.263;

Amu Amu [0 0 0 0 0 0 0] 0.00222;

}

LienLeschzinerLowReCoeffs

{

Cmu Cmu [0 0 0 0 0 0 0] 0.09;

C1 C1 [0 0 0 0 0 0 0] 1.44;

C2 C2 [0 0 0 0 0 0 0] 1.92;

alphak alphak [0 0 0 0 0 0 0] 1;

alphaEps alphaEps [0 0 0 0 0 0 0] 0.76923;

Am Am [0 0 0 0 0 0 0] 0.016;

Aepsilon Aepsilon [0 0 0 0 0 0 0] 0.263;

Amu Amu [0 0 0 0 0 0 0] 0.00222;
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}

LRRCoeffs

{

Cmu Cmu [0 0 0 0 0 0 0] 0.09;

Clrr1 Clrr1 [0 0 0 0 0 0 0] 1.8;

Clrr2 Clrr2 [0 0 0 0 0 0 0] 0.6;

C1 C1 [0 0 0 0 0 0 0] 1.44;

C2 C2 [0 0 0 0 0 0 0] 1.92;

Cs Cs [0 0 0 0 0 0 0] 0.25;

Ceps Ceps [0 0 0 0 0 0 0] 0.15;

alphaEps alphaEps [0 0 0 0 0 0 0] 0.76923;

}

LaunderGibsonRSTMCoeffs

{

Cmu Cmu [0 0 0 0 0 0 0] 0.09;

Clg1 Clg1 [0 0 0 0 0 0 0] 1.8;

Clg2 Clg2 [0 0 0 0 0 0 0] 0.6;

C1 C1 [0 0 0 0 0 0 0] 1.44;

C2 C2 [0 0 0 0 0 0 0] 1.92;

C1Ref C1Ref [0 0 0 0 0 0 0] 0.5;

C2Ref C2Ref [0 0 0 0 0 0 0] 0.3;

Cs Cs [0 0 0 0 0 0 0] 0.25;

Ceps Ceps [0 0 0 0 0 0 0] 0.15;

alphaEps alphaEps [0 0 0 0 0 0 0] 0.76923;

alphaR alphaR [0 0 0 0 0 0 0] 1.22;

}

SpalartAllmarasCoeffs

{

alphaNut alphaNut [0 0 0 0 0 0 0] 1.5;

Cb1 Cb1 [0 0 0 0 0 0 0] 0.1355;

Cb2 Cb2 [0 0 0 0 0 0 0] 0.622;

Cw2 Cw2 [0 0 0 0 0 0 0] 0.3;

Cw3 Cw3 [0 0 0 0 0 0 0] 2;

Cv1 Cv1 [0 0 0 0 0 0 0] 7.1;

Cv2 Cv2 [0 0 0 0 0 0 0] 5.0;

}

wallFunctionCoeffs

{

kappa kappa [0 0 0 0 0 0 0] 0.4187;

E E [0 0 0 0 0 0 0] 9;

}

// ************************************************************************* //

At the begining of the solver, the turbulence model is set. in this case
the standard k-epsilon model is used. Following this line is the activation of
using a turbulence model. if we choose

turbulence on;

then the turbulence model is activated. If we set

turbulence off;

22



then a laminar solution will be the default.
The rest of the dictionary is the coefficients for the available turbulence

models that can be used in this case.
The case is similar to the existing tutorial supplied by the OpenFOAM

distributors damBreak in the rasInterFoam tutorial. A copy of this tutorial
should be placed in the run directory as follow:

- run

- mkdir turbelentFilling

- cd turbelentFilling

- cp -r $WM PROJECT DIR/tutorials/rasInterFoam/damBreak ./turb-
FillBottle

The user should modify the case similar to that of the lamFillBottle
tutorial. the solution can now be started by typing

resInterFoam . turbFillBottle > out.log&.

The progress of the solution can be watched during the simulation by
typing

tail -f out.log

on the shell.

6 Postprocessing

The paraFoam will be used to visualize the transient solution. This can be
done by typing the following command line in the shell

paraFoam . lamFillBottle

to open the software and upload the case.
Figure 3.a shows the mesh shape generated using blockMesh utility. The

same mesh is used for both interFoam and rasInterFoam solvers. The user
can modify the grading of the mesh to resolve the boundary layers close to
the walls.

Figure 3.b shows a plane at the middle of the domain colored by the
volume fraction (red color correspond to gamma=1, which is water and blue
color corresponds to gamma = 0, which is air). It can be seen from the figure
that initially the inlet pipe is filled with water while the bottle is filled with
air.

Figure 4 shows the field gamma after 0.2 sec from the start of the filling
process. Figure 4 shows that the water stream breaks up in interFoam while
it is continuous in rasInterFoam.
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(a) (b)

Figure 3: (a)the mesh and (b) initial field of gamma.

(a) (b)

Figure 4: Field gamma after 0.2 sec from the start. (a) interFoam and (b)
rasInterFoam.
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(a) (b)

Figure 5: Field gamma after 0.4 sec from the start. (a) interFoam and (b)
rasInterFoam.
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(a) (b)

Figure 6: Field gamma after 8 sec from the start. (a) interFoam and (b)
rasInterFoam.

Figure 5 shows the field gamma after 0.4 sec from the start of the filling
process. Figure 5 shows that the fields obtained from interFoam and from
rasInterFoam are different.

Figure 6 shows the field gamma after 8 sec from the start of the filling
process. Figure 6 shows that the amount of air trapped in the water obtained
from interFoam and from rasInterFoam are different.

7 Implementation in the code

In the VOF method we solve one momentum equation and one continuity
equation. These equation are the same for the two phases. The physical
properties of one fluid are calculated as weighted averages based on the
volume fraction of the two fluids in one cell. The momentum equation takes
the form

∂ρU

∂t
+ ∇.(ρUU) −∇.µ∇U − ρg = −∇p − Fs (1)

where Fs is the surface tension force which takes place only at the free
surfaces.
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The continuity equation takes the form

∇.U = 0. (2)

The volume of fluid in a cell is computed as Fvol = γVcell, where Vcell is
the volume of a computational cell and γ is the fluid fraction in a cell. The
values of γ in a cell should range between 1 and 0. If the cell is completely
filled with fluid then γ = 1 and if it is filled with the void phase then its
value should be 0. At the interface the value of γ is between 0 and 1. The
scalar function γ can be computes from a separate transport equation that
takes the form:

∂γ

∂t
+ ∇.(γU) = 0. (3)

In OpenFOAM, the necessary compression of the surface is achieved by
intreducing an extra artificial compression term into the VOF equation 3 as
follow:

∂γ

∂t
+ ∇.(γU) + ∇.(γ(1 − γ)Ur) = 0 (4)

wher Ur is a velocity field suitable to compress the interface. This artificial
term is active only in the interface region due to the term (γ(1 − γ).

The density at any point in the domain is calculated as a weighted av-
eraged of the volume fraction of the two fluids, γ as:

ρ = γρ + (1 − γ)ρ. (5)

The surface tension Fs is computed as:

Fs = σκ(x)n (6)

where n is a unit vector normal to the interface that can be calculated from

n =
∇γ

|∇γ|
(7)

and κ is the curvature of the interface that can be calculated from

κ(x) = ∇.n. (8)

These equations are implemented in the interFoam solver as shown in
the source code shown below.

/*-------------------------interFoam code-------------------------------*/

int main(int argc, char *argv[])

{

# include "setRootCase.H"

27



# include "createTime.H"

# include "createMesh.H"

# include "readEnvironmentalProperties.H"

# include "readPISOControls.H"

# include "initContinuityErrs.H"

# include "createFields.H"

# include "readTimeControls.H"

# include "correctPhi.H"

# include "setInitialDeltaT.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info<< "\nStarting time loop\n" << endl;

while (runTime.run())

{

# include "readPISOControls.H"

# include "readTimeControls.H"

# include "CourantNo.H"

# include "setDeltaT.H"

runTime++;

Info<< "Time = " << runTime.timeName() << nl << endl;

twoPhaseProperties.correct();

# include "gammaEqnSubCycle.H"

# include "UEqn.H"

// --- PISO loop

for (int corr=0; corr<nCorr; corr++)

{

# include "pEqn.H"

}

# include "continuityErrs.H"

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

}

Info<< "End\n" << endl;

return(0);

}

// ************************************************************************* //

The first part of the code is to initialize the different fields and to get
the libraries needed for the finite volume solution.

The time iteration loop starts at the command

while (runTime.run())

{
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# include "readPISOControls.H"

# include "readTimeControls.H"

# include "CourantNo.H"

# include "setDeltaT.H"

runTime++;

Info<< "Time = " << runTime.timeName() << nl << endl;

where the the solver calculates the correction of PISO loop around the γ

phase. It calculates also the CFL number and based on the value of CFL
number it calculates the new time step. The solver increases the run time
and then print out the information about the new run iteration, current
time step, elapsed time, CFL and so on.

The next part of the solver is to compute the phase fraction γ as shown
below.

# include "gammaEqnSubCycle.H"

For better accuracy of the gamma field and to make stable solution we
need very small time step to solve for the gamma equation. In order to
achieve stable solution without reducing the time step and vastly increasing
solution time, the time step is divided to number of sub-cycle time step.
The gamma equation is solved in each sub-cycle. The sub-cycle algorithm
if in the header file gammaEqnSubCycle.H shown below.

/******************** gammaEqnSubCycle.H ******************/

label nGammaCorr

(

readLabel(piso.lookup("nGammaCorr"))

);

label nGammaSubCycles

(

readLabel(piso.lookup("nGammaSubCycles"))

);

if (nGammaSubCycles > 1)

{

dimensionedScalar totalDeltaT = runTime.deltaT();

surfaceScalarField rhoPhiSum = 0.0*rhoPhi;

for

(

subCycle<volScalarField> gammaSubCycle(gamma, nGammaSubCycles);

!(++gammaSubCycle).end();

)

{

# include "gammaEqn.H"

rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi;

}

rhoPhi = rhoPhiSum;

}
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else

{

# include "gammaEqn.H"

}

interface.correct();

rho == gamma*rho1 + (scalar(1) - gamma)*rho2;

The algorithm checks the number of the sub-cycles. If the number of
sub-cycles are more than one then it loops to solve the gamma equation in
each subCycle otherwise it solves the gamma equation once. At the end of
the algorithm, the new fluid properties are calculated using the weighted
averaged of the gamma field. The algorithm to solve for gamma equation is
a special algorithm for OpenFOAM developed by Henry Weller and it uses
a technique called interfaceCompression to resolve some of the fundamental
problems of the traditional VOF interface compression methods.

The next part of the code is to solve the momentum equation to find the
velocity field. This is done by inserting the UEqn.H as shown below.

# include "gammaEqnSubCycle.H"

The UEqn.H has the implementations of the momentum equation.

/*--------------------UEqn.H-----------------------------------*/

surfaceScalarField muf = twoPhaseProperties.muf();

fvVectorMatrix UEqn

(

fvm::ddt(rho, U)

+ fvm::div(rhoPhi, U)

- fvm::laplacian(muf, U)

- (fvc::grad(U) & fvc::grad(muf))

//- fvc::div(muf*(fvc::interpolate(dev(fvc::grad(U))) & mesh.Sf()))

);

if (momentumPredictor)

{

solve

(

UEqn

==

fvc::reconstruct

(

(

fvc::interpolate(interface.sigmaK())*fvc::snGrad(gamma)

- ghf*fvc::snGrad(rho)

- fvc::snGrad(pd)

) * mesh.magSf()

)

);

}
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The first part of the UEqn.H is the LHS of the momentum equation. The
last part of the algorithm is to solve the LHS of the momentum equation
which is equal to the gravity and surface tension forces.

The last section of the solver before it finishes the current time step is to
calculate the pressure correction through the PISO loop and to calculate the
continuity error to check for convergence before it writes out the information
about the residuals and errors.
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