
Cite as: Åkerblom, A.: Turbulence-chemistry interaction in OpenFOAM and how to implement a dynamic

PaSR model for LES of turbulent combustion. In Proceedings of CFD with OpenSource Software, 2022,

Edited by Nilsson. H., http://dx.doi.org/10.17196/OS CFD#YEAR 2022

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Turbulence-chemistry interaction in
OpenFOAM and how to implement a

dynamic PaSR model for LES of
turbulent combustion

Developed for OpenFOAM-v2112

Author:
Arvid Åkerblom
Lund University
arvid.akerblom@energy.lth.se

Peer reviewed by:
André Da Luz Moreira

Christer Fureby
Mohammad Hossein

Arabnejad Khanouki

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone
through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

January 28, 2023

http://dx.doi.org/10.17196/OS_CFD#YEAR_2022

Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• how turbulence-chemistry interaction models are used in OpenFOAM.

• how to use the new foxPaSR model when running a case.

The theory of it:

• why turbulence-chemistry interaction models are needed and how they affect the chemistry of
a combustion simulation.

• which turbulence-chemistry interaction models are already available in OpenFOAM as well as
their advantages and limitations.

• the physical and chemical motivation behind the Perfectly Stirred Reactor (PSR), Eddy Dis-
sipation Concept (EDC), Fractal (FM) and Partially Stirred Reactor (PaSR) models.

• the physical and chemical motivation behind foxPaSR, the new variant of PaSR presented
here.

How it is implemented:

• how reactive flow solvers in OpenFOAM retrieve and use information about the chemical
reactions occurring in a simulation.

• the necessary functions of a turbulence-chemistry interaction model, which are required by the
solver.

How to modify it:

• how to implement a new turbulence-chemistry interaction model, which utilizes the PaSR
method but alters reaction rates individually and dynamically.

• how to set up a simple and coarse LES case to test and compare turbulence-chemistry inter-
action models on a desktop or laptop computer.

1

Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• The fundamentals of fluid mechanics, combustion, and turbulence.

• Familiarity with CFD and turbulence modeling, in particular LES.

• How to set up and run cases in OpenFOAM.

• Basic knowledge of object orientation and C++ syntax.

• How to find files, classes and functions within the OpenFOAM source code.

2

Contents

1 Introduction 6

2 Turbulence-chemistry interaction and its modeling 8
2.1 The filtering problem . 8
2.2 Existing models . 9

2.2.1 Perfectly Stirred Reactor (a.k.a. ”Laminar”) 9
2.2.2 Eddy Dissipation Concept . 9
2.2.3 Fractal Model . 10
2.2.4 Partially Stirred Reactor . 10

2.3 The new model: foxPaSR . 11

3 Turbulence-chemistry interaction in OpenFOAM 12
3.1 The solver . 12
3.2 The model . 13

4 Implementing the new PaSR model 16

5 Testing the new PaSR model 24

A Source code 28

B Test case dictionaries 37
B.1 Allrun and Allclean scripts . 37
B.2 0 directory . 38
B.3 chemkin directory . 46
B.4 constant directory . 47
B.5 system directory . 50

3

Nomenclature

Acronyms
CFD Computational Fluid Dynamics
DNS Direct Numerical Simulation
EDC Eddy Dissipation Concept
FM Fractal Model
FRC Finite-Rate Chemistry
LES Large Eddy Simulation
LHS Left-Hand Side
PaSR Partially Stirred Reactor
PSR Perfectly Stirred Reactor
RANS Reynolds-Averaged Navier-Stokes
RHS Right-Hand Side

English symbols
bi Sub-grid source term
ṽ Filtered velocity vector
T̃ Filtered temperature
Ỹi Filtered mass fraction of species i
A Arrhenius law pre-exponential factor
Cγ EDC model coefficient
ctot Total species concentration
D3 Fractal dimension of sub-grid vortex cascade (FM)
Di Diffusion coefficient of species i
e1 EDC model coefficient
e2 EDC model coefficient
Ea Arrhenius law activation energy
k Sub-grid turbulent kinetic energy
kf,j Forward rate constant of reaction j
kr,j Reverse rate constant of reaction j
n Arrhenius law temperature exponent
Nη Number of dissipative length scales (FM)
nR Number of reactions in the reaction mechanism
NT Number of generated length scales (FM)
Ns,RHS Number of species on RHS of a reaction
su Laminar flame speed
v′ Magnitude of velocity fluctuations

Greek symbols
∆ LES filter width
ω̇i,j Production rate of species i in reaction j
ω̇i Unfiltered production rate of species i

4

Nomenclature Nomenclature

ω̇0
i Production rate of species i outside fine structures

ϵ Turbulent dissipation
η Dissipative length scale
γ∗ Volume fraction of reactive fine structures
γ∗
j Reactive fine structure volume fraction belonging to reaction j

γtotl Volume fraction of turbulent scales (FM)
ν Kinematic viscosity
νeff Effective kinematic viscosity
νi,j Stoichiometric coefficient of species i in reaction j
ω̇i Filtered production rate of species i
ρ Filtered density
τ∗ Mixing time scale
τ∆ Time scale of sub-grid velocity stretch
τc Chemical time scale
τk Kolmogorov time scale
τc,j Chemical time scale of reaction j

5

Chapter 1

Introduction

Combustion is a complex physical phenomenon that couples chemistry with fluid flow. The medium is
typically a compressible gas, and the flow is turbulent in most engineering applications. Combustion
is a hot topic among Computational Fluid Dynamics (CFD) engineers and CFD scientists, as a
result of the many challenges involved in gathering quantitative and reliable data from flames by
experimental methods, particularly for real engine designs.

When investigating a turbulent combustion process, the aspiring simulator must determine which
phenomena and which scales should be directly resolved and which should be modeled. A good start-
ing point is to decide whether to use Reynolds-Averaged Navier-Stokes (RANS) methods, Large Eddy
Simulation (LES), or Direct Numerical Simulation (DNS). These methods pertain to the treatment
of turbulence, but the choice has significant ramifications for the chemistry as well: turbulence af-
fects the transport of products and reactants in a flame, and the flame affects the turbulence in turn
in a complex two-way coupled process. If all turbulent motions are unresolved, as in RANS, then all
turbulence-chemistry interactions are also unresolved. This puts a lot of weight on the shoulders of
the turbulence and chemistry models, as well as their compatibility with each other. Furthermore,
while RANS results can be accurate, unsteady motions and instantaneous results are often of key
importance to scientists who wish to further their understanding of the actual processes involved in
turbulent combustion. DNS is in many ways the ideal simulation method because it avoids the need
to model turbulence and turbulence-chemistry interactions as all turbulent motions are resolved.
However, as the reader is likely aware, DNS is often prohibitively expensive computationally.

Recently, the computational power available to scientists and engineers has grown large enough to
allow for LES with full-scale engine geometries, opening up exciting opportunities to understand the
turbulent flames that power them. LES offers a compromise between cost and accuracy by resolving
the large scales of turbulence and modeling the small, or sub-grid, scales. Pope’s recommendation
[1] that at least 80% of the turbulent kinetic energy should belong to the resolved scales in order
to have realistic large-scale results is often applied, but the LES filter width can be reduced further
in order to increase the accuracy of the simulation. As the filter width approaches the Kolmogorov
scales, the impact of the unresolved scales becomes smaller and the burden on the sub-grid models
becomes lighter. As long as there is unresolved turbulence, however, a sub-grid turbulence model is
required. There are a variety of well-validated sub-grid turbulence models for LES [2]. The topic is
as deep as it is fascinating, and we will not delve into it here. What is important is that sub-grid
models alter the viscosity experienced by resolved flow, often based on an estimate of the sub-grid
kinetic energy k, or in other words, the kinetic energy of the unresolved turbulent scales. Several
sub-grid turbulence models are included in OpenFOAM, such as Smagorinsky [3], WALE [4], kEqn
[5], and dynamicKEqn [6].

On its own, a sub-grid turbulence model alters the resolved flow based on the turbulent kinetic
energy of the unresolved scales. This is insufficient in the case of reactive flows as it does not take into
account the turbulence-chemistry interactions that occur on the sub-grid scales. Such interactions
may be negligible in some cases, such as for low Karlovitz numbers, but can have a significant impact
on the overall reaction rate in other cases. Models for turbulence-chemistry interaction, which obtain

6

Chapter 1. Introduction

information from the resolved scales and the sub-grid turbulence model to adjust the reaction rate,
have therefore been developed. Here we put the spotlight on these models. In the next chapter, we
will study the physical and chemical theory of turbulence-chemistry interactions and discuss some
existing models. Then, we will explore the source code of OpenFOAM to understand how these
models are used in a CFD simulation. Finally, we will use the existing PaSR class to implement a
new model, foxPaSR, which alters the rates of individual species and reactions rather than scaling
all reaction rates by the same amount, and test it with a relatively simple LES case.

7

Chapter 2

Turbulence-chemistry interaction
and its modeling

Turbulence and chemistry can interact in quite complex ways. In this chapter, we introduce the
problem of determining the total effect of such interactions based on information obtained from the
resolved flow and the sub-grid turbulence model. We then discuss a number of existing turbulence-
interaction models which tackle the problem in different ways.

2.1 The filtering problem

Combustion chemistry can be accounted for in LES in a number of ways, but the arguably most
direct method is referred to as Finite Rate Chemistry (FRC). In addition to the filtered Navier-
Stokes equations for mass, momentum, and energy conservation, a balance equation for the filtered
mass fraction Ỹi of each involved chemical species i is included as well. Each such species equation
is given by

∂ρỸi

∂t
+∇ · (ρỸiṽ) = ∇ · (Di∇Ỹi) + ω̇i −∇ · bi, (2.1)

where ρ is the filtered density, ṽ the filtered velocity, and Di the diffusion coefficient of species i.
The final term on the right hand side, ∇ · bi, comes from the filtering of the convective term and
is computed via the sub-grid turbulence model. The source term ω̇i is the filtered production rate
of species i due to chemical reactions. The role of a turbulence-chemistry interaction model is to
adjust ω̇i to account for sub-grid turbulence.

It would now be wise to make a distinction between the filtered production rate ω̇i and the
unfiltered production rate ω̇i. The unfiltered production rate is computed under the assumption
that chemistry-related variables, such as species concentrations and temperature, are uniformly
distributed in the control volume of interest (which in the case of LES would be a single mesh cell).
But how is it computed? In FRC, this is done by a reaction mechanism: a set of possible reactions
and the coefficients needed to compute their rates under different thermochemical circumstances.
The reaction mechanism is also what determines the list of involved species (like O2, for example)
and thus the amount of balance equations following Equation 2.1. Each reaction consists of a Left-
Hand Side (LHS) and a Right-Hand Side (RHS), and can be either reversible or irreversible. Each
reaction has a forward rate constant determined by the modified Arrhenius law,

kf,j = AT̃n exp
(
− Ea

RT̃

)
, (2.2)

where the model coefficients A, n, and Ea are given by the mechanism. Reversible reactions also have
a reverse rate constant, kr,j . The production and consumption rates of all species are collectively
determined by the rate constants of the reactions, the concentrations of the different species, and the
stoichiometric coefficients of each species in each reaction. Therefore, a system of ordinary differential

8

2.2. Existing models Chapter 2. Turbulence-chemistry interaction and its modeling

equations, one for each species, must be solved to obtain the production and consumption rates.
Such equation systems can be very large and numerically stiff, and are therefore costly to solve, which
is why reaction mechanisms used in LES are typically heavily reduced. Heavy hydrocarbons such
as kerosene may in reality contain hundreds of species participating in thousands of reactions, while
some of the largest mechanisms [7] that are currently feasible for LES contain about 50 species and
less than 300 reactions. If the details of the chemistry are of lesser importance, global mechanisms
containing only a handful of species and reactions are often used as they greatly reduce the simulation
cost.

The goal, then, is to first obtain ω̇i and then solve the equation ω̇i = f(ω̇i, xturb), where xturb are
any necessary variables pertaining to turbulence. In other words, we wish to compute the filtered
reaction rate ω̇i as a function of the unfiltered reaction rate ω̇i and any other information from the
flow and/or sub-grid turbulence model that we may need. Can this be done? Yes. Can this be
done accurately? That remains an open question. The answer is likely that it depends a lot on the
flame under consideration, its Reynolds, Karlovitz and Damköhler numbers, and the filter width.
In any case, it is wise to use a filter width that is as small as one can afford, in order to reduce the
importance of the turbulence-chemistry interaction model.

2.2 Existing models

Let us now discuss some existing turbulence-chemistry interaction models.

2.2.1 Perfectly Stirred Reactor (a.k.a. ”Laminar”)

The simplest way to model turbulence-chemistry interaction is to not model it at all. If we assume
that all interaction occurs on the resolved scales, there is no need to account for unresolved structures.
Each control volume acts as a homogeneous reactor, or a Perfectly Stirred Reactor (PSR), which
means that ω̇i = ω̇i. This works well for laminar cases, but it also works for turbulent cases as long
as the filter width is small enough that unresolved turbulence-chemistry interaction is negligible.
This ”model” is implemented in the laminar class in OpenFOAM.

2.2.2 Eddy Dissipation Concept

Batchelor et al. [8] and Chomiak et al. [9] noted that in turbulent flames at high Reynolds numbers,
reactions are localized in turbulent fine structures concentrated in small regions. In a given control
volume, the volume fraction of these reacting fine structures is denoted γ∗. For the filtered production
rate, it follows that ω̇i = γ∗ω̇∗

i + (1 − γ∗)ω̇0
i , where ω̇∗

i is the production rate in the reacting fine
structures and ω̇0

i the production rate in the remainder of the volume. We now introduce two
assumptions. First, we assume that ω̇∗

i = ω̇i, or in other words, that the production rate in the fine
structures is the same as the unfiltered production rate (per unit volume). Next, we assume that
ω̇∗
i ≫ ω̇0

i , because the reacting fine structures are by definition the region where intense chemical
activity occurs. With these assumptions, we get a simple linear relationship between the filtered and
unfiltered production rates: ω̇i = γ∗ω̇i. This is the basis of the Eddy Dissipation Concept (EDC)
model as well as all models mentioned henceforth. In the EDC model, the reacting volume fraction
is estimated with the equation

γ∗ =

(
Cγ

(
νϵ/k2

)1/4)e1
1−

(
Cγ

(
νϵ/k2

)1/4)e2 , (2.3)

where ν is the kinematic viscosity, ϵ the turbulent dissipation, and k the sub-grid kinetic energy. The
constants Cγ , e1, and e2 are model coefficients. The estimation is based on a model of the turbulent
cascade put forth by Magnussen [10]. EDC has existed for a long time and is well-validated. Because
the reacting volume fraction is fully determined by turbulence, however, the characteristics of the
chemistry itself are not considered. This may be problematic in situations where different fuels,
with potentially different fine structure behavior, are compared at identical Reynolds numbers. In
OpenFOAM, the model is implemented in the EDC class. Several versions are available, which use

9

2.2. Existing models Chapter 2. Turbulence-chemistry interaction and its modeling

different values for the model coefficients. In the OpenFOAM implementation, a specific time step
length for solving the ordinary differential equation system of production rates is also computed.

2.2.3 Fractal Model

Giacomazzi et al. [11] have developed a sub-grid turbulence model based on fractal theory called
the Fractal Model (FM). FM generates a cascade of vortices in each cell based on the filter width
and local Reynolds number (with regard to the filter width), and alters the viscosity based on the
amount of vortices generated during the cascade from the filter width scale to the dissipative length
scale. This model was later extended [12] to account for sub-grid turbulence-chemistry interaction.
In a nutshell, the fractal dimension D3 of the sub-grid vortex cascade is first computed. The fraction
γtotl of the cell volume that contains turbulent scales of any kind is then computed as

γtotl =
(∆
η

)D3−3

, (2.4)

where ∆ is the filter width and η the dissipative length scale. Because the reacting fine structures
are considered to exist close to the dissipative length scale, the volume fraction of reacting fine
structures is then computed as

γ∗ =
Nη

NT
γtotl , (2.5)

where Nη is the number of dissipative length scales and NT the total number of length scales
generated in the cascade. FM is not included in OpenFOAM at the moment.

2.2.4 Partially Stirred Reactor

The Partially Stirred Reactor (PaSR) model estimates the reacting volume fraction by comparing
the turbulent mixing time scale, τ∗, with the chemical time scale, τc, according to

γ∗ =
τc

τc + τ∗
. (2.6)

This means that when the mixing is fast relative to the chemistry, γ∗ ≈ 1 and the model is simplified
to the PSR model. There is no truly correct way to compute either τ∗ or τc, but here we will present
two alternatives for each, starting with the one that is included in OpenFOAM.

The OpenFOAM class PaSR contains an implementation where τ∗ is equal to the Kolmogorov
time scale, given by

τk =
√
νeff/ϵ, (2.7)

where νeff is the effective viscosity with turbulence taken into account and ϵ the turbulent dissipation
rate. The chemical time scale is computed by the expression

τc =

nR∑
j=1

ctot∑Ns,RHS

i=1 νi,jkf,j
, (2.8)

where nR is the number of chemical reactions under consideration, ctot the total species concentration
(number of moles of all species per unit volume), and Ns,RHS the number of product species in a
given reaction. For each species in a reaction, νi,j is the stoichiometric coefficient and kf,j the
production rate. In a nutshell, the chemical time scale is computed by dividing the total species
concentration by the rate at which species are transferred from the LHS of the reactions to the RHS.
The chemical time scale is thus computed dynamically based on information about the chemistry,
allowing it to adapt to local conditions. On the other hand, the same reacting volume fraction γ∗ is
used to scale all species production rates in the end, even though they could differ from each other.

Another strategy for computing τ∗ and τc is described by Sabelnikov & Fureby [13]. They argue
that the mixing time scale should be given by

τ∗ =
√
τkτ∆, (2.9)

10

2.3. The new model: foxPaSR Chapter 2. Turbulence-chemistry interaction and its modeling

where τ∆ = ∆/v′ is the time scale of sub-grid velocity stretch (where v′ is the magnitude of velocity
fluctuations), which is typically longer than the Kolmogorov time scale. The reasoning behind this
change is that turbulent fine structures are generally anisotropic, consisting of ribbon- and tube-
like structures which are influenced by velocity stretch. They also use a simplified estimate for the
chemical time scale:

τc = ν/s2u, (2.10)

where ν is the kinematic viscosity and su the laminar flame speed. The flame speed pertains to
laminar premixed flames, and can be extrapolated from experimental data or calculated with a one-
dimensional simulation. If su is estimated beforehand based on the properties of the unburnt mixture
in a simulated case, then the chemical time scale will be constant throughout the simulation. This is
logical if combustion occurs in a premixed mode with an approximately uniform equivalence ratio.
If the equivalence ratio varies due to mixing, or if the combustion occurs in a partially premixed or
non-premixed mode, the concept of a uniform laminar flame speed stands on shakier foundations.
The flame speed could be computed dynamically instead, based on local conditions, but the fact
remains that it is not well-defined in the non-premixed mode.

2.3 The new model: foxPaSR

When describing PaSR in the previous section, we identified two potential problems:

• The existing PaSR implementation in OpenFOAM uses the Kolmogorov time scale as the
mixing time scale, which has been shown by Sabelnikov & Fureby [13] to be inconsistent with
the anisotropic nature of reactive fine structures.

• All reactions are scaled using the same value for γ∗. This may be fine when only one to a
handful of reactions are considered, but larger reaction mechanisms may contain reactions
with widely varying rates and time scales. It would thus make sense to scale all reactions
individually, based on reaction-specific time scales.

We shall now derive a new PaSR model, foxPaSR, that attempts to resolve these issues. Solving the
first problem is simply a matter of changing τ∗ = τk to τ∗ =

√
τkτ∆ in the source code of OpenFOAM.

In order to obtain τ∆ = ∆/v′, we note that v′ =
√
2k by definition and that ϵ = 1.048k3/2/∆ (see

the LESModel class). This allows us to use the simplified expression

τ∆ =
k

ϵ
, (2.11)

where model coefficients have been approximated to unity. To solve the reaction rate problem, we
will use a novel method for computing a chemical time scale τc,j for each reaction j. In this new
method, τc,j is given by

τc,j = min

(
ρỸi

|ω̇i,j |

)
, (2.12)

where the index i refers to a species on the reactant side and ωi,j is the consumption rate [kg/m3/s]
of that species due to reaction j. In other words: a time scale is computed for each species on
the reactant side, and the shortest of these is chosen as the chemical time scale of the reaction.
This choice can be interpreted as the residence time of the reaction: the time it would take for
the reaction to use its total supply of reactants if the reaction were to proceed at the current rate.
Without taking other simultaneous reactions into consideration, the residence time appears to be a
sound method for estimating ”how quickly the reaction happens”, but only a thorough validation
study will determine whether this choice is well-founded. A separate fine structure volume fraction
γ∗
j is then computed for each reaction following Equation 2.6. Finally, the filtered production rate

of each species is computed by summing the scaled contributions of all reactions according to

ω̇i =

nR∑
j=1

γ∗
j ω̇i,j . (2.13)

Note that ω̇i,j = 0 for all reactions the species i is not involved in.

11

Chapter 3

Turbulence-chemistry interaction
in OpenFOAM

In this chapter, we embark on a journey through the OpenFOAM source code in order to understand
how turbulence-chemistry interaction models are implemented and used.

3.1 The solver

We begin our quest in the most natural place: the solver. If we want to run a simulation with
finite-rate chemistry, we will have to run a solver which supports it. Some examples of such models
include reactingFoam, fireFoam, and sprayFoam. Any of these examples work here, but we will
choose reactingFoam for clarity’s sake.

Near the beginning of the main function in reactingFoam.C, we find the line #include create-
Fields.H. This line essentially executes every line in the file createFields.H which is found in the
solver directory. The purpose of createFields.H is to create the various fields that will be solved for
in the simulation (like U) but also to create pointers to certain classes based on the models that the
user has specified in various dictionaries. In createFields.H we find the following lines.

$FOAM APP/solvers/combustion/reactingFoam/createFields.H

Info<< "Creating reaction model\n" << endl;

autoPtr<CombustionModel<psiReactionThermo>> reaction

(

CombustionModel<psiReactionThermo>::New(thermo, turbulence())

);

These lines create a pointer called reaction, which points to the
CombustionModel<psiReactionThermo> class (an instantiation of CombustionModel using psiRe-
actionThermo). This object is our turbulence-chemistry interaction model. The reason it has
the generic name CombustionModel rather than something like ”TurbulenceChemistryInteraction-
Model” is because the role of the class is not limited to handling turbulence-chemistry interactions.
As we will soon see, turbulence-chemistry interaction models like EDC are sub-classes of Combus-
tionModel, but there are other sub-classes that handle combustion in ways that are quite different
from what was outlined in the previous chapter, where we limited ourselves to the finite-rate chem-
istry approach. The pointer reaction is used during the solver loop when the species equations (2.1)
are solved. This happens in YEqn.H, where we find the following code.

$FOAM APP/solvers/combustion/reactingFoam/YEqn.H

reaction->correct();

Qdot = reaction->Qdot();

volScalarField Yt(0.0*Y[0]);

12

3.2. The model Chapter 3. Turbulence-chemistry interaction in OpenFOAM

forAll(Y, i)

{

if (i != inertIndex && composition.active(i))

{

volScalarField& Yi = Y[i];

fvScalarMatrix YiEqn

(

fvm::ddt(rho, Yi)

+ mvConvection->fvmDiv(phi, Yi)

- fvm::laplacian(turbulence->muEff(), Yi)

==

reaction->R(Yi)

+ fvOptions(rho, Yi)

);

YiEqn.relax();

fvOptions.constrain(YiEqn);

YiEqn.solve(mesh.solver("Yi"));

fvOptions.correct(Yi);

Yi.max(0.0);

Yt += Yi;

}

}

Before the species equation is defined and solved for each species (note the forAll(Y, i) loop), we find
the lines reaction->correct() and Qdot = reaction->Qdot(). The first of these tells the turbulence-
chemistry interaction model to correct all species reaction rates, and the second retrieves the updated
heat release per unit volume, Qdot, from the turbulence-chemistry interaction model. Within the
species equation itself, we also find the term reaction->R(Yi), which is the species production rate
corresponding to the term ω̇i in Equation 2.1.

3.2 The model

We will now assume that the user has selected the turbulence-chemistry interaction model PaSR, as
we will use it later when implementing our new model. The laminar, PaSR and EDC classes inherit
from CombustionModel according to Figure 3.1.

CombustionModel<ReactionThermo>

ChemistryCombustion<ReactionThermo>

laminar<ReactionThermo>

EDC<ReactionThermo>PaSR<ReactionThermo>

Figure 3.1: Inheritance diagram of turbulence-chemistry interaction models.

The ChemistryCombustion class is a chemistry model wrapper for combustion models. In other
words, it provides laminar, PaSR and EDC with access to the chemistry-related functions imple-
mented in the StandardChemistryModel. Crucially, it has the pointer chemistryPtr as a member,
which points to the active chemistry model. The PSR model, which is implemented in the laminar
class, contains the basic functionality needed to retrieve species production rates and heat release

13

3.2. The model Chapter 3. Turbulence-chemistry interaction in OpenFOAM

which are both required by the solver. The PaSR and EDC classes are therefore sub-classes of lam-
inar, as they simply extend laminar with methods for adjusting species production rates based on
turbulence-chemistry interaction. In laminar.H, we find the following member function declarations:

$FOAM SRC/combustionModels/laminar/laminar.H

//- Correct combustion rate

virtual void correct();

//- Fuel consumption rate matrix.

virtual tmp<fvScalarMatrix> R(volScalarField& Y) const;

//- Heat release rate [kg/m/s3]

virtual tmp<volScalarField> Qdot() const;

These are the functions that are called by the solver in YEqn.H. Note that the function R is said
to return the ”fuel consumption rate” even though it can return the production rate of any species,
possibly because the author of the file assumed that one would be using single-step irreversible
chemistry. The correct, R and Qdot functions are all reimplemented in PaSR.C. Let us begin with
the latter two, as they are quite simple:

$FOAM SRC/combustionModels/PaSR/PaSR.C

template<class ReactionThermo>

Foam::tmp<Foam::fvScalarMatrix>

Foam::combustionModels::PaSR<ReactionThermo>::R(volScalarField& Y) const

{

return kappa_*laminar<ReactionThermo>::R(Y);

}

template<class ReactionThermo>

Foam::tmp<Foam::volScalarField>

Foam::combustionModels::PaSR<ReactionThermo>::Qdot() const

{

return tmp<volScalarField>

(

new volScalarField

(

this->thermo().phasePropertyName(typeName + ":Qdot"),

kappa_*laminar<ReactionThermo>::Qdot()

)

);

}

The R function simply returns the species production rates (as computed by laminar) multiplied
by the member kappa , which corresponds to the fine structure volume fraction γ∗. (This variable
is also sometimes denoted κ.) The heat release gets the same treatment in the Qdot function, but
in a way that ensures that the heat release can be saved as output. The correct function, which is
called by the solver before R and Qdot, is responsible for updating kappa . Let us go through this
function, step by step.

$FOAM SRC/combustionModels/PaSR/PaSR.C

template<class ReactionThermo>

void Foam::combustionModels::PaSR<ReactionThermo>::correct()

{

if (this->active())

{

laminar<ReactionThermo>::correct();

tmp<volScalarField> tepsilon(this->turbulence().epsilon());

const scalarField& epsilon = tepsilon();

tmp<volScalarField> tmuEff(this->turbulence().muEff());

const scalarField& muEff = tmuEff();

14

3.2. The model Chapter 3. Turbulence-chemistry interaction in OpenFOAM

tmp<volScalarField> ttc(this->tc());

const scalarField& tc = ttc();

tmp<volScalarField> trho(this->rho());

const scalarField& rho = trho();

First, laminar<ReactionThermo>::correct() is called to solve the chemistry equations and update
all species production rates based on the PSR model. This is followed by the construction of
references to any variables of interest - in this case, the turbulent dissipation ϵ, the effective viscosity
µEff , the chemical time scale τc and the density ρ. The turbulence function is inherited from
CombustionModel, and returns access to the turbulence model (which in the case of LES is the sub-
grid turbulence model). The rho function is similarly inherited from CombustionModel, while the tc
function is inherited from laminar where it uses its access to the chemistry model (via chemistryPtr)
to compute the chemical time scale for all cells according to Equation 2.8. The remainder of the
function consists of the following code.

$FOAM SRC/combustionModels/PaSR/PaSR.C

forAll(epsilon, i)

{

const scalar tk =

Cmix_*sqrt(max(muEff[i]/rho[i]/(epsilon[i] + SMALL), 0));

if (tk > SMALL)

{

kappa_[i] = tc[i]/(tc[i] + tk);

}

else

{

kappa_[i] = 1.0;

}

}

}

}

The forAll(epsilon, i) loop is simply a loop over all cells, utilizing a scalarField (in this case epsilon)
that happened to be on hand. For each cell i, the Kolmogorov time scale, denoted tk, is first
computed following Equation 2.7. Note the Cmix parameter, which is unity by default but can be
given any value by the user ad hoc to account for coarse meshes. If the Kolmogorov time scale is
greater than a microsecond (tk > SMALL) then kappa is computed following the PaSR approach
given in Equation 2.6. Otherwise, the mixing is assumed to be infinitely fast and the PSR approach
is used instead.

15

Chapter 4

Implementing the new PaSR model

We are now ready to implement foxPaSR, our new model. The first step is to create a working
directory by copying the existing PaSR directory from the source code.

mkdir -p $WM_PROJECT_USER_DIR/src/combustionModels
cp -r $FOAM_SRC/combustionModels/PaSR $WM_PROJECT_USER_DIR/src/combustionModels/foxPaSR
mv $WM_PROJECT_USER_DIR/src/combustionModels/foxPaSR/PaSR.C $WM_PROJECT_USER_DIR/src/combustionModels/

foxPaSR/foxPaSR.C

mv $WM_PROJECT_USER_DIR/src/combustionModels/foxPaSR/PaSR.H $WM_PROJECT_USER_DIR/src/combustionModels/
foxPaSR/foxPaSR.H

mv $WM_PROJECT_USER_DIR/src/combustionModels/foxPaSR/PaSRs.C $WM_PROJECT_USER_DIR/src/combustionModels
/foxPaSR/foxPaSRs.C

sed -i s/"PaSR"/"foxPaSR"/g $WM_PROJECT_USER_DIR/src/combustionModels/foxPaSR/foxPaSR.C
sed -i s/"PaSR"/"foxPaSR"/g $WM_PROJECT_USER_DIR/src/combustionModels/foxPaSR/foxPaSR.H
sed -i s/"PaSR"/"foxPaSR"/g $WM_PROJECT_USER_DIR/src/combustionModels/foxPaSR/foxPaSRs.C

We are going to compile foxPaSR as a library called FOXcombustionModels, which means that
we need a Make directory in the combustionModels directory. That way, it will be easy to add
additional turbulence-chemistry interaction models in the future.

mkdir $WM_PROJECT_USER_DIR/src/combustionModels/Make
touch $WM_PROJECT_USER_DIR/src/combustionModels/Make/files
touch $WM_PROJECT_USER_DIR/src/combustionModels/Make/options

The files in the Make directory should have the following contents, in order to ensure that all
necessary libraries are included and the correct compilation destination is used.

Make/files

foxPaSR/foxPaSRs.C

LIB = $(FOAM_USER_LIBBIN)/libFOXcombustionModels

Make/options

EXE_INC = \

-I$(LIB_SRC)/combustionModels/lnInclude \

-I$(LIB_SRC)/transportModels/compressible/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/chemistryModel/lnInclude \

-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \

-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/ODE/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/thermophysicalProperties/lnInclude

16

Chapter 4. Implementing the new PaSR model

LIB_LIBS = \

-lcombustionModels \

-lcompressibleTransportModels \

-lturbulenceModels \

-lcompressibleTurbulenceModels \

-lchemistryModel \

-lfiniteVolume \

-lmeshTools \

-lreactionThermophysicalModels \

-lspecie \

-lfluidThermophysicalModels \

-lthermophysicalProperties \

-lODE

We will now begin modifying foxPaSR.C. When we are done with that file, some small changes to
foxPaSR.H will also be required. There is no need to modify foxPaSRs.C.

In foxPaSR.C, we first remove kappa from the constructor because we don’t want a whole field
dedicated to each possible reaction. We also add three members: Y (the species mass fractions),
reactions (the list of reactions), and modRR (the modified production rates of all species). These
new members are initialized by the following lines.

foxPaSR.C

Y_(this->thermo().composition().Y()),

reactions_

(

dynamic_cast<const reactingMixture<gasHThermoPhysics>&>(this->thermo())

),

modRR_(this->chemistryPtr_->nSpecie())

The species mass fractions are retrieved from the thermo package (returned by this->thermo())
and the modified production rates is simply a list with one entry per species. The definition of
the reaction list is taken from the constructor of the StandardChemistryModel class, specifically
instantiated with gasHThermoPhysics as its ThermoType; we will not try to understand what it
does in detail, but we will add

foxPaSR.H

#include "thermoPhysicsTypes.H"

#include "StandardChemistryModel.H"

to the list of inclusions in PaSR.H. The modified reaction rates need to be further initialized as a
list of volScalarFields, but this only has to happen once. We will therefore add the following lines
to the constructor body.

foxPaSR.C

forAll(modRR_, i)

{

modRR_.set

(

i,

new volScalarField

(

IOobject

(

thermo.phasePropertyName(

typeName + ":modRR_" + Y_[i].name()

),

this->mesh().time().timeName(),

this->mesh(),

IOobject::NO_READ,

IOobject::NO_WRITE

),

this->mesh(),

dimensionedScalar("modRR", dimensionSet(1, -3, -1, 0, 0), 0.0)

17

Chapter 4. Implementing the new PaSR model

)

);

Info << "Creating field " << modRR_[i].name() << endl;

}

These lines define each entry in modRR as a volScalarField with the dimension [kg/m3/s]. Each
volScalarField has a unique name which includes the name of the produced species.

We will now make a slight modification to the member functions R and Qdot. In foxPaSR, all
production rates are modified inside the correct function and there is therefore no need to do any
scaling elsewhere. We therefore simply remove the kappa factor from the return statements of these
functions.

foxPaSR.C

template<class ReactionThermo>

Foam::tmp<Foam::fvScalarMatrix>

Foam::combustionModels::foxPaSR<ReactionThermo>::R(volScalarField& Y) const

{

return laminar<ReactionThermo>::R(Y);

}

template<class ReactionThermo>

Foam::tmp<Foam::volScalarField>

Foam::combustionModels::foxPaSR<ReactionThermo>::Qdot() const

{

return tmp<volScalarField>

(

new volScalarField

(

this->thermo().phasePropertyName(typeName + ":Qdot"),

laminar<ReactionThermo>::Qdot()

)

);

}

It is time to start modifying the correct function, which will contain the actual implementations
of foxPaSR’s principles as outlined in chapter 2. We begin by removing the forAll(epsilon, i) loop
and adding a reference to the turbulent kinetic energy (right after the definition of muEff). We
also remove the reference to the chemical time scale, tc, as we will be using our own method for
computing that variable. At this stage, our correct function has the following appearance.

foxPaSR.C

template<class ReactionThermo>

void Foam::combustionModels::PaSR<ReactionThermo>::correct()

{

if (this->active())

{

laminar<ReactionThermo>::correct();

tmp<volScalarField> tepsilon(this->turbulence().epsilon());

const scalarField& epsilon = tepsilon();

tmp<volScalarField> tmuEff(this->turbulence().muEff());

const scalarField& muEff = tmuEff();

tmp<volScalarField> ttke(this->turbulence().k());

const scalarField& tke = ttke();

tmp<volScalarField> trho(this->rho());

const scalarField& rho = trho();

}

}

18

Chapter 4. Implementing the new PaSR model

The correct function is called once during each time step. After the declaration of rho, we therefore
add some lines that set all modified production rates to zero in order to delete information left from
the previous time step.

foxPaSR.C

forAll(modRR_, i)

{

forAll(epsilon, celli)

{

modRR_[i][celli] = 0.0;

}

}

We also declare a number of scalars that we will be using shortly. These are:

• tc, the chemical time scale τc

• tk, the Kolmogorov time scale τk

• tp, the time scale of sub-grid velocity stretch τ∆

• tm, the mixing time scale τ∗

• kappa, the reactive fine structure volume fraction

• tcSpecies, the residence time of a certain species in a certain reaction

foxPaSR.C

scalar tc, tk, tp, tm, kappa, tcSpecies;

We will use two nested loops for our calculations: an outer loop which goes through the list of
reactions, and an inner loop which goes through all cells once a reaction is specified. Let us start by
implementing the outer loop, leaving the inner loop blank for the moment.

foxPaSR.C

forAll(reactions_, ri)

{

label refSpecies = reactions_[ri].lhs()[0].index;

const scalar& refW =

this->thermo().composition().W(refSpecies);

scalarField refRR =

this->chemistryPtr_->calculateRR(ri, refSpecies)/refW;

forAll(epsilon, celli)

{

// To be filled in...

}

}

Once a reaction has been selected and given the index ri, the index of the first species on the
LHS is identified and stored as the label refSpecies. We will henceforth consider this species to
be the reference species, as it should have a stoichiometric coefficient of 1. Its molecular weight
is denoted refW and its production rate is stored as refRR. We use the calculateRR function from
StandardChemistryModel, which returns the production rate of a certain species in a certain reaction
in [kg/m3/s]. For our purposes we prefer [kmol/m3/s], which is why we divide by refW. This way,
we get a refRR which represents the number of kmol being transferred from the LHS of the reaction
to the RHS. As an example, consider a simple reaction representing the stoichiometric combustion
of methane. For the sake of this example, assume that the reaction is reversible.

CH4 + 2O2 ↔ CO2 + 2H2O (4.1)

19

Chapter 4. Implementing the new PaSR model

In the reaction above, CH4 would be identified as refSpecies. For a positive refRR, precisely refRR
kmol of CH4 and 2·refRR kmol of O2 are consumed per second, while refRR kmol of CO2 and
2·refRR kmol of H2O are produced per second. The same would be true for a negative refRR, but
then the species on the LHS would be produced while the species on the RHS would be consumed.

Our goal now is to go through all cells and ensure that the rate of reaction ri is scaled correctly
based on local conditions. We begin the forAll(epsilon, celli) loop with the following lines, which set
up scalar references to the local cell values of the variables we will need.

foxPaSR.C

const scalar& muC = muEff[celli];

const scalar& rhoC = rho[celli];

const scalar& epsC = epsilon[celli];

const scalar& tkeC = tke[celli];

const scalar& refRRC = refRR[celli];

We also initialize the chemical time scale using a large number (1 million seconds).

foxPaSR.C

tc = GREAT;

We want our model to compute the chemical time scale by investigating the residence time of the
reactants. In an irreversible reaction, the reactants are easily identified because they are always on
the LHS. But what about reversible reactions? One could conceivably split any reversible reaction
into two opposing irreversible reactions, counting the LHS as reactants in one direction and the
RHS as reactants in the other. We will instead consider the reactants to be on the LHS if refRRC is
positive and on the RHS otherwise. We differentiate between these two cases using an if statement.
Once the reactant side has been determined, a forAll(reactions [ri].lhs(), si) (for positive refRRC)
or forAll(reactions [ri].rhs(), si) (for negative refRRC) loop is used to go through the species on the
reactant side. For each species si, its index is denoted i, its stoichiometric coefficient is denoted
stoichCoeff and its molecular weight is denoted W. Its residence time is computed by the line

foxPaSR.C

tcSpecies =

mag(rhoC*Y_[i][celli]/(refRRC*W*stoichCoeff));

which is an implementation of Equation 2.12. The lines

foxPaSR.C

if (tcSpecies < tc)

{

tc = tcSpecies;

}

ensure that the shortest residence time on the reactant side is chosen as the chemical time scale.
The full procedure for computing the chemical time scale is presented below. Note the use of the
SMALL number (10−6) which we use to avoid floating point errors.

foxPaSR.C

if (refRRC > SMALL)

{

forAll(reactions_[ri].lhs(), si)

{

const label& i = reactions_[ri].lhs()[si].index;

const scalar& stoichCoeff =

reactions_[ri].lhs()[si].stoichCoeff;

const scalar& W =

this->thermo().composition().W(i);

20

Chapter 4. Implementing the new PaSR model

tcSpecies =

mag(rhoC*Y_[i][celli]/(refRRC*W*stoichCoeff));

if (tcSpecies < tc)

{

tc = tcSpecies;

}

}

}

else if (refRRC < -SMALL)

{

forAll(reactions_[ri].rhs(), si)

{

const label& i = reactions_[ri].rhs()[si].index;

const scalar& stoichCoeff =

reactions_[ri].rhs()[si].stoichCoeff;

const scalar& W =

this->thermo().composition().W(i);

tcSpecies =

mag(rhoC*Y_[i][celli]/(refRRC*W*stoichCoeff));

if (tcSpecies < tc)

{

tc = tcSpecies;

}

}

}

We now compute the mixing time scale using the following three lines, based on the theory in chapter
2. Note that unlike the default PaSR class, we do not simply use the Kolmogorov time scale.

foxPaSR.C

tk =

sqrt(max(muC/rhoC/(epsC + SMALL), 0));

tp =

max(tkeC/(epsC + SMALL), 0);

tm = sqrt(tk*tp);

With both the chemical and mixing time scales in hand, we can compute the reactive fine structure
volume fraction following Equation 2.6. However, it would be wise to set up some limiting cases.
More specifically, the PaSR model should simplify to the PSR model if the mixing time scale is very
short, or if the chemical time scale is very long. We implement this using an if statement.

foxPaSR.C

if (tm > SMALL && tc < GREAT)

{

kappa = tc/(tc + tm);

}

else

{

kappa = 1.0;

}

We have now estimated the reactive fine structure volume fraction, which means we are ready to
compute modified production rates for all species involved in the reaction. We do this by first looping
over all species on the LHS and executing the following line.

foxPaSR.C

modRR_[i][celli] -=

kappa*refRRC*W*stoichCoeff;

21

Chapter 4. Implementing the new PaSR model

Note the use of -=. This is done because modRR [i] should contain the sum of all reaction-specific
production rates for species i, following Equation 2.13. If refRRC is positive, then species on the
LHS are consumed and thus have negative production rates. Conversely, when we next loop over
all species on the RHS, += is used instead. The full procedure for adding the correctly modified
contribution of reaction ri to the species production rates is presented below.

foxPaSR.C

forAll(reactions_[ri].lhs(), si)

{

const label& i = reactions_[ri].lhs()[si].index;

const scalar& stoichCoeff =

reactions_[ri].lhs()[si].stoichCoeff;

const scalar& W = this->thermo().composition().W(i);

modRR_[i][celli] -=

kappa*refRRC*W*stoichCoeff;

}

forAll(reactions_[ri].rhs(), si)

{

const label& i = reactions_[ri].rhs()[si].index;

const scalar& stoichCoeff =

reactions_[ri].rhs()[si].stoichCoeff;

const scalar& W = this->thermo().composition().W(i);

modRR_[i][celli] +=

kappa*refRRC*W*stoichCoeff;

}

When all reactions have been accounted for, modRR is complete. After the forAll(reactions , ri)
loop, we add the following lines to replace the reaction rates, previously computed by the PSR
model, with modRR .

foxPaSR.C

forAll(modRR_, i)

{

this->chemistryPtr_->RR(i) = modRR_[i];

}

Note that we use a forAll(modRR , i) loop to loop over all species. For each species i, the non-
constant production rate, to which chemistryPtr ->RR returns access, is replaced with the modified
reaction rate.

At this point foxPaSR.C has been fully implemented, but we must also make some modifications
to foxPaSR.H to account for our new members. These only constitute changes to the private data
of the class, so all we have to do is remove

foxPaSR.H

//- Mixing parameter

volScalarField kappa_;

from the list of private data and add the following entries.

foxPaSR.H

//- Species mass fractions

const PtrList<volScalarField>& Y_;

//- List of reactions

const PtrList<Reaction<gasHThermoPhysics>>& reactions_;

22

Chapter 4. Implementing the new PaSR model

//- Scaling factors

PtrList<volScalarField> modRR_;

The implementation of foxPaSR is now complete and the library can be compiled with wmake.
For the full source code, see appendix A.

23

Chapter 5

Testing the new PaSR model

In this chapter, we provide a simple demonstration of the new PaSR model, foxPaSR, in use. The
model is primarily intended to be used for high Reynolds number LES with large chemical reaction
mechanisms, which requires high-performance computing in order to achieve good results. Because
we want to be able to test our model on a desktop machine, the test case will have to be an overly
coarse-grained LES with a one-step reaction mechanism. This will only demonstrate that the model
works, without showing its full potential. All dictionaries needed to run the case are included in
appendix B.

The test case uses the reactingFoam solver and is based on the pitzDaily case, used in several
OpenFOAM tutorials for various solvers. The geometry is extruded by two channel heights into
the third dimension, to enable true (non-2D) LES. The two side boundaries that are introduced by
this extrusion are treated as no-slip walls. The mesh consists of 341,250 hexahedral cells which are
roughly uniform in size. A fixed velocity of 20 m/s is used at the inlet, resulting in a Reynolds
number of approximately 50,000. The outlet pressure is fixed at 1 bar. The incoming gas is a lean
mixture of n-heptane and air with an equivalence ratio of ϕ = 0.75 and a temperature of T̃ = 400 K.
The combustion chemistry is handled by the one-step mechanism used in the aachenBomb tutorial
for the sprayFoam solver. The flow field is allowed to develop for 20 ms, after which setFields is
used to change the temperature to 2000 K everywhere beneath the shear layer, causing ignition.
The transient ignition process is then flushed out over the course of 80 ms.

The turbulence-chemistry interaction model is chosen in constant/combustionProperties, in ex-
actly the same way one would choose PaSR.

constant/combustionProperties

1 combustionModel foxPaSR;

2 active yes;

3

4 foxPaSRCoeffs

5 {

6 Cmix 1.0;

7 }

The FOXcombustionModels library must also be included in system/controlDict.

system/controlDict

1 libs ("libFOXcombustionModels");

Figure 5.1 shows instantaneous snapshots of the temperature for simulations with PSR, PaSR,
and foxPaSR, while Figure 5.2 shows the heat release rate at the same moment in time. The
premixed flame is stabilized at the shear layer, demarcating the border between the cold unburnt
mixture at the top and the hot burnt mixture at the bottom. The influence of the turbulence-
chemistry interaction model is quite evident; the PSR model, with its high reaction rate, predicts
a lightly wrinkled flame while the PaSR predicts a more unstable and corrugated flame. The flame

24

Chapter 5. Testing the new PaSR model

predicted by foxPaSR is even more unstable, displaying the thin but unbroken reaction zones typical
of flames with Karlovitz numbers 1 < Ka < 100.

Figure 5.1: Instantaneous temperature plots for PSR, PaSR, and foxPaSR.

Figure 5.2: Instantaneous heat release plots for PSR, PaSR, and foxPaSR.

25

Bibliography

[1] S. Pope, “Ten questions concerning the large-eddy simulation of turbulent flows,” New Journal
of Physics, vol. 6, p. 35, 2004.

[2] P. Sagaut, Large Eddy Simulation for Incompressible Flows. Heidelberg, Germany: Springer
Berlin, 3 ed., 2006.

[3] J. Smagorinsky, “General circulation experiments with the primitive equations: I. The basic
experiment,” Monthly weather review, vol. 91, no. 3, pp. 99–164, 1963.

[4] F. Nicoud and F. Ducros, “Subgrid-Scale Stress Modelling Based on the Square of the Velocity
Gradient Tensor,” Flow, Turbulence and Combustion, vol. 62, pp. 183–200, 1999.

[5] A. Yoshizawa, “A Statistically-derived Subgrid-scale Kinetic Energy Model for the Large Eddy
Simulation of Turbulent Flows,” J. Phys. Soc. Jpn., vol. 54, p. 2834, 1985.

[6] W.-W. Kim and S. Menon, “A New Dynamic One Equation Subgrid-scale Model for Large
Eddy Simulations,” in Proceedings of the 19th Aerospace Sciences Meeting, (Reno, NV, USA),
AIAA 95-0356, 1995.

[7] R. Xu, K. Wang, S. Banerjee, et al., “A physics-based approach to modeling real-fuel combustion
chemistry – II. Reaction kinetic models of jet and rocket fuels,” Combust. Flame, vol. 193,
pp. 520–537, 2018.

[8] G. Batchelor and A. Townsend, “The Nature of Turbulent Motion at Large Wave-numbers,”
Proc. Roy. Soc. London A, vol. 199, p. 238, 1949.

[9] J. Chomiak, “A Possible Propagation Mechanism of Turbulent Flames at High Reynolds Num-
bers,” Comb. Flame, vol. 15, p. 319, 1970.

[10] B. Magnussen, “On the Structure of Turbulence and Generalized Eddy Dissipation Concept for
Chemical Reactions in Turbulent Flow,” in Proceedings of the 9th Aerospace Sciences Meeting,
AIAA 1981-0042, 1981.

[11] E. Giacomazzi, C. Bruno, and B. Favini, “Fractal modeling of turbulent mixing,” Combust.
Theory Modelling, vol. 3, p. 637, 1999.

[12] E. Giacomazzi, C. Bruno, and B. Favini, “Fractal modeling of turbulent combustion,” Combust.
Theory Modelling, vol. 4, p. 391, 2000.

[13] V. Sabelnikov and C. Fureby, “LES combustion modeling for high Re flames using a multi-phase
analogy,” Combust. Flame, vol. 160, no. 1, pp. 83–96, 2013.

26

Study questions

How to use it:

• Which turbulence-chemistry interaction models are available in OpenFOAM, and what are
they called?

• After compiling foxPaSR, how does one select it when running a case?

The theory of it:

• Why are turbulence-chemistry interaction models needed?

• What is the meaning of the ”reactive fine structure volume fraction” γ∗?

• On a surface level, how is γ∗ computed by EDC, FM, and PaSR, respectively?

• On a surface level, what separates foxPaSR from the PaSR implementation included in Open-
FOAM?

How it is implemented:

• How does the solver (e.g. reactingFoam) incorporate the turbulence-chemistry interaction
model into the solution algorithm?

• Which functions must be included in a turbulence-chemistry interaction model?

• How does a turbulence-chemistry interaction model access information and functionality in
the chemistry model?

How to modify it:

• What do the different functions in a turbulence-chemistry interaction model do, and what do
they return when called?

• The implementation of foxPaSR uses an outer loop and an inner loop. What is being looped
over?

27

Appendix A

Source code

foxPaSR.C

1 /*---*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration |

5 \\ / A nd | www.openfoam.com

6 \\/ M anipulation |

7 ---

8 Copyright (C) 2011-2017 OpenFOAM Foundation

9 Copyright (C) 2019 OpenCFD Ltd.

10 ---

11 License

12 This file is part of OpenFOAM.

13

14 OpenFOAM is free software: you can redistribute it and/or modify it

15 under the terms of the GNU General Public License as published by

16 the Free Software Foundation, either version 3 of the License, or

17 (at your option) any later version.

18

19 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

20 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

21 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

22 for more details.

23

24 You should have received a copy of the GNU General Public License

25 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

26

27 *---*/

28

29 #include "foxPaSR.H"

30

31 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

32

33 template<class ReactionThermo>

34 Foam::combustionModels::foxPaSR<ReactionThermo>::foxPaSR

35 (

36 const word& modelType,

37 ReactionThermo& thermo,

38 const compressibleTurbulenceModel& turb,

39 const word& combustionProperties

40)

41 :

42 laminar<ReactionThermo>(modelType, thermo, turb, combustionProperties),

43 Cmix_(this->coeffs().getScalar("Cmix")),

44 Y_(this->thermo().composition().Y()),

45 reactions_

46 (

47 dynamic_cast<const reactingMixture<gasHThermoPhysics>&>(this->thermo())

28

Appendix A. Source code

48),

49 modRR_(this->chemistryPtr_->nSpecie())

50 {

51 forAll(modRR_, i)

52 {

53 modRR_.set

54 (

55 i,

56 new volScalarField

57 (

58 IOobject

59 (

60 thermo.phasePropertyName(

61 typeName + ":modRR_" + Y_[i].name()

62),

63 this->mesh().time().timeName(),

64 this->mesh(),

65 IOobject::NO_READ,

66 IOobject::NO_WRITE

67),

68 this->mesh(),

69 dimensionedScalar("modRR", dimensionSet(1, -3, -1, 0, 0), 0.0)

70)

71);

72 Info << "Creating field " << modRR_[i].name() << endl;

73 }

74 }

75

76

77 // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

78

79 template<class ReactionThermo>

80 Foam::combustionModels::foxPaSR<ReactionThermo>::~foxPaSR()

81 {}

82

83

84 // * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //

85

86 template<class ReactionThermo>

87 void Foam::combustionModels::foxPaSR<ReactionThermo>::correct()

88 {

89 if (this->active())

90 {

91 // Update chemistry

92 laminar<ReactionThermo>::correct();

93

94 // Reference to turbulent dissipation

95 tmp<volScalarField> tepsilon(this->turbulence().epsilon());

96 const scalarField& epsilon = tepsilon();

97

98 // Reference to effective viscosity

99 tmp<volScalarField> tmuEff(this->turbulence().muEff());

100 const scalarField& muEff = tmuEff();

101

102 // Reference to turbulent kinetic energy

103 tmp<volScalarField> ttke(this->turbulence().k());

104 const scalarField& tke = ttke();

105

106 // Reference to density

107 tmp<volScalarField> trho(this->rho());

108 const scalarField& rho = trho();

109

110 // Reset modified production rates of all species in all cells

111 forAll(modRR_, i)

112 {

113 forAll(epsilon, celli)

114 {

115 modRR_[i][celli] = 0.0;

29

Appendix A. Source code

116 }

117 }

118

119 // Declare scalars used when scaling reaction rates

120 scalar tc, tk, tp, tm, kappa, tcSpecies;

121

122 // Loop over all reactions

123 forAll(reactions_, ri)

124 {

125 // Select the first species on the LHS as the reference species

126 label refSpecies = reactions_[ri].lhs()[0].index;

127

128 // Retrieve the molecular weight of the reference species

129 const scalar& refW =

130 this->thermo().composition().W(refSpecies);

131

132 // Compute the reference reaction rate [kmol/s] of the

133 // reaction. In other words, the production/consumption

134 // rate of the first species on the LHS. We assume that

135 // its stoichiometric coefficient is unity.

136 scalarField refRR =

137 this->chemistryPtr_->calculateRR(ri, refSpecies)/refW;

138

139 // Loop over all cells

140 forAll(epsilon, celli)

141 {

142 // Declare references to local cell values

143 const scalar& muC = muEff[celli];

144 const scalar& rhoC = rho[celli];

145 const scalar& epsC = epsilon[celli];

146 const scalar& tkeC = tke[celli];

147 const scalar& refRRC = refRR[celli];

148

149 // Initialize the local chemical time scale

150 tc = GREAT;

151

152 // If the net reaction rate is positive, the reaction

153 // is treated as an irreversible reaction with reactants

154 // on the LHS and products on the RHS. If it is negative,

155 // the reaction is treated as an irreversible reaction

156 // with reactants on the RHS and products on the RHS.

157 if (refRRC > SMALL)

158 {

159 // Loop over all species on LHS

160 forAll(reactions_[ri].lhs(), si)

161 {

162 // Species index

163 const label& i = reactions_[ri].lhs()[si].index;

164

165 // Stoichiometric coefficient

166 const scalar& stoichCoeff =

167 reactions_[ri].lhs()[si].stoichCoeff;

168

169 // Molecular weight

170 const scalar& W =

171 this->thermo().composition().W(i);

172

173 // Compute the residence time of this species

174 // (concentration / consumption)

175 tcSpecies =

176 mag(rhoC*Y_[i][celli]/(refRRC*W*stoichCoeff));

177

178 // The shortest residence time is the chemical

179 // time scale

180 if (tcSpecies < tc)

181 {

182 tc = tcSpecies;

183 }

30

Appendix A. Source code

184 }

185 }

186 else if (refRRC < -SMALL)

187 {

188 // Loop over all species on RHS

189 forAll(reactions_[ri].rhs(), si)

190 {

191 // Species index

192 const label& i = reactions_[ri].rhs()[si].index;

193

194 // Stoichiometric coefficient

195 const scalar& stoichCoeff =

196 reactions_[ri].rhs()[si].stoichCoeff;

197

198 // Molecular weight

199 const scalar& W = this->thermo().composition().W(i);

200

201 // Compute the residence time of this species

202 // (concentration / consumption)

203 tcSpecies =

204 mag(rhoC*Y_[i][celli]/(refRRC*W*stoichCoeff));

205

206 // The shortest residence time is the chemical

207 // time scale

208 if (tcSpecies < tc)

209 {

210 tc = tcSpecies;

211 }

212 }

213 }

214

215 // Estimate the Kolmogorov time scale

216 tk =

217 sqrt(max(muC/rhoC/(epsC + SMALL), 0));

218

219 tp =

220 max(tkeC/(epsC + SMALL), 0);

221

222 // Compute mixing time scale

223 tm = sqrt(tk*tp);

224

225 // If the mixing time scale is very short or

226 // the chemical time scale very long, assume

227 // perfect mixing. Otherwise, use partial mixing.

228 if (tm > SMALL && tc < GREAT)

229 {

230 // Reaction rate scaling factor, a.k.a. the

231 // volume fraction of reacting fine structures

232 kappa = tc/(tc + tm);

233 }

234 else

235 {

236 // Perfect mixing

237 kappa = 1.0;

238 }

239 // Update the modified production rates of involved

240 // species by first looping over LHS species

241 // and then over RHS species

242 forAll(reactions_[ri].lhs(), si)

243 {

244 // Species index

245 const label& i = reactions_[ri].lhs()[si].index;

246

247 // Stoichiometric coefficient

248 const scalar& stoichCoeff =

249 reactions_[ri].lhs()[si].stoichCoeff;

250

251 // Molecular weight

31

Appendix A. Source code

252 const scalar& W = this->thermo().composition().W(i);

253

254 // Compute the production rate of the species

255 // and scale it with kappa. Add it to the total

256 // modified production rate of the species.

257 // Note that a positive refRRC means that

258 // species on the LHS are consumed.

259 modRR_[i][celli] -=

260 kappa*refRRC*W*stoichCoeff;

261 }

262 forAll(reactions_[ri].rhs(), si)

263 {

264 // Species index

265 const label& i = reactions_[ri].rhs()[si].index;

266

267 // Stoichiometric coefficient

268 const scalar& stoichCoeff =

269 reactions_[ri].rhs()[si].stoichCoeff;

270

271 // Molecular weight

272 const scalar& W = this->thermo().composition().W(i);

273

274 // Compute the production rate of the species

275 // and scale it with kappa. Add it to the total

276 // modified production rate of the species.

277 // Note that a positive refRRC means that

278 // species on the RHS are produced.

279 modRR_[i][celli] +=

280 kappa*refRRC*W*stoichCoeff;

281 }

282 }

283 }

284

285 // Overwrite previously computed production rates with modified

286 // production rates

287 forAll(modRR_, i)

288 {

289 this->chemistryPtr_->RR(i) = modRR_[i];

290 }

291 }

292 }

293

294

295 template<class ReactionThermo>

296 Foam::tmp<Foam::fvScalarMatrix>

297 Foam::combustionModels::foxPaSR<ReactionThermo>::R(volScalarField& Y) const

298 {

299 return laminar<ReactionThermo>::R(Y);

300 }

301

302

303 template<class ReactionThermo>

304 Foam::tmp<Foam::volScalarField>

305 Foam::combustionModels::foxPaSR<ReactionThermo>::Qdot() const

306 {

307 return tmp<volScalarField>

308 (

309 new volScalarField

310 (

311 this->thermo().phasePropertyName(typeName + ":Qdot"),

312 laminar<ReactionThermo>::Qdot()

313)

314);

315 }

316

317

318 template<class ReactionThermo>

319 bool Foam::combustionModels::foxPaSR<ReactionThermo>::read()

32

Appendix A. Source code

320 {

321 if (laminar<ReactionThermo>::read())

322 {

323 this->coeffs().readEntry("Cmix", Cmix_);

324 return true;

325 }

326

327 return false;

328 }

329

330 // *** //

foxPaSR.H

1 /*---*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration |

5 \\ / A nd | www.openfoam.com

6 \\/ M anipulation |

7 ---

8 Copyright (C) 2011-2017 OpenFOAM Foundation

9 ---

10 License

11 This file is part of OpenFOAM.

12

13 OpenFOAM is free software: you can redistribute it and/or modify it

14 under the terms of the GNU General Public License as published by

15 the Free Software Foundation, either version 3 of the License, or

16 (at your option) any later version.

17

18 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

19 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

20 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

21 for more details.

22

23 You should have received a copy of the GNU General Public License

24 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

25

26 Class

27 Foam::combustionModels::foxPaSR

28

29 Group

30 grpCombustionModels

31

32 Description

33 Partially stirred reactor turbulent combustion model with individual

34 reaction scaling.

35

36 This model calculates finite rates based on both turbulent and chemical

37 time scales. Depending on mesh resolution, the Cmix parameter can be used

38 to adjust the turbulent mixing time scale. A separate chemical time scale

39 is computed for each reaction, and each reaction is scaled separately.

40 The turbulent mixing time scale is a harmonic average between the

41 Kolmogorov time scale and the time scale of sub-grid velocity stretch.

42

43 SourceFiles

44 foxPaSR.C

45

46 *---*/

47

48 #ifndef foxPaSR_H

49 #define foxPaSR_H

50

51 #include "laminar.H"

52 #include "thermoPhysicsTypes.H"

53 #include "StandardChemistryModel.H"

54

33

Appendix A. Source code

55 // * //

56

57 namespace Foam

58 {

59 namespace combustionModels

60 {

61

62 /*---*\

63 Class foxPaSR Declaration

64 *---*/

65

66 template<class ReactionThermo>

67 class foxPaSR

68 :

69 public laminar<ReactionThermo>

70 {

71 // Private data

72

73 //- Mixing parameter

74 scalar Cmix_;

75

76 //- Number of species

77 //label nSpecie_;

78

79 //- Species mass fractions

80 const PtrList<volScalarField>& Y_;

81

82 //- List of reactions

83 const PtrList<Reaction<gasHThermoPhysics>>& reactions_;

84

85 //- Scaling factors

86 PtrList<volScalarField> modRR_;

87

88 // Private Member Functions

89

90 //- No copy construct

91 foxPaSR(const foxPaSR&) = delete;

92

93 //- No copy assignment

94 void operator=(const foxPaSR&) = delete;

95

96

97 public:

98

99 //- Runtime type information

100 TypeName("foxPaSR");

101

102

103 // Constructors

104

105 //- Construct from components

106 foxPaSR

107 (

108 const word& modelType,

109 ReactionThermo& thermo,

110 const compressibleTurbulenceModel& turb,

111 const word& combustionProperties

112);

113

114

115 //- Destructor

116 virtual ~foxPaSR();

117

118

119 // Member Functions

120

121 //- Correct combustion rate

122 virtual void correct();

34

Appendix A. Source code

123

124 //- Fuel consumption rate matrix

125 virtual tmp<fvScalarMatrix> R(volScalarField& Y) const;

126

127 //- Heat release rate [kg/m/s3]

128 virtual tmp<volScalarField> Qdot() const;

129

130 //- Update properties from given dictionary

131 virtual bool read();

132 };

133

134

135 // * //

136

137 } // End namespace combustionModels

138 } // End namespace Foam

139

140 // * //

141

142 #ifdef NoRepository

143 #include "foxPaSR.C"

144 #endif

145

146 // * //

147

148 #endif

149

150 // *** //

foxPaSRs.C

1 /*---*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration |

5 \\ / A nd | www.openfoam.com

6 \\/ M anipulation |

7 ---

8 Copyright (C) 2011-2017 OpenFOAM Foundation

9 ---

10 License

11 This file is part of OpenFOAM.

12

13 OpenFOAM is free software: you can redistribute it and/or modify it

14 under the terms of the GNU General Public License as published by

15 the Free Software Foundation, either version 3 of the License, or

16 (at your option) any later version.

17

18 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

19 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

20 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

21 for more details.

22

23 You should have received a copy of the GNU General Public License

24 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

25

26 *---*/

27

28 #include "makeCombustionTypes.H"

29

30 #include "psiReactionThermo.H"

31 #include "rhoReactionThermo.H"

32 #include "foxPaSR.H"

33

34 // * //

35

36 namespace Foam

37 {

35

Appendix A. Source code

38

39 makeCombustionTypes(foxPaSR, psiReactionThermo);

40 makeCombustionTypes(foxPaSR, rhoReactionThermo);

41

42 }

43

44 // *** //

36

Appendix B

Test case dictionaries

B.1 Allrun and Allclean scripts

Allrun

1 #!/bin/sh

2 cd "${0%/*}" || exit # Run from this directory

3 . ${WM_PROJECT_DIR:?}/bin/tools/RunFunctions # Tutorial run functions

4 #--

5

6 blockMesh > log.blockMesh

7

8 decomposePar -force -time 0 > log.decomposePar

9

10 mpirun -np 8 reactingFoam -parallel > log.initialRun

11

12 reconstructPar -time 0.02 > log.reconstructPar

13

14 sed -i s/"startTime 0;"/"startTime 0.02;"/g system/controlDict

15

16 setFields > log.setFields

17

18 decomposePar -force -time 0,0.02 >> log.decomposePar

19

20 sed -i s/"endTime 0.02;"/"endTime 0.05;"/g system/controlDict

21

22 mpirun -np 8 reactingFoam -parallel > log.ignitionRun

23

24 reconstructPar

25

26 #--

Allclean

1 #!/bin/sh

2 cd "${0%/*}" || exit # Run from this directory

3 . ${WM_PROJECT_DIR:?}/bin/tools/CleanFunctions # Tutorial clean functions

4 #--

5

6 rm -r constant/polyMesh

7 rm -r 0.*

8 rm -r [123456789]*

9 rm -r processor*

10 rm log.*

11

12 sed -i s/"startTime 0.02;"/"startTime 0;"/g system/controlDict

13

14 sed -i s/"endTime 0.05;"/"endTime 0.02;"/g system/controlDict

15

37

B.2. 0 directory Appendix B. Test case dictionaries

16 #--

B.2 0 directory

0/alphat

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object alphat;

14 }

15 // * //

16

17 dimensions [1 -1 -1 0 0 0 0];

18

19 internalField uniform 0;

20

21 boundaryField

22 {

23 inlet

24 {

25 type zeroGradient;

26 }

27

28 outlet

29 {

30 type zeroGradient;

31 }

32

33 upperWall

34 {

35 type compressible::alphatWallFunction;

36 Prt 0.85;

37 value uniform 0;

38 }

39

40 lowerWall

41 {

42 type compressible::alphatWallFunction;

43 Prt 0.85;

44 value uniform 0;

45 }

46

47 frontAndBack

48 {

49 type compressible::alphatWallFunction;

50 Prt 0.85;

51 value uniform 0;

52 }

53 }

54

55

56 // *** //

0/C7H16

38

B.2. 0 directory Appendix B. Test case dictionaries

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object C7H16;

14 }

15 // * //

16

17 dimensions [0 0 0 0 0 0 0];

18

19 internalField uniform 0;

20

21 boundaryField

22 {

23 inlet

24 {

25 type fixedValue;

26 value uniform 0.0474;

27 }

28

29 outlet

30 {

31 type zeroGradient;

32 }

33

34 upperWall

35 {

36 type zeroGradient;

37 }

38

39 lowerWall

40 {

41 type zeroGradient;

42 }

43

44 frontAndBack

45 {

46 type zeroGradient;

47 }

48 }

49

50

51 // *** //

0/k

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object k;

39

B.2. 0 directory Appendix B. Test case dictionaries

14 }

15 // * //

16

17 dimensions [0 2 -2 0 0 0 0];

18

19 internalField uniform 2e-5;

20

21 boundaryField

22 {

23 inlet

24 {

25 type fixedValue;

26 value uniform 2e-5;

27 }

28

29 outlet

30 {

31 type inletOutlet;

32 inletValue uniform 0;

33 value uniform 0;

34 }

35

36 upperWall

37 {

38 type kqRWallFunction;

39 value uniform 0;

40 }

41

42 lowerWall

43 {

44 type kqRWallFunction;

45 value uniform 0;

46 }

47

48 frontAndBack

49 {

50 type kqRWallFunction;

51 value uniform 0;

52 }

53 }

54

55

56 // *** //

0/N2

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object N2;

14 }

15 // * //

16

17 dimensions [0 0 0 0 0 0 0];

18

19 internalField uniform 0.767;

20

21 boundaryField

22 {

40

B.2. 0 directory Appendix B. Test case dictionaries

23 inlet

24 {

25 type fixedValue;

26 value uniform 0.2220;

27 }

28

29 outlet

30 {

31 type zeroGradient;

32 }

33

34 upperWall

35 {

36 type zeroGradient;

37 }

38

39 lowerWall

40 {

41 type zeroGradient;

42 }

43

44 frontAndBack

45 {

46 type zeroGradient;

47 }

48 }

49

50

51 // *** //

0/nut

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object nut;

14 }

15 // * //

16

17 dimensions [0 2 -1 0 0 0 0];

18

19 internalField uniform 0;

20

21 boundaryField

22 {

23 inlet

24 {

25 type zeroGradient;

26 }

27

28 outlet

29 {

30 type zeroGradient;

31 }

32

33 upperWall

34 {

35 type nutkWallFunction;

36 value uniform 0;

41

B.2. 0 directory Appendix B. Test case dictionaries

37 }

38

39 lowerWall

40 {

41 type nutkWallFunction;

42 value uniform 0;

43 }

44

45 frontAndBack

46 {

47 type nutkWallFunction;

48 value uniform 0;

49 }

50 }

51

52

53 // *** //

0/O2

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object O2;

14 }

15 // * //

16

17 dimensions [0 0 0 0 0 0 0];

18

19 internalField uniform 0.233;

20

21 boundaryField

22 {

23 inlet

24 {

25 type fixedValue;

26 value uniform 0.2220;

27 }

28

29 outlet

30 {

31 type zeroGradient;

32 }

33

34 upperWall

35 {

36 type zeroGradient;

37 }

38

39 lowerWall

40 {

41 type zeroGradient;

42 }

43

44 frontAndBack

45 {

46 type zeroGradient;

47 }

48 }

42

B.2. 0 directory Appendix B. Test case dictionaries

49

50

51 // *** //

0/p

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object p;

14 }

15 // * //

16

17 dimensions [1 -1 -2 0 0 0 0];

18

19 internalField uniform 1e05;

20

21 boundaryField

22 {

23 inlet

24 {

25 type zeroGradient;

26 }

27

28 outlet

29 {

30 type fixedValue;

31 value uniform 1e05;

32 }

33

34 upperWall

35 {

36 type zeroGradient;

37 }

38

39 lowerWall

40 {

41 type zeroGradient;

42 }

43

44 frontAndBack

45 {

46 type zeroGradient;

47 }

48 }

49

50

51 // *** //

0/T

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

43

B.2. 0 directory Appendix B. Test case dictionaries

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object T;

14 }

15 // * //

16

17 dimensions [0 0 0 0 0 0 0];

18

19 internalField uniform 400;

20

21 boundaryField

22 {

23 inlet

24 {

25 type fixedValue;

26 value uniform 400;

27 }

28

29 outlet

30 {

31 type zeroGradient;

32 }

33

34 upperWall

35 {

36 type zeroGradient;

37 }

38

39 lowerWall

40 {

41 type zeroGradient;

42 }

43

44 frontAndBack

45 {

46 type zeroGradient;

47 }

48 }

49

50

51 // *** //

0/U

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volVectorField;

13 object U;

14 }

15 // * //

16

17 dimensions [0 1 -1 0 0 0 0];

18

19 internalField uniform (0 0 0);

20

21 boundaryField

44

B.2. 0 directory Appendix B. Test case dictionaries

22 {

23 inlet

24 {

25 type fixedValue;

26 value uniform (20 0 0);

27 }

28

29 outlet

30 {

31 type inletOutlet;

32 inletValue uniform (0 0 0);

33 value uniform (0 0 0);

34 }

35

36 upperWall

37 {

38 type noSlip;

39 }

40

41 lowerWall

42 {

43 type noSlip;

44 }

45

46 frontAndBack

47 {

48 type noSlip;

49 }

50 }

51

52

53 // *** //

0/nut

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object Ydefault;

14 }

15 // * //

16

17 dimensions [0 0 0 0 0 0 0];

18

19 internalField uniform 0;

20

21 boundaryField

22 {

23 inlet

24 {

25 type fixedValue;

26 value uniform 0;

27 }

28

29 outlet

30 {

31 type zeroGradient;

32 }

33

45

B.3. chemkin directory Appendix B. Test case dictionaries

34 upperWall

35 {

36 type zeroGradient;

37 }

38

39 lowerWall

40 {

41 type zeroGradient;

42 }

43

44 frontAndBack

45 {

46 type zeroGradient;

47 }

48 }

49

50

51 // *** //

B.3 chemkin directory

chemkin/chem.inp

1 ELEMENTS

2 H O C N AR

3 END

4 SPECIE

5 C7H16 O2 N2 CO2 H2O

6 END

7 REACTIONS

8 C7H16 + 11O2 => 7CO2 + 8H2O 5.00E+8 0.0 15780.0! 1

9 FORD / C7H16 0.25 /

10 FORD / O2 1.5 /

11 END

chemkin/therm.dat

1 THERMO ALL

2 200.000 1000.000 6000.000

3 C7H16 P10/85C 7.H 16. 0. 0.G 200.000 6000.000 1000. 1

4 2.04565203E+01 3.48575357E-02-1.09226846E-05 1.67201776E-09-9.81024850E-14 2

5 -3.25556365E+04-8.04405017E+01 1.11532994E+01-9.49419773E-03 1.95572075E-04 3

6 -2.49753662E-07 9.84877715E-11-2.67688904E+04-1.59096837E+01-2.25846141E+04 4

7 O2 ATcT06O 2. 0. 0. 0.G 200.000 6000.000 1000. 1

8 3.45852381E+00 1.04045351E-03-2.79664041E-07 3.11439672E-11-8.55656058E-16 2

9 1.02229063E+04 4.15264119E+00 3.78535371E+00-3.21928540E-03 1.12323443E-05 3

10 -1.17254068E-08 4.17659585E-12 1.02922572E+04 3.27320239E+00 1.13558105E+04 4

11 N2 G 8/02N 2. 0. 0. 0.G 200.000 6000.000 1000. 1

12 2.95257637E+00 1.39690040E-03-4.92631603E-07 7.86010195E-11-4.60755204E-15 2

13 -9.23948688E+02 5.87188762E+00 3.53100528E+00-1.23660988E-04-5.02999433E-07 3

14 2.43530612E-09-1.40881235E-12-1.04697628E+03 2.96747038E+00 0.00000000E+00 4

15 CO2 L 7/88C 1O 2 0 0G 200.000 6000.000 1000. 1

16 0.46365111E+01 0.27414569E-02-0.99589759E-06 0.16038666E-09-0.91619857E-14 2

17 -0.49024904E+05-0.19348955E+01 0.23568130E+01 0.89841299E-02-0.71220632E-05 3

18 0.24573008E-08-0.14288548E-12-0.48371971E+05 0.99009035E+01-0.47328105E+05 4

19 H2O L 5/89H 2O 1 0 0G 200.000 6000.000 1000. 1

20 0.26770389E+01 0.29731816E-02-0.77376889E-06 0.94433514E-10-0.42689991E-14 2

21 -0.29885894E+05 0.68825500E+01 0.41986352E+01-0.20364017E-02 0.65203416E-05 3

22 -0.54879269E-08 0.17719680E-11-0.30293726E+05-0.84900901E+00-0.29084817E+05 4

23 END

chemkin/transportProperties

1 /*--------------------------------*- C++ -*----------------------------------*\

46

B.4. constant directory Appendix B. Test case dictionaries

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "chemkin";

14 object transportProperties;

15 }

16 // * //

17

18 ".*"

19 {

20 transport

21 {

22 As 1.67212e-6;

23 Ts 170.672;

24 }

25 }

26

27 // *** //

B.4 constant directory

constant/chemistryProperties

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object chemistryProperties;

14 }

15 // * //

16

17 chemistryType

18 {

19 solver ode;

20 }

21

22 chemistry on;

23

24 initialChemicalTimeStep 1e-07;

25

26 odeCoeffs

27 {

28 solver seulex;

29 eps 0.05;

30 }

31

32

33 // *** //

47

B.4. constant directory Appendix B. Test case dictionaries

constant/combustionProperties

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object combustionProperties;

14 }

15 // * //

16

17 combustionModel foxPaSR;

18 active yes;

19

20 foxPaSRCoeffs

21 {

22 Cmix 1.0;

23 }

24

25

26 // *** //

constant/radiationProperties

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object radiationProperties;

14 }

15 // * //

16

17 radiation off;

18

19 radiationModel none;

20

21

22 // *** //

constant/thermophysicalProperties

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

48

B.4. constant directory Appendix B. Test case dictionaries

13 object thermophysicalProperties;

14 }

15 // * //

16

17 thermoType

18 {

19 type hePsiThermo;

20 mixture reactingMixture;

21 transport sutherland;

22 thermo janaf;

23 energy sensibleEnthalpy;

24 equationOfState perfectGas;

25 specie specie;

26 }

27

28 CHEMKINFile "<case>/chemkin/chem.inp";

29 CHEMKINThermoFile "<case>/chemkin/therm.dat";

30 CHEMKINTransportFile "<case>/chemkin/transportProperties";

31

32 newFormat yes;

33

34 inertSpecie N2;

35

36

37 // *** //

constant/turbulenceProperties

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object turbulenceProperties;

14 }

15 // * //

16

17 simulationType LES;

18

19 LES

20 {

21 LESModel dynamicKEqn;

22

23 turbulence on;

24

25 printCoeffs on;

26

27 delta cubeRootVol;

28

29 dynamicKEqnCoeffs

30 {

31 filter simple;

32 }

33

34 cubeRootVolCoeffs

35 {

36 deltaCoeff 1;

37 }

38

39 PrandtlCoeffs

40 {

49

B.5. system directory Appendix B. Test case dictionaries

41 delta cubeRootVol;

42 cubeRootVolCoeffs

43 {

44 deltaCoeff 1;

45 }

46

47 smoothCoeffs

48 {

49 delta cubeRootVol;

50 cubeRootVolCoeffs

51 {

52 deltaCoeff 1;

53 }

54

55 maxDeltaRatio 1.1;

56 }

57

58 Cdelta 0.158;

59 }

60

61 vanDriestCoeffs

62 {

63 delta cubeRootVol;

64 cubeRootVolCoeffs

65 {

66 deltaCoeff 1;

67 }

68

69 smoothCoeffs

70 {

71 delta cubeRootVol;

72 cubeRootVolCoeffs

73 {

74 deltaCoeff 1;

75 }

76

77 maxDeltaRatio 1.1;

78 }

79

80 Aplus 26;

81 Cdelta 0.158;

82 }

83

84 smoothCoeffs

85 {

86 delta cubeRootVol;

87 cubeRootVolCoeffs

88 {

89 deltaCoeff 1;

90 }

91

92 maxDeltaRatio 1.1;

93 }

94 }

95

96

97 // *** //

B.5 system directory

system/blockMeshDict

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

50

B.5. system directory Appendix B. Test case dictionaries

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object blockMeshDict;

14 }

15 // * //

16

17 scale 0.001;

18

19 vertices

20 (

21 (-20.6 0 -25)

22 (-20.6 25.4 -25)

23 (0 -25.4 -25)

24 (0 0 -25)

25 (0 25.4 -25)

26 (206 -25.4 -25)

27 (206 0 -25)

28 (206 25.4 -25)

29 (290 -16.6 -25)

30 (290 0 -25)

31 (290 16.6 -25)

32

33 (-20.6 0 25)

34 (-20.6 25.4 25)

35 (0 -25.4 25)

36 (0 0 25)

37 (0 25.4 25)

38 (206 -25.4 25)

39 (206 0 25)

40 (206 25.4 25)

41 (290 -16.6 25)

42 (290 0 25)

43 (290 16.6 25)

44);

45

46 negY

47 (

48 (2 4 1)

49 (1 3 0.3)

50);

51

52 posY

53 (

54 (1 4 2)

55 (2 3 4)

56 (2 4 0.25)

57);

58

59 posYR

60 (

61 (2 1 1)

62 (1 1 0.25)

63);

64

65

66 blocks

67 (

68 hex (0 3 4 1 11 14 15 12)

69 (18 30 25)

70 simpleGrading (1 1 1)

71

51

B.5. system directory Appendix B. Test case dictionaries

72 hex (2 5 6 3 13 16 17 14)

73 (180 27 25)

74 simpleGrading (1 1 1)

75

76 hex (3 6 7 4 14 17 18 15)

77 (180 30 25)

78 simpleGrading (1 1 1)

79

80 hex (5 8 9 6 16 19 20 17)

81 (50 27 25)

82 simpleGrading (1 1 1)

83

84 hex (6 9 10 7 17 20 21 18)

85 (50 30 25)

86 simpleGrading (1 1 1)

87);

88

89 edges

90 (

91);

92

93 boundary

94 (

95 inlet

96 {

97 type patch;

98 faces

99 (

100 (0 1 12 11)

101);

102 }

103 outlet

104 {

105 type patch;

106 faces

107 (

108 (8 9 20 19)

109 (9 10 21 20)

110);

111 }

112 upperWall

113 {

114 type wall;

115 faces

116 (

117 (1 4 15 12)

118 (4 7 18 15)

119 (7 10 21 18)

120);

121 }

122 lowerWall

123 {

124 type wall;

125 faces

126 (

127 (0 3 14 11)

128 (3 2 13 14)

129 (2 5 16 13)

130 (5 8 19 16)

131);

132 }

133 frontAndBack

134 {

135 type wall;

136 faces

137 (

138 (0 3 4 1)

139 (2 5 6 3)

52

B.5. system directory Appendix B. Test case dictionaries

140 (3 6 7 4)

141 (5 8 9 6)

142 (6 9 10 7)

143 (11 14 15 12)

144 (13 16 17 14)

145 (14 17 18 15)

146 (16 19 20 17)

147 (17 20 21 18)

148);

149 }

150);

151

152

153 // *** //

system/controlDict

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object controlDict;

14 }

15 // * //

16

17 application reactingFoam;

18

19 startFrom startTime;

20

21 startTime 0;

22

23 stopAt endTime;

24

25 endTime 0.02;

26

27 deltaT 1e-05;

28

29 writeControl timeStep;

30

31 writeInterval 500;

32

33 purgeWrite 0;

34

35 writeFormat ascii;

36

37 writePrecision 6;

38

39 writeCompression off;

40

41 timeFormat general;

42

43 timePrecision 6;

44

45 runTimeModifiable true;

46

47 libs ("libFOXcombustionModels");

48

49

50 // *** //

53

B.5. system directory Appendix B. Test case dictionaries

system/decomposeParDict

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object decomposeParDict;

14 }

15 // * //

16

17 numberOfSubdomains 8;

18

19 method simple;

20

21 coeffs

22 {

23 n (8 1 1);

24 }

25

26

27 // *** //

system/fvSchemes

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object fvSchemes;

14 }

15 // * //

16

17 ddtSchemes

18 {

19 default Euler;

20 }

21

22 gradSchemes

23 {

24 default leastSquares;

25 }

26

27 divSchemes

28 {

29 default none;

30 div(phi,U) Gauss GammaV 0.5;

31 div(phi,h) Gauss Gamma 0.5;

32 div(phi,K) Gauss Gamma 0.5;

33 div(phiv,p) Gauss Gamma 0.5;

34 div(phi,k) Gauss Minmod; // Gamma 0.1;

35 div(phi,Yi_h) Gauss Gamma 0.5;

36 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

54

B.5. system directory Appendix B. Test case dictionaries

37 }

38

39 laplacianSchemes

40 {

41 default Gauss linear corrected;

42 }

43

44 interpolationSchemes

45 {

46 default linear;

47 }

48

49 snGradSchemes

50 {

51 default corrected;

52 }

53

54 wallDist

55 {

56 method meshWave;

57 }

58

59

60 // *** //

system/fvSolution

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object fvSolution;

14 }

15 // * //

16

17 solvers

18 {

19 "(p|rho)"

20 {

21 solver PBiCGStab;

22 preconditioner DIC;

23 tolerance 1e-7;

24 relTol 0.001;

25 }

26

27 "(p|rho)Final"

28 {

29 $p;
30 relTol 0;

31 }

32

33 "(U|h|k|Yi)"

34 {

35 solver PBiCGStab;

36 preconditioner DILU;

37 tolerance 1e-7;

38 relTol 0.001;

39 }

40

41 "(U|h|k|Yi)Final"

55

B.5. system directory Appendix B. Test case dictionaries

42 {

43 $U;
44 relTol 0;

45 }

46 }

47

48 PIMPLE

49 {

50 momentumPredictor yes;

51 nOuterCorrectors 1;

52 nCorrectors 3;

53 nNonOrthogonalCorrectors 2;

54

55 pMinFactor 0.75;

56 pMaxFactor 1.25;

57 }

system/setFieldsDict

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object setFieldsDict;

14 }

15 // * //

16

17 regions

18 (

19 boxToCell

20 {

21 box (0 -0.03 -1) (0.3 0 1);

22 fieldValues

23 (

24 volScalarFieldValue T 2000

25);

26 }

27);

28

29

30 // *** //

56

Index

EDC, 9, 12–14

FM, 10

foxPaSR, 11, 16, 18, 23

PaSR, 10, 11, 13–16, 21, 24, 25
PSR, 9, 10, 13, 15, 21, 22, 24, 25

turbulence-chemistry interaction, 6–10,
12–14, 16, 24

57

	Introduction
	Turbulence-chemistry interaction and its modeling
	The filtering problem
	Existing models
	Perfectly Stirred Reactor (a.k.a. "Laminar")
	Eddy Dissipation Concept
	Fractal Model
	Partially Stirred Reactor

	The new model: foxPaSR

	Turbulence-chemistry interaction in OpenFOAM
	The solver
	The model

	Implementing the new PaSR model
	Testing the new PaSR model
	Source code
	Test case dictionaries
	Allrun and Allclean scripts
	0 directory
	chemkin directory
	constant directory
	system directory

