
CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 1

Implement class in library (as in OpenFOAM)

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 2

Implement class in library (as in OpenFOAM)

Prerequisites

• You have a basic knowledge in object oriented C++ programming.

• You know how to implement and use a class in a single file.

• You know how to compile top-level C++ codes using both g++ and wmake (not necessarily

OpenFOAM code).

Learning outcomes

• You will be able to separate classes into separate directories and files, as it is done in Open-

FOAM.

• You will know how to compile classes in separate directories and files both "hard-coded" into

an application and as a dynamic library that can be linked to several applications.

Note that there is an extended task related to these procedures!

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 3

Create directories for the development

Create a directory for the development (same name as the top-level application):

mkdir appWithClassInLibrary

cd appWithClassInLibrary

Create a directory for the class (same name as the class):

mkdir myClass

cd myClass

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 4

Class declaration file

Classes should be coded in pairs of files, with a *.H file that contains the class declaration and

a *.C file that contains the class definition.

Put the class declaration in myClass.H:

#ifndef myClass_H

#define myClass_H

class myClass

{

private:

protected:

public:

int i_; //Member data (underscore is OpenFOAM convention)

float j_;

myClass();

~myClass();

};

#endif

Here we have added #ifndef/#define/#endif to make sure that the class is not declared

multiple times, in the case that we #include "myClass.H" several times.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 5

Class definition file

Put the class definition in myClass.C:

#include "myClass.H"

#include <iostream> //Just for cout

using namespace std; //Just for cout

myClass::myClass()

:

i_(20),

j_(21.5)

{

cout<< "i_ = " << i_ << endl;

}

myClass::~myClass()

{}

The first line above is necessary since we will compile only the *.C file of the class, and it needs

to know about its own declaration.

We have also added two lines at the header for the cout output stream that is used in the class,

since this file is now compiled separate to the top-level code (where it is also stated).

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 6

Top-level application file
Go to the application directory:
cd ..
Put in appWithClassInLibrary.C (same name as directory, as OpenFOAM convention):

#include <iostream> //Just for cout

using namespace std; //Just for cout

#include "myClass.H"

int main()

{

myClass myClassObject;

cout<< "myClassObject.i_: " << myClassObject.i_ << endl;

cout<< "myClassObject.j_: " << myClassObject.j_ << endl;

myClass myClassObject2;

cout<< "myClassObject2.i_: " << myClassObject2.i_ << endl;

myClassObject2.i_=30;

cout<< "myClassObject.i_: " << myClassObject.i_ << endl;

cout<< "myClassObject2.i_: " << myClassObject2.i_ << endl;

return 0;

}

The top-level solver needs to know about the class declaration (only), which is why we have

added #include "myClass.H". All pieces of code that use a class need to include the decla-

ration of that class!

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 7

Create Make/files,option and compile

Put in Make/files:

myClass/myClass.C

appWithClassInLibrary.C

EXE = $(FOAM_USER_APPBIN)/appWithClassInLibrary

Put in Make/options:

EXE_INC = \

-ImyClass

Compile with wmake, and realize that the compilation is done in three steps. The first is for

myClass.C, generating the object file myClass.o. The second is for appWithClassInLibrary.C,

generating appWithClassInLibrary.o. The third is for the linking, including the class com-

piled right now and any dynamic linking.

Make sure that the application runs and gives the same output as before!

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 8

Separate class to dynamic library (1/2)
At this point we have hard-coded a class into the top-level application. You do not see the

myClass class when you issue the command

ldd `which appWithClassInLibrary`

Most of the time the classes are dynamically linked through libraries to the top-level applica-

tions. We will therefore put our class in a library and dynamically link to that library.

Start by changing the Make/files file to:

appWithClassInLibrary.C

EXE = $(FOAM_USER_APPBIN)/appWithClassInLibrary

Notice that after doing a wclean (necessary, since wmake does not realize that the Make/files

file has changed), the wmake command will fail. The reason is that the top-level application can

not link to the class, at the second stage of compilation. The application still has access to the

class declaration (we still include the myClass.H file), but it no longer has access to the class

definition. We will make sure that it can link to it dynamically instead.

Typical error message when a class declaration can’t be found:

...: error: ‘myClass’ was not declared in this scope

Typical error message when a class definition can’t be found:

...: undefined reference to `myClass::~myClass()'

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 9

Separate class to dynamic library (2/2)

Create a directory for the library and move the class directory there:

mkdir myLibrary

mv myClass myLibrary

Create a myLibrary/Make/files file with:

myClass/myClass.C

LIB = $(FOAM_USER_LIBBIN)/libmyLibrary

Create an empty myLibrary/Make/options file.

Compile the library separately:

wmake myLibrary

Modify the Make/options file of the top-level application to:

EXE_INC = \

-ImyLibrary/lnInclude

EXE_LIBS = \

-L$(FOAM_USER_LIBBIN) \

-lmyLibrary

Compile and test (you probably have to first do wclean to remove the *.dep file).

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 10

Dynamic linking

We will now check the dynamic linking:

ldd `which appWithClassInLibrary` shows that the file libmyLibrary.so is dynami-

cally linked to.

It is found since it is located in a directory that we pointed at during compilation

(in Make/options: -L$(FOAM_USER_LIBBIN) -lmyLibrary)

Try renaming the file:

mv $FOAM_USER_LIBBIN/libmyLibrary.so $FOAM_USER_LIBBIN/libmyLibrary.so_tmp

ldd `which appWithClassInLibrary` now shows libmyLibrary.so => not found

appWithClassInLibrary gives:

appWithClassInLibrary: error while loading shared libraries:

libmyLibrary.so: cannot open shared object file: No such file or directory

Rename back:

mv $FOAM_USER_LIBBIN/libmyLibrary.so_tmp $FOAM_USER_LIBBIN/libmyLibrary.so

I.e., the compiled application only knows about the class declaration, but not the class defini-

tion. The class definition is provided by the compiled library that the solver links to at run-time.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 11

Alignment with OpenFOAM directory organization

At this point it is just a matter of directory and file organization to move the library to an

appropriate location in $WM_PROJECT_USER_DIR/src, and the application to an appropriate

location in $WM_PROJECT_USER_DIR/applications.

The Make/options file of the application just has to be updated according to the location of

the library header file.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 12

Coding style

We have not bothered about indentation etc. Please read about (and apply) this at:

https://openfoam.org/dev/coding-style-guide/

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 13

A warning!

It is quite common to make backups of files when developing code. However, a warning is issued

when developing OpenFOAM libraries:

All the files in the directory structure of a library will be linked to in the lnInclude directory,

so if you put backup files in a backup directory in the directory structure of that library they

will also end up linked to in lnInclude. It may be ok if they are not used, but it may also be

dangerous if you use the same file names as the original files. The linking in lnInclude will

only be done to one of the files with a particular name (the first or the last it finds, depending

on how the linking is set up). If an active header file is changed during implementation it may

mean that the old back-up header file is included in all files that depend on it. That may lead

to mysterious problems.

If you have to make backups it is better to make tar archives of the backup directories. Then

the original files are hidden in the archives. Just remember to remove the directory that you

put in the tar archive, so that the files are not linked to!

	Implement class in library (as in OpenFOAM)

