
Cite as: Zhou, Y.: Implementation of growing CCM library to reduce chemistry calculation time. In

Proceedings of CFD with OpenSource Software, 2022, Edited by Nilsson. H.,

http://dx.doi.org/10.17196/OS CFD#YEAR 2022

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Implementation of growing CCM library
to reduce chemistry calculation time

Developed for OpenFOAM-v2112

Author:
Yuchen Zhou
Lund University
yuchen.zhou@energy.lth.se

Peer reviewed by:
Xue-Song Bai
Yaquan Sun

Mohammad Hossein Arabnejad
Khanouki

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like to learn some

details similar to the ones presented in the report and in the accompanying files. The material has
gone through a review process. The role of the reviewer is to go through the tutorial and make
sure that it works, that it is possible to follow, and to some extent correct the writing. The

reviewer has no responsibility for the contents.

January 24, 2023

http://dx.doi.org/10.17196/OS_CFD#YEAR_2022

Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• How to set a case using the CCM or the growing CCM library.

• How to set the appropriate parameters in the CCM dictionary.

The theory of it:

• The very basic idea behind most (if not all) chemistry acceleration methods.

• The theory behind the CCM method and the basic procedure of this method.

How it is implemented:

• How to implement CCM and growing CCM methods, especially about grouping/storing data
and attributing those data to relevant cells.

How to modify it:

• How to modify the CCM and growing CCM library.

1

Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• How to follow the basic official tutorials of OpenFOAM.

• Some basic CFD (Computational Fluid Dynamics) and combustion knowledge.

• How to configure a basic combustion case in OpenFOAM and the structure of the case.

• Some C++ knowledge, as well as several very basic commands of the terminal line.

2

Contents

1 Introduction 5

2 The theory of CCM 7
2.1 The calculation of the reaction rates . 7
2.2 Governing equations for species and energy . 8
2.3 The manifold concept . 8
2.4 The procedure of CCM . 9
2.5 CCM variables and index strategy . 9

3 The implementation of CCM 11
3.1 General structure . 11
3.2 The implementation of CCM . 12

3.2.1 The calculation of reaction rates . 12
3.2.2 Indexing . 14
3.2.3 Grouping in parallel . 14
3.2.4 The attribution of reaction rates . 18

3.3 Adding growing features . 19
3.3.1 Additional indexing operations . 19
3.3.2 Additional grouping/assigning operations . 20

4 The usage of the CCM library 21
4.1 Prerequisite . 21
4.2 Compile the code . 22
4.3 Prepare a cold case . 22
4.4 The usage of the CCM library . 23
4.5 Setting the CCM dictionary . 25
4.6 Recommended procedures . 27
4.7 Benchmark and analysis . 27

3

Nomenclature

Acronyms
CCM Chemistry Coordinate Mapping
CFD Computational Fluid Dynamics
DAC Dynamic Adaptive Chemistry
FGM Flamelet Generated Manifold
ISAT In-situ Adaptive Tabulation
ODE Ordinary Differentiate Equations
TDAC Tabulation of Dynamic Adaptive Chemistry

English symbols
Q̇ Heat release rate rate . J ·m−3· s−1

ωi Reaction rate for species i . kg ·m−3· s−1

Ci Molar concentration . mol · cm−3

Di Molecular diffusion coefficient for species i . m2· s−1

Ea Activation energy . J · mol−1·K−1

h Enthalpy .J · kg−1

K Kinetic energy . J · kg−1

k(T) Rate constant
Ru Specific gas constant .J · kg−1·K−1

T Temperature . K
Yi Mass fraction for species i . [−]

Greek symbols
αeff Effective turbulent thermal diffusivity for enthalpy. .m2· s−1

ρ Fluid density . kg · m−3

Subscripts
i Species i or direction i
j Species j or direction j

4

Chapter 1

Introduction

This report intends to illustrate the basic theory of Chemistry Coordinate Mapping (CCM) and
its implementations in OpenFOAM. Also, an improved version of CCM called growing CCM is
introduced with detailed implementation tutorials.

In recent decades, we have witnessed the rapid progress of the Computational Fluid Dynam-
ics (CFD) theory and its huge impacts in academic and industrial fields. With appropriate CFD
methods used by well-trained CFD engineers, the flow field predictions with satisfactory accuracy can
be obtained, which can, to a certain extent, replace some expensive and dangerous experiments [1].
This report will focus on the simulations of reactive flows, which are far more complicated than
the ”cold” flow without chemical reactions. Not only the basic Navier-Strokes equations (including
one continuity equation, three momentum equations if this is a 3D simulation, one energy equation,
and one constitutive equation) are simulated and well-resolved, N species transport equations along
with a possibly very stiff reaction rate Ordinary Differentiate Equations (ODE) system should be
well-addressed to guarantee the accuracy of the simulation outcome. Considering that it needs 325
reactions and 53 species to characterize the behaviors of a fuel as simple as methane [2], even more
equations should be solved to describe the combustion processes of diesel fuels, biomass, and hybrid
fuels. This will make the detailed simulations extremely computationally expensive and unaffordable
for academic research and industry purposes. Consequently, efforts should be made to 1) simplify
the chemistry mechanism and 2) accelerate the chemistry simulations. For 1), only key reactions
shall be preserved to significantly reduce the number of equations during the simulation processes.
However, simulations with detailed chemistry might still be a must in many cases, such as emis-
sion and efficiency predictions, where an oversimplified mechanism might fail to capture the full
details [3]. For 2), we are expected to reduce the number of detailed chemistry simulations by trying
to reuse the previous simulation results. This might be achieved by, for example, the Tabulation of
Dynamic Adaptive Chemistry (TDAC) method [4], and the Flamelet Generated Manifold (FGM)
method [5, 6]. The TDAC method available in OpenFOAM is a combination of the Dynamic Adap-
tive Chemistry (DAC) [7] and the In-situ Adaptive Tabulation (ISAT) [8] method. This method will
both dynamically simplify the chemistry mechanism and tabulate and reuse the reaction rates using
multiple linear regressions. High acceleration rates based on this method can be expected, but it
might also fail in some cases to predict the species field. We will show this later in Section 4.7. As for
the FGM method [5, 6], reaction rates are obtained using simple 1D or 2D simulations beforehand,
and the species rate or distribution in a reaction progress variable coordinate will be stored in a data
table that will be retrieved later in reactive flow simulations. The simulation is carried out with only
a few additional transportation equations (e.g., mixture fraction and reaction progress variable) to
save time, while the values of these transport variables are used in the retrieval processes mentioned
before.

The CCM method also intends to reduce the amount of chemistry calculation by grouping the
physical cells with the same ”reaction states” and letting them share a common reaction rate. Those
shared reaction rates can be calculated in each time step (which is the ordinary CCMmethod), stored
in a table, and retrieved later (which is the developing target of this paper). In this report, We will

5

Chapter 1. Introduction

focus on explaining how to use the CCM method to accelerate a combustion simulation and the
basic idea of CCM, as well as a detailed guide on even further developments of this method.

The report is organized as follows. In chapter 2 of this report, the philosophy of simplifying a
reaction system will be briefly explained, followed by discussions on the procedure of CCM. Chapter
3 will focus on the implementations of the CCM library. The original CCM code is written by the
colleagues of the authors using OpenFOAM-7. It is reorganized and transferred to OpenFOAM-
v2112 for this project. We will discuss in which part the initialization, grouping, and reaction rate
attributions are done with some explanations. Modifications to add the growing CCM feature are
also shown in detail. At last, we will show how to simulate a combustion case with the CCM or
growing CCM method. Some brief discussions of parameter settings are also presented there.

6

Chapter 2

The theory of CCM

This chapter introduces the relevant equations for calculating the reaction rates. Then we will
discuss the behaviors of those equations in a reacting flow case and suggest possible ways to reduce
the amount of reaction rate calculations. After that, the validity of the CCM method will be
discussed.

Please note that we have emitted all the introductions of Navier-Strokes Equations. The potential
readers of this report are referred to some CFD text books [1] for that knowledge.

2.1 The calculation of the reaction rates

In this section, we will show how to calculate the reaction rates during a combustion simulation and
how those reaction rates are introduced into the transportation equations of the main solver.

We start with the hydrogen-air reaction described by a single-step model

2H2 +O2 → 2H2O (2.1)

The equation indicates that two hydrogen molecules and one oxygen molecule might meet and
react, forming two water molecules. This is generally true to describe the overall reaction process,
but some modifications are still required. In fact, the hydrogen molecules cannot react with the
oxygen molecules directly. What really happens is that the hydrogen molecule might collide with a
third party and form two hydrogen radicals, shown as

H2 +M → H+H+M (2.2)

Those radicals will collide with the oxygen molecule and form OH radicals, shown as

H + O2 → OH+O (2.3)

After that, the OH radical can react with the hydrogen molecule and form the product water, shown
as

OH +H2 → H2O+H (2.4)

The above process is just a route to reach the final products H2O, and might not be the most
important route of this reaction system during some operating conditions. However, it is enough to
explain two factors.

• A single-step model is a simplified representation of many elementary reactions.

• Many elementary reactions with various reaction rates act together and determine the overall
reaction rate.

7

2.2. Governing equations for species and energy Chapter 2. The theory of CCM

We can calculate the reaction rate for each elementary reaction in the form of

A + B → C+D (2.5)

using the Arrhenius Formula given by

dCA

dt
= CACBk(T),

dCA

dt
=

dCB

dt
= −dCC

dt
= −dCD

dt
(2.6)

Please note that only the elementary reaction can be done in this way.
Here k(T) can be expressed as

k(T) = AT bexp(− Ea

RuT
) (2.7)

where A, b, Ea are three empirical parameters. Basically, we can see that the elementary reaction
rate is a function of the molar concentration of reactants and temperature. The properties of the
reactants and products will also determine those empirical parameters, which further influence the
reaction rate.

The above information is more or less enough to understand the contents of this report. The
readers are also recommended to read the combustion textbook [9] to see more detailed explanations.

2.2 Governing equations for species and energy

In this section, we will discuss how the reaction rate will be introduced into the transport equations.
Generally speaking, the reaction rates will directly modify the source term of the species transport
equations and sensible enthalpy equations. This represents direct changes in species mass fractions,
properties and mixture temperature. These changes will immediately affect pressure which drives
the flow motion, then influence all other flow field variables.

The species transport equation can be written as

∂ρYi

∂t
+

∂ρujYi

∂xj
=

∂

∂xj
(ρDi

∂Yi

∂xj
) + ωi (2.8)

where Yi is the mass fraction for species i, and Di is the diffusion coefficients. The two terms on the
left-hand side form the material derivative of the species mass fraction, describing the changing rate
of the mass fraction following a fluid particle. The first term of the right-hand side is the diffusion
term, while the second term is the reaction source term. The reaction rate we calculate in 2.1,
multiplied by the molar weight of a species, is inserted here to be a part of the equation system.
For more detailed derivations and explanations, the readers are referred to CFD and combustion
textbooks [1, 9]. Here, we only want to show that the reaction will bring this equation an additional
source term representing the generation or consumption of species.

The sensible enthalpy equation is written as

∂ρh

∂t
+

∂ρujh

∂xj
+

∂ρK

∂t
+

∂ρujK

∂xj
− dp

dt
=

∂

∂xj
(αeff

∂h

∂xj
) + Q̇ (2.9)

where h is the sensible enthalpy, K is the kinetic energy of the flow, and Q̇ is the heat release rate.
Please note that the viscous term is not important and emitted for simplicity. The author is not
pretty sure whether OpenFOAM solves this term, but it seems that it does not (The author checked
that but did not dive deeply into it). Here, we only want to emphasize that the reaction will bring
an additional term, representing the conversion of chemical energy into thermal/kinetic energy.

2.3 The manifold concept

In this section, we will present some examples to show how the complex reaction rate solution system
might be simplified.

8

2.4. The procedure of CCM Chapter 2. The theory of CCM

As we can see from Section 2.1, the reaction rates are determined by the temperature and the
molar concentration of the reactants. For general CFD software, the calculation of mass fraction
might be more convenient than the molar fraction so that we can turn those molar fractions into
mass fractions. Given all mass concentrations, together with the temperature, it is sufficient to
obtain all the reaction rates. However, one important question is whether it is possible to obtain
reaction rates with just a subset of those mass fractions. Or, can we pick up some control variables
to form a control variable set, and the reaction rate system can be uniquely determined and well
described by this control variable set.

For premixed flame, it is possible to configure such a control variable set because reactions in
premixed flame take place in a narrow region with sharp species concentration and temperature
gradients. The well-mixed fuel and air diffuse into that region and get burnt. If this thin flame
region is not altered by turbulent flows, we might simulate a 1D laminar case to build up the
relations between the reaction rates, and the distance from the flame front. Then, we simulate a
3D case and measure the distance of each cell from the flame front. By that means, we can look
up the reaction rate of that given distance from the 1D results. It should be emphasized that the
distance we discussed before can be real distance or a measurement of the reaction progress. One
way of defining that distance is to use the reaction progress variable. For methane flame, it could
be defined as

Yc =
YCO2

MCO2

+
YCO

MCO
+

YHO2

MHO2

(2.10)

As for the diffusion flame, the scenario is almost the same as the premixed flame, but we should re-
place the progress variable with the mixture fraction if the Lewis number is assumed to be unity [10].
If we want to predict the extinction behaviors near the burner rim, the scalar dissipation rate should
be introduced. If we want to further simulate the ignition process, one progress variable shall also
be added in.

As we can see from the above examples, the reaction rates can be well determined in most of
the cases if a well-selected set of control variables are determined. It also suggests that once those
control variables are specified, other species information will be uniquely determined and explicitly
included. Most (if not all) chemistry acceleration methods borrow this idea, and obtain reaction
rates either in advance or simultaneously with the simulations.

2.4 The procedure of CCM

The procedure of the CCM method can be divided into four parts.

• Each cell point in physical space is assigned a unique zone index, acting as an identification
for a physical cell according to its reaction state. We will call it ”indexing” for short.

• The cells in physical space with the same zone index will be grouped together and assigned
a common zone number representing their indexes in phase space, which is also the order of
their reaction rates in the memory in the further retrieval stage. We will call it ”grouping” for
short. After this stage, we will obtain a much smaller set of cells in phase space.

• The cells in phase space after grouping will be dealt with by the ODE solver, and the reaction
rates will be calculated. Please note that one point at this stage might represent many physical
cells with similar reaction states. The physical properties of those physical cells should be
averaged, and the average state is sent to calculate the reaction rate. And this reaction rate
will be shared by all those physical cells. This stage is called ”solving” for short.

• The reaction rates will be assigned in this stage. We will call it ”assigning” for short.

2.5 CCM variables and index strategy

The indexing stage will be explained in detail here, while the grouping and assigning stages will be
discussed in Chapter 3 when we introduce the code implementation. The basic knowledge of reaction

9

2.5. CCM variables and index strategy Chapter 2. The theory of CCM

rate calculations and how it is introduced into the solution system has already been discussed in
Section 2.1 and Section 2.2.

Before introducing the indexing part, it is necessary to explain the basic control variables to
describe the reaction states. In CCM, our control variables (called CCM variables in this report) to
describe the reaction states are (T , ϕ, χ, Y1, Y2, ...). Here, T is temperature, ϕ is the equivalence
ratio, χ is the scalar dissipation rate, and Yi is the mass fraction of species i. The program allows
one or more species to take part in the indexing processes. If a case requires varying pressure (e.g.,
engine compression), the pressure should be added to the CCM variables, and the final CCM variable
set will be (T , p ϕ, χ, Y1, Y2, ...). In this report, we only consider cases satisfying constant pressure
assumptions.

The control variable set mentioned in the last paragraph is valid. We have already introduced
many ideal cases in Section 2.3 and how to configure control variables in those cases. In general
cases, usually the heat transfer and compression effects cannot be ignored in order to obtain a
satisfactory result. Consequently, we might suggest a way to make sure the thermal states and the
key species are considered [11]. If we have two thermal variables of a cell (e.g. T and p, or T alone in
constant pressure case), the density, as well as other thermal variables will be uniquely determined
if the composition of the cell is known. Then, if some key variables that are believed to control the
reactions are introduced, we can well estimate the behaviour of the reaction system. Consequently,
the CCM variable set (T , p ϕ, χ, Y1, Y2, ...) are valid for a general case, and more variables can be
appended if more accurate simulation details are required.

The purpose of the indexing part is to assign all possible reaction states with some unique
identification numbers (zone index). Similar states within the bound of accuracy tolerance will be
assigned the same zone index. It does no harm to assume that the smallest possible value of the
first dimension is 6, while the largest is 8, and the tolerance is 0.5. Then,

• For value within range (6, 6.5], the zone index for this dimension is 0.

• For value within range (6.5, 7], the zone index for this dimension is 1.

• ...

• For value within range (7.5, 8], the zone index for this dimension is 3.

If we have three dimensions, use three digits to represent each dimension, with the dimension
values 3, 5, and 2, respectively, the final zone index, including all dimension information, will be 003
005 002, assuming that we use three digits to describe each dimension. Please note that the way
of calculating the zone index is different from the method described in the original paper by Jangi
and Bai. [11]. But this difference will not influence the final results. The purpose is to give each
reaction state an ”identification number” and make sure that cells with similar reaction states share
the same ”identification number”, while the exact value of the zone index is not important.

10

Chapter 3

The implementation of CCM

In this chapter, the implementation of the CCM library will be introduced. The code shown
both here and in the attached files is modified from a library developed by my colleagues, run-
ning on OpenFOAM-7 without the growing feature. After some testing, I transferred that library to
OpenFOAM-v2112 and adjusted its structure for more convenient further development. The detailed
process of the transfer and the structure adjustment is not the concern of this report, so we omit
them for simplicity.

The chapter starts with a description of the general structure by discussing the main solve

function. After that, each header file in the solve function, representing a solution step (already
discussed in Section 2.4) during the calculation of the reaction rates with the CCM library, will be
discussed in order. After that, some explanations will be made on how to add the growing feature.

3.1 General structure

A combustion solver in OpenFOAM will call reaction->correct() (usually in YEqn.H) to solve
the chemistry. Assuming that no turbulent chemistry interaction is considered, the solve function
with a deltaTType parameter will be called. The readers are referred to a course report in previous
years written by Gadalla [12] for more detailed explanations on this topic.

The solve function of the CCM chemistry library is shown as follows. By observing that function,
we can find that despite some information output, some header files are included here, representing
different stages of the CCM solving process as we mentioned in Section 2.4. After the four main stages
(i.e. indexing, grouping, solving, and assigning), the reaction rates of each cell is obtained. Please
note that the ”solving” process mentioned before is implemented in avging.H and solving.H. In
avging.H, the reaction states of different cells sharing the same zone index will be averaged, then the
averaged outcome will be used to calculate the reaction rates, implenented in solving.H. In addition,
the code also includes an additional correction stage, used for correcting the inaccurate reaction rates.
It is implemented based on the idea that some CCM variable sets might not be able to describe
the reaction rate space fully, meaning that the reaction states are not uniquely determined with the
user-specified CCM variable set. If this happens, a zone index in the CCM library might correspond
to multiple reaction states with varying reaction rates, which might crash the simulation. The
correction.H contains the code that will discover those differences and recalculate the problematic
cells to avoid crashing. This correction feature is still under-development and will not be discussed
in this report.

solve function in CCM

1 template<class ReactionThermo, class ThermoType>

2 template<class DeltaTType>

3 Foam::scalar Foam::CCMChemistryModel<ReactionThermo, ThermoType>::solve

4 (

5 const DeltaTType& deltaT

6)

11

3.2. The implementation of CCM Chapter 3. The implementation of CCM

7 {

8 const clockTime clockTime_= clockTime();

9 clockTime_.timeIncrement();

10

11 Info << nl << nl << "/====================== CCM Solution begins ========================/" <<

endl;

12 #include "indexing.H"

13 Info << "CCM index done " << "(" << clockTime_.timeIncrement() << " s)" << "." << endl;

14

15 #include "grouping.H"

16 Info << "CCM grouping done " << "(" << clockTime_.timeIncrement() << " s)" << "." << endl

;

17

18 #include "avging.H"

19 Info << "CCM avging done " << "(" << clockTime_.timeIncrement() << " s)" << "." << endl;

20

21 #include "correction.H"

22 if (autoCorrection_) Info << "CCM correction done " << "(" << clockTime_.timeIncrement() <<

" s)" << "." << endl;

23

24 #include "solving.H"

25

26 Info << "CCM solving done " << "(" << clockTime_.timeIncrement() << " s)" << "." << endl;

27

28 #include "attributeRR.H"

29 Info << "CCM reaction attribution done " << "(" << clockTime_.timeIncrement() << " s)" <<

"." << endl;

30 label nCell_oP = this->mesh().C().size();

31 reduce(nCell_oP, sumOp<label>());

32 nActiveCell_out

33 << scientific << this->mesh().time().timeName() << tab

34 << scientific << 1 << tab

35 << scientific << nCell_oP << tab

36 << scientific << nCell_oP << tab

37 << scientific << numOfNCActive << tab

38 << scientific << nCell_oP/(numOfNCActive+1) << endl;

39 Info

40 << "meshSize " << tab

41 << "oldActiveCells" << tab

42 << "newActiveCell" << tab

43 << "speedup factor" << endl;

44

45 Info

46 << nCell_oP << tab

47 << oldTableSize_ << tab

48 << newTableSize_ << tab

49 <<static_cast<scalar>(nCell_oP)/static_cast<scalar>(numOfNCActive+1) << endl;

50

51

52 Info << "/===================== CCM Solution completes =====================/" << endl;

53

54 return 0;

55 }

3.2 The implementation of CCM

In this section, the detailed implementation of the CCM library is introduced. We will start with
the implementation of the reaction rate calculation, then followed by discussions on several header
files we mentioned in Section 3.1.

3.2.1 The calculation of reaction rates

The function solveCCM is modified from the solve function of the standardChemistry.C, with the
detailed explanations in a report of the previous year by Gadalla [12]. The readers of interest are

12

3.2. The implementation of CCM Chapter 3. The implementation of CCM

encouraged to check the original file and spot the difference. A general takeaway is that the original
solve function in the standardChemistry.C

• iterates over all the cells and obtain their temperature T , pressure p, and molar concentration
c

• call another solve function (usually a stiff solver), to calculate the final molar concentration
after a time step deltaT

• calculate the mean reaction rate during that given time step

The CCM chemistry library does the same thing for only a portion of the cells. As a consequence,
a list of cells should be passed to the solveCCM function.

If we have a look at the parameter list of the solveCCM function, we will find that all relevant
information (T , p, c, etc.) of the whole list of cells that the reaction rates are required, and passed
to the solveCCM function by an argument called FieldCCM, and the calculated reaction rates are
stored in another reference argument passed into the function called RRCCM. Considering that all
cores work in parallel, the start, end and order index are given by three parameters called nBeg,
nLast, cellIndexTmp, respectively. The start and end index will be different for different cores, so
that each cell just has to iterate over a subset of the whole list of cells and obtain their reaction
rates.

Now we have already know how to calculate the reaction rates, we just need to understand how to
group the points and generate the fieldCCM for the grouped cells including all the reaction relevant
information that are required for the chemistry calculation. After that, the reaction rates will be
solved by solveCCM function. Finally, the solved reaction rates should be assigned to the original
physical cell.

solveCCM function

1 template<class ReactionThermo, class ThermoType>

2 Foam::scalar Foam::CCMChemistryModel<ReactionThermo, ThermoType>::solveCCM

3 (

4 const label nBeg,

5 const label nLast,

6 const labelList cellIndexTmp,

7 const PtrList<scalarField>& FieldCCM,

8 List<List<scalar>>& RRCCM

9)

10 {

11 BasicChemistryModel<ReactionThermo>::correct();

12

13 scalar deltaT = this->mesh().time().deltaTValue();

14

15 scalar deltaTMin = GREAT;

16

17 if (!this->chemistry_)

18 {

19 return deltaTMin;

20 }

21

22 scalarField c0(this->nSpecie_);

23

24 for(label zonei=nBeg; zonei < nLast; zonei++)

25 {

26 label izone = cellIndexTmp[zonei];

27 //label izone = zonei;

28 scalar Ti = FieldCCM[0][izone];

29 scalar pi = FieldCCM[1][izone];

30 const scalar rhoi = FieldCCM[2][izone];

31

32 for (label i=0; i<this->nSpecie_; i++)

33 {

34 this->c_[i] = rhoi*FieldCCM[i+5][izone]/this->specieThermo_[i].W();

35 c0[i] = this->c_[i];

13

3.2. The implementation of CCM Chapter 3. The implementation of CCM

36 }

37

38 // Initialise time progress

39 scalar timeLeft = deltaT;

40 scalar deltaTChemIni = this->deltaTChemIni_;

41

42 // Calculate the chemical source terms

43 while (timeLeft > SMALL)

44 {

45 scalar dt = timeLeft;

46 this->solve(this->c_, Ti, pi, dt, deltaTChemIni);

47 timeLeft -= dt;

48 }

49

50 deltaTMin = min(deltaTChemIni, deltaTMin);

51

52 for (label i=0; i<this->nSpecie_; i++)

53 {

54 RRCCM[i][izone] =

55 (this->c_[i] - c0[i])*this->specieThermo_[i].W()/deltaT/rhoi;

56 }

57 }

58

59

60 if (deltaTMin==GREAT)

61 {

62 Info << "deltaTMin-ChemistryModel === " << deltaTMin << endl;

63 Info << "If deltaTMin-ChemistryModel == GREAT" << endl;

64 Info << "This ususlly because there is only one active cell in CCM space, and it is

allocated to the last processor!" << endl;

65 }

66

67 return deltaTMin;

68 }

3.2.2 Indexing

The indexing is achieved by the codes shown below. The program iterates over all cells and all
dimensions, calculating the zone index for each dimension in every cell with the type word (similar
to the type string in C++) and concatenating the zone index for each dimension together for each
cell. It should be noted if the maximum digits for each dimension (i.e. stringDigit) exceeds the
required digits, unused digits will be set to zero.

indexing function

1 // attribute ZoneIndex

2 for(label icell= 0; icell < fieldSize; icell++)

3 {

4 for(label mccm=0; mccm < nMCCM_; mccm ++) // for each dimension

5 {

6 scalar pos = (MZ[mccm][icell]-MZmin_[mccm])/ZoneSpan_[mccm];

7 word tempWord = std::to_string(static_cast<label>(pos));

8 tempWord.insert(0,stringDigit_ - tempWord.size(),'0');
9 ZoneIndex[icell] = ZoneIndex[icell] + tempWord;

10 }

11 }

3.2.3 Grouping in parallel

The grouping process is implemented with the codes shown below. The most complex part (i.e.
getZoneNumber function) is packed to another library, which is compiled individually and linked to
this library when compiling the CCM library. We will first discuss the general part in the header
file grouping.H, and then examine the implementation of function getZoneNumber in detail.

14

3.2. The implementation of CCM Chapter 3. The implementation of CCM

The general idea of grouping is that we should generate a ”minimum set” from the set of physical
cells according to their reaction states. Physically, cells with similar reaction states (i.e. T , ϕ, Y ,
χ) share a common element in the minimum set. Technically, we can achieve that by indexing the
minimum sets and tell the original cell from which index it can retrieve its reaction rates. The
getZoneNumber function helps us to

• obtain the minimum set Smin and return all the zone indexes it includes with the variable
name gCCMZoneIndex. Each element in the Smin will correspond to a set of reaction rates for
each species.

• calculate how many elements are there in Smin. The number is stored with the variable name
numOfNCActive.

• retrieve the index in the Smin for each physical cell, storing in a list called NCZoneNumber.
Since NCZoneNumber is the order to retrieve a set of reaction rates from the Smin, the maximum
possible value is numOfNCActive-1, and the minimum is 0.

If the growingCCM switch is turned off (using ordinary CCM), the NCZoneNumber will be the final
ZoneNumber as the oldTableSize is set to zero. Otherwise, we should add the previous size of table
to the NCZoneNumber, by that means we obtain a growing table with increasing data entries as the
simulation proceeds.

grouping

1 // get ZoneNumber for each not calculated cells

2 auto NCResults = getZoneNumber(notCalculatedZoneIndex, stringDigit_); //not calculated results

3 scalarField NCZoneNumber = NCResults.ZoneNumber;

4 List<word> gCCMZoneIndex(NCResults.ZoneIndex);

5 label numOfNCActive = NCResults.count;

6

7 if(growingCCM_)

8 {

9 oldTableSize_ = curTableSize_;

10 newTableSize_ = numOfNCActive;

11 curTableSize_ = oldTableSize_ + newTableSize_;

12 }

13 else

14 {

15 oldTableSize_ = 0;

16 newTableSize_ = numOfNCActive;

17 curTableSize_ = newTableSize_;

18 }

19

20

21 // attribute ZoneNumber (notCalculatedCells)

22 for(label icell = 0; icell < notCalculatedCells.size(); icell++)

23 {

24 label cellIndex = notCalculatedCells[icell];

25 ZoneNumber[cellIndex] = NCZoneNumber[icell] + oldTableSize_;

26 }

Then, we can move to the ZoneNumber function. As we mentioned before, ZoneNumber function
should obtain a minimum set. An easiest way to do that is to

• build up a hash table.

• look up for each cell whether its reaction state or zone index is in the hash table.

• if not, store that in the hash table.

This strategy works pretty well for a program running on a single core. However, if we use parallel
computing, each core will have its own minimum set Smin, and that set could be quite different for
different cores (e.g. a zone index might be indexed differently in different cores). In addition, each
core cannot lookup the reaction rates calculated by other cores, which could be a significant waste of

15

3.2. The implementation of CCM Chapter 3. The implementation of CCM

computing resources. Consequently, it is important to unify the zone indexes and gather all reaction
rates globally with a better strategy.

In the CCM library, the implementation is divided into the following steps

• Execution of the look up procedure and obtain the minimum set Slocal
min in each core.

• Concatenatation of Slocal
min in the order of core number, and get a imperfect global minimum set

Sglobal,i
min . Here the upper script i stands for ”imperfection”. There might be some repeating

zone indexes in Sglobal,i
min after this step.

• Iteratation over Slocal
min and divide them to each core according to the remainder of the zone

index divided by the number of cores. Since each zone index only has one remainder, identical
zone indexes will finally be sent to the same core.

• Execution of the look up procedure again, and obtain the minimum set Slocal,nr
min . Here the

”nr” represents non-repeating.

• Gather Slocal,nr
min and obtain Sglobal,nr

min (named as Smin for short).

• When doing the above steps, track each zone index and obtain its final order in Smin.

The codes below follows the above steps and works well.

grouping

1 ZoneInfo getZoneNumber(List<word>& ZoneIndex, label stringLimit)

2 {

3 label nProc = Pstream::nProcs();

4 label myProc = Pstream::myProcNo();

5

6 // step 0 only oZoneIndex = ZoneIndex exists

7 label oZoneSize = ZoneIndex.size();

8

9 // step 1 group locally update

10 // - 1) lZoneIndex

11 // - 2) lZoneNumber (x)

12 // - 3) lZoneNumberSum (done)

13 // - 4) lZoneNumberNum (done)

14 // - 5) lZoneNumberStart (done)

15 // - 6) oinl (done, uncheck)

16

17 List<word> lZoneIndex(0);

18 List<label> oinl(oZoneSize);

19 label lZoneIndexCount(0);

20 HashTable<scalar, word> HashMapL(2*oZoneSize);// note: the coefficient 2 might be improved

later

21 forAll(ZoneIndex, zi)

22 {

23 word target = ZoneIndex[zi];

24 if (!HashMapL.found(target))

25 {

26 // set

27 HashMapL.set(target,lZoneIndexCount);

28 // append

29 lZoneIndex.append(target);

30 // other

31 oinl[zi] = lZoneIndexCount;

32 lZoneIndexCount++;

33 }

34 else

35 {

36 oinl[zi] = HashMapL.find(target)();

37 }

38 }

39 List<label> lZoneNumberNum = getNum (lZoneIndex, nProc, myProc);

16

3.2. The implementation of CCM Chapter 3. The implementation of CCM

40 label lZoneNumberSum = getSum (lZoneNumberNum, nProc, myProc);

41 List<label> lZoneNumberStart = getStart(lZoneNumberNum, nProc, myProc);

42

43

44 // step 2 go to global

45 // - 1) gZoneIndex (done)

46 // - 2) gZoneNumber (x)

47 // - 3) gZoneNumberSum (done)

48 // - 4) gZoneNumberNum (no need)

49 // - 5) gZoneNumberStart (no need)

50 // - 6) ling (done)

51 List<word> gZoneIndex = gather //List<word> ZoneIndex, label sum, List<label> start,label

nProc, label curProc)

52 (

53 lZoneIndex,

54 lZoneNumberSum,

55 lZoneNumberStart,

56 nProc,

57 myProc

58);

59 label gZoneNumberSum = lZoneNumberSum;

60

61 List<label> ling(identity(lZoneNumberNum[myProc]));

62 forAll(ling, li)

63 {

64 ling[li] += lZoneNumberStart[myProc];

65 }

66

67 // step 3 send to each core according to remainders

68 // - 1) pZoneIndex (done)

69 // - 2) pZoneNumber (x)

70 // - 3) pZoneNumberSum (done)

71 // - 4) pZoneNumberNum (done)

72 // - 5) pZoneNumberStart (done)

73 // - 6) ginp (done)

74 List<word> pZoneIndex(0);

75 List<label> ginp(gZoneNumberSum, 0);

76

77 label pcount = 0;

78

79 List<label> whichCore(gZoneNumberSum,0);

80 forAll(gZoneIndex, gi)

81 {

82 word tempIndex = gZoneIndex[gi];

83 if (blockWiseRemainder(tempIndex,nProc,stringLimit) == myProc)

84 {

85 pZoneIndex.append(tempIndex);

86 ginp[gi] = pcount;

87 whichCore[gi] = myProc;

88 pcount ++;

89 }

90 }

91

92 List<label> pZoneNumberNum = getNum(pZoneIndex, nProc, myProc);

93 label pZoneNumberSum = gZoneNumberSum;

94 List<label> pZoneNumberStart = getStart(pZoneNumberNum, nProc, myProc);

95

96 // note: ginp is gathered for convenience

97 reduce(ginp, sumOp<List<label>>());

98 reduce(whichCore,sumOp<List<label>>());

99 forAll(ginp, gi)

100 {

101 ginp[gi] += pZoneNumberStart[whichCore[gi]];

102 }

103

104

105

106 // step 4 lookup to avoid repeting numbers

17

3.2. The implementation of CCM Chapter 3. The implementation of CCM

107 // - 1) pdZoneIndex (done)

108 // - 2) pdZoneNumber (done)

109 // - 3) pdZoneNumberSum (done)

110 // - 4) pdZoneNumberNum (done)

111 // - 5) pdZoneNumberStart (done)

112 // - 6) pinpd

113 List<word> pdZoneIndex(0);

114 List<label> pinpd(pZoneNumberNum[myProc]);

115 HashTable<scalar, word> HashMapP(pZoneNumberSum/nProc*2);

116 label pdCount = 0;

117 forAll(pZoneIndex,pi)

118 {

119 word target = pZoneIndex[pi];

120 if (!HashMapP.found(target))

121 {

122 pdZoneIndex.append(target);

123 HashMapP.set(target,pdCount);

124 pinpd[pi] = pdCount;

125 pdCount++;

126 }

127 else

128 {

129 pinpd[pi] = HashMapP.find(target)();

130 }

131 }

132

133 List<label> pdZoneNumberNum = getNum(pdZoneIndex, nProc, myProc);

134 label pdZoneNumberSum = getSum(pdZoneNumberNum, nProc, myProc);

135 List<label> pdZoneNumber = identity(pdZoneNumberSum);

136 List<label> pdZoneNumberStart = getStart(pdZoneNumberNum, nProc, myProc);

137 forAll(pinpd, pi)

138 {

139 pinpd[pi] += pdZoneNumberStart[myProc];

140 }

141 pinpd = gather(pinpd, pZoneNumberSum, pZoneNumberStart, nProc, myProc);

142

143

144

145 // step 5 gather all ZoneIndex

146 // - 1) gpdZoneIndex (done)

147

148 // step6 get ZoneNumber for each cell

149 List<word> gpdZoneIndex = gather(pdZoneIndex, pdZoneNumberSum, pdZoneNumberStart, nProc,

myProc);

150 label gpdZoneNumberSum = pdZoneNumberSum;

151

152 scalarField ZoneNumber(oZoneSize);

153 forAll(ZoneNumber, zi)

154 {

155 label index = oinl[zi];

156 index = ling[index];

157 index = ginp[index];

158 index = pinpd[index];

159 ZoneNumber[zi] = pdZoneNumber[index];

160 }

161

162

163 return ZoneInfo(ZoneNumber,gpdZoneIndex,gpdZoneNumberSum);

164

165 }

3.2.4 The attribution of reaction rates

After obtaining the ZoneNumber (i.e. the order in the table of reaction rates for one cell), we can
iterate over each cell and retrieve that order. Then we can ask for the table of reaction rates
(old_gRRCCM in the program) for the value of reaction rates. This process is achieved with the code

18

3.3. Adding growing features Chapter 3. The implementation of CCM

block below in the header file attributeRR.H.

assigning

1 const volScalarField& rho = this->mesh().objectRegistry::lookupObject<volScalarField>("rho");

2 forAll(this->mesh().C(), icell)

3 {

4 const label izone = ZoneNumber[icell];

5 for(label i=0; i < this->nSpecie(); i++)

6 {

7 this->RR_[i][icell] = old_gRRCCM_[i][izone]*rho[icell];

8 }

9 }

3.3 Adding growing features

In this section, some key pieces of code for the growing feature are introduced. Actually, the readers
of interest might find far more lines in the attached code file to initialize the field and manage the
index. Those lines are also important but are not listed here for simplicity.

3.3.1 Additional indexing operations

With growing CCM, we intend to save the computation time for mapping between zone indexes and
their reaction rates, so that we can reuse those reaction rates in future steps. The recording of zone
indexes and their reaction rates will be discussed in Subsection 3.3.2. Here, we mainly focus on how
to reuse some of the reaction rates.

As we mentioned before, four main stages, including indexing, grouping, solving, and assigning,
are executed one by one. It is evident that a cell should have an zone index in order to retrieve
an ”old” reaction rate, but it cannot enter the grouping stage, which will lead to the calculation of
a new reaction rate. Consequently, an easy way to achieve that is to add a pre-lookup right after
obtaining the zone index, with the codes given as follows.

pre-lookup

1 // attribute notCalculatedCells

2 if (growingCCM_)

3 {

4 ...

5 for (label icell = 0;icell < fieldSize; icell++)

6 {

7 word index = ZoneIndex[icell];

8 if (totalHashTable_.found(index))

9 {

10 ZoneNumber[icell] = totalHashTable_.find(index)();

11 ...

12 }

13 else

14 {

15 notCalculatedCells.append(icell);

16 }

17

18 }

19 }

Here, the program asks totalHashTable whether a zone index has been calculated before. The
totalHashTable is a hashtable, the key of which is a zone index, while the value is the order
(ZoneNumber in the program) of that zone index in the table storing reaction rates. If the zone
index is calculated before, the order will be returned so that we can access this reaction rate by
asking old_gRRCCM[orderNumber], without calculating the reaction rates again. If not, the cell
number will be stored to a list called notCalculatedCells.

19

3.3. Adding growing features Chapter 3. The implementation of CCM

Please note that if the switch growingCCM is turned off, all the cells should be sent to grouping
and further stages to obtain reaction rates, so the notCalculatedCells list, in this case, includes
all cells, which is a list from 0 to N − 1 where N is the number of cells.

3.3.2 Additional grouping/assigning operations

After the grouping process, the following code piece is used to update totalHashTable describing
the map between zone indexes and their relevant orders in the reaction rate table. In addition, the
new zone index is appended to the list of zone indexes (old_gCCMZoneIndex). Please note that the
order of zone indexes in old_gCCMZoneIndex is the same as that in the old_gRRCCM, storing the
reaction rates. The first zone index corresponds to the first reaction rate, and so on and so forth.

additional operations after grouping

1 if(growingCCM)

2 {

3 forAll(gCCMZoneIndex, i)

4 {

5 totalHashTable.set(gCCMZoneIndex[i],oldTableSize + i);

6 }

7 for (label i=0;i!=newTableSize;i++)

8 {

9 old_gCCMZoneIndex[oldTableSize+i] = gCCMZoneIndex[i];

10 }

11 }

After the solving process, the following code piece is used to append newly calculated reaction
rates to the table of reaction rates.

additional assigning operations

1 if(growingCCM_)

2 {

3

4 forAll(gRRCCM,specie)

5 {

6 for (label i=0; i!=newTableSize_; i++)

7 {

8 old_gRRCCM_[specie][oldTableSize_+i] = gRRCCM[specie][i];

9 }

10 }

11 }

20

Chapter 4

The usage of the CCM library

The usage of CCM and the growing CCM library will be demonstrated in this chapter, with very
detailed explanations of parameter settings in the CCM dictionary.

Here, we will use the SandiaD-LTS case in the OpenFOAM tutorial as an example. The author
assumes that you already have a proper combustion case, and will guide you to modify that case to
cater to the requirements of a case using the CCM library. For users without any cases prepared,
the default case is also okay for a trial.

4.1 Prerequisite

The CCM library is designed to be applied to transient cases with fine grids. Then, we can assume
that the fuel and air are well-mixed in each cell. Readers interested in applying this model in RANS
simulations with coarser grids are referred to the orginal paper [11] after reading the programming
guide part of this report.

In this section, we shall make some preparations. First, source the OpenFOAM bash file, and
copy the SandiaD_LTS case to your run directory with commands

cd $FOAM_RUN

cp -r $FOAM_TUTORIALS/combustion/reactingFoam/RAS/SandiaD_LTS/ .

cd SandiaD_LTS

./Allrun # optional

This will copy the SandiaD_LTS case to your run folder. If you are unfamiliar with this case, you
can run the Allrun script and have a look at the results. This script will simulate a steady flow
without reactions as an initial field for the hot case, then turn on the combustion and get the final
results. The TDAC library is used to accelerate the chemistry in this case.

For more detailed introductions and physical backgrounds of this case, the readers are referred to
a report of this course written by Bertsch [13]. Only a short description is presented here. SandiaD-
LTS simulates the combustion process in Sandia burner [14], presented in Fig. 4.1 at a Reynolds
number of 22400. The burner injects from two concentric cylinders and inner nozzle located in the
center of two cylinders. The inner nozzle called main stage (with the patch name inletCH4) will
inject rich methane (ϕ = 3) and air at ambient temperature, while the inner cylinder called pilot
stage (with the patch name inletPilot) injects the hot burnt gas from methane combustion. As
for the outer cylinder, it injects cold air at ambient temperature. Ambient pressure is applied to
all inlets. As for the temperature, the pilot stage injects at 1880 K, while the fuel and air in the
main/air stage inject at ambient temperature. The injection velocity for pilot and main stages are
11.4 m/s and 49.6 m/s, respectively.

In this report, we use the default mesh of the original case for all simulations in this report,
consisting of a wedge domain with 5080 hexahedral mesh. The k-Epsilon model is chosen as the
turbulence model. The well-stirred reaction model (laminar) and GRI3.0 mechanism [2] is adopted
as the combustion model and the reaction mechanism, respectively.

21

4.2. Compile the code Chapter 4. The usage of the CCM library

Figure 4.1: A schematic of Sandia burner

4.2 Compile the code

Go to the code directory and execute the following command.

./Allwmake

Then you are all set.

4.3 Prepare a cold case

Since we want to simulate a transient combustion case using the CCM method. We need a cold
flow solution to serve as the initial condition. After that, we can turn on the chemistry to start the
reacting simulation.

We might start with a steady cold case to save time. The chemistry entry in the
chemistryProperties should be turned off at this stage. Then we modify the gradient scheme
(gradSchemes) to cellLimited Gauss linear 1 to improve convergence. After running
reactingFoam for 10000 steps, the case will be almost ready.

Execute the commands below

cd $FOAM_RUN

rm -r Sandia*

cp -r $FOAM_TUTORIALS/combustion/reactingFoam/RAS/SandiaD_LTS/ .

cd SandiaD_LTS

rm -r Allrun Allclean constant/radiation* constant/boundaryRadiation*

mv 0.orig 0

foamDictionary constant/chemistryProperties -entry chemistry -set off

foamDictionary constant/combustionProperties -entry combustionModel -set laminar

foamDictionary constant/chemistryProperties -entry chemistry -set off

foamDictionary system/fvSchemes -entry gradSchemes.default

22

4.4. The usage of the CCM library Chapter 4. The usage of the CCM library

... -set "cellLimited Gauss linear 1"

foamDictionary system/fvSolution -entry relaxationFactors -remove

cp -r $FOAM_TUTORIALS/multiphase/interFoam

.../laminar/damBreak/damBreak/system/decomposeParDict system/decomposeParDict

foamDictionary system/decomposeParDict -entry method -set scotch

foamDictionary system/controlDict -entry endTime -set 15000

foamDictionary system/controlDict -entry writeFormat -set ascii

foamDictionary system/controlDict -entry timePrecision -set 18

to guide you through the above processes automatically.
In addition, one can paste constant/chemistryProperties below to replace the original

constant/chemistryProperties file, and add the relaxationFactors as the followings to
system/fvSolutions

relaxationFactors

1 relaxationFactors

2 {

3 fields

4 {

5 p 0.4;

6 }

7 equations

8 {

9 U 0.7;

10 ".*" 0.7;

11 }

12 }

Then we can start the simulation for the steady cold case. Run the following commands

blockMesh

decomposePar -force

mpirun -n 4 reactingFoam -parallel

reconstructPar -latestTime

and wait until the simulation ends.
After the simulation ends, the case can be modified to a transient reacting case using commands

reconstructPar -latestTime

cp -r 0/Ydefault 15000/Ydefault

foamDictionary system/fvSchemes -entry ddtSchemes.default -set backward

foamDictionary system/controlDict -entry adjustTimeStep -set false

foamDictionary system/controlDict -entry endTime -set 15001 &&

foamDictionary system/controlDict -entry writeInterval -set 0.025

foamDictionary system/controlDict -entry deltaT -set 3e-5

foamDictionary system/controlDict -entry libs -set "(libCCMMars.so)"

sed -i s/"15001"/"15000.05"/g system/controlDict

foamDictionary constant/combustionProperties -entry combustionModel -set laminar

Then your case will be all set. We still need some modifications in the
constant/chemistryProperties file before we can continue. These will be discussed in Section 4.4.

4.4 The usage of the CCM library

Delete all the contents in the original constant/chemistryProperties and add the following con-
tents into that file.

23

4.4. The usage of the CCM library Chapter 4. The usage of the CCM library

chemistryProperties

1 /*--------------------------------*- C++ -*----------------------------------*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration | Website: https://openfoam.org

5 \\ / A nd | Version: 7

6 \\/ M anipulation |

7 *---*/

8 FoamFile

9 {

10 version 2;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object chemistryProperties;

15 }

16

17

18 chemistryType

19 {

20 solver ode;

21 method CCM;

22 }

23

24

25 chemistry on;

26

27 initialChemicalTimeStep 1e-07;

28

29 odeCoeffs

30 {

31 solver seulex;

32 absTol 1e-08;

33 relTol 1e-1;

34 }

35

36 CCM

37 {

38 growingCCM off;

39 autoCorrection off;

40 correctionErrorLimit 0.10;

41 correctionSpeciesCutOff 1e-6;

42 stringDigit 4; //default to be 4

43 maxTableSize 500000;

44 hashTableSize 1500000;

45 deleteRatio 0.5;

46

47

48

49 ratioOxygenToCarbonElementInFuel 0;

50 min:max:SpanZoneJe 0 5 0.01;

51 min:max:SpanZoneT 300 2200 1;

52 min:max:SpanZoneXi 0 1 0.025;

53 chemicallyFrozenT 300;

54 maxFlammabilityPhi 20;

55

56 CCMspecies

57 {

58 CH4 0 0.2 0.001;

59 N2 0 1 0.001;

60 HO2 0 1e-3 1e-6;

61 }

62 }

63

64

65 // *** //

24

4.5. Setting the CCM dictionary Chapter 4. The usage of the CCM library

We will explain the settings here in the next chapter. Here we just leave as it is. After further
adjusting the endTime, deltaT, switching off the adjustTimeStep option, and adding the library to
the controlDict file, we can start the reacting case simulation and wait for the final results. Run
the following commands

decomposePar -force

mpirun -n 4 reactingFoam -parallel

reconstructPar -latestTime

to guide you to complete those processes.
View the results with paraview by the following command

paraFoam

and you will see a flame more or less like Fig. 4.2.

Figure 4.2: Temperature distribution in the SandiaD-LTS flame

You can redo this step, but run with the growing CCM feature. You are expected to experience
a triple speedup. Just follow the commands

foamListTimes -time "15000.001:" -rm

rm -r pro*

foamDictionary constant/chemistryProperties -entry CCM.growingCCM -set on

mpirun -n 4 reactingFoam -parallel

reconstructPar -latestTime

to guide you to clean the old running files and restart a simulation with the growing CCM feature.

4.5 Setting the CCM dictionary

In this subsection, we will examine the settings of the chemistryProperties file in a case using the
CCM library.

First, we should set the chemistryType dictionary. The choice of solver includes
noChemistrySolver, EulerImplicit, and ode. It is evident that we have to choose between
EulerImplicit and the ode. Note that if we are going to use a chemistry mechanism with many

25

4.5. Setting the CCM dictionary Chapter 4. The usage of the CCM library

species and reactions, this solution system is usually so stiff that an implicit method might not work
very well. Consequently, we usually choose the stiff ODE solver ode. For the method option, the
CCM library we have introduced in Chapter 3 is chosen.

When simulating a reacting case, the chemistry should be activated so that the OpenFOAM
will solve the reaction system. Also, some relevant parameters for the chemistry calculation should
be set. The initialChemicalTimeStep is the initial time step for the chemistry solution. Usually,
it should be much smaller than the time step of the flow. The time step to compute reaction
source term is usually much smaller than the time step of the flow. During the solution process, the
chemistry solving time step might be adjusted automatically to ensure the stability of the solution,
and gradually complete a full flow time step at the same time. As for the odeCoeffs, solver,
absolute tolerance (absTol) and relative tolerance (relTol) should be specified. Please note that
we choose a high relTol here, so the final results might not be very accurate. The purpose is to
show the features of the library in the smallest possible time. The readers are recommended to
choose a smaller value to obtain accurate results.

Then we can go to the most unique part of the chemistryProperties file for a case using CCM.
The meaning of some important parameters are listed as follows

• growingCCM: the switch to turn on or off the growing CCM feature. Set on to turn on the
feature, and vice versa for the off option.

• stringDigit: the number of digits that the program adopts to represent a zone index for each
dimension.

• maxTableSize: the growing CCM table size, which will be preallocated in memory. This
setting will only take effect with the growingCCM switch on.

• hashTableSize: the CCM utilizes the hashtable to achieve fast lookup. The size of the
hashtable should be specified, and it should be larger than the maxTableSize. This setting
will only take effect with the growingCCM switch on.

• deleteRatio: the ratio of data entries to be removed once the table is full. This setting will
only take effect with the growingCCM switch on.

• min:max:SpanZoneJe: setting the minimum/ maximum/ step value for the equivalence ratio
ϕ, which is one of the CCM variables

• min:max:SpanZoneT: setting the minimum/ maximum/ step value for the temperature.

• min:max:SpanZoneXi: seting the mimimum/ maximum/ step value for the scalar dissipation
ratio χ, which is one of the CCM variables

• CCMspecies: this dictionary will set the minimum/ maximum/ step values for user specified
species for grouping and lookup. Please make sure that the choice of species set should be
enough to describe the reaction rate manifold of your case.

• chemicallyFrozenT: the threshold temperature below which a cell is considered to be non-
reactive.

• maxFlammabilityPhi: the threshold equivalence ratio above which a cell is considered to be
non-reactive.

Some settings are still under development, and might not be available before the end of this
course. But the developer decides to keep it there in case someone might make use of it in the
future. This will include

• autoCorrection: after turning on this switch, the program will check whether the current
species mass fraction of a cell is close to that of an old cell stored in the reaction rate every time
when a reusing operation is attempted. If the error is too large, the program will recalculate
the reaction rates. This setting will only take effect when growingCCM switch is turned on.

26

4.6. Recommended procedures Chapter 4. The usage of the CCM library

Table 4.1: Base case benchmarks

Example Time t
standard 1154.89 s
TDAC 232.11 s
CCM 1352.98 s
gCCM 351.11 s
gCCM+HO2index 454.74 s

• correctionErrorLimit: below which the error between the mass fractions of a new cell and
an old cell is considered acceptable. This setting will only take effect when growinCCM and
autoCorrection switches are turned on.

• correctionSpeciesCutOff: below which the mass fraction of a species is considered to be
unimportant. This will only take effect when growingCCM and autoCorrection switches are
turned on.

4.6 Recommended procedures

The users are suggested to follow the steps below to complete the case setup.

• Prepare a cold case with the species transportation information. Remember to turn off the
chemical reaction.

• Please turn on the chemistry. And check by running with standard library for a few steps
(Modify constant/chemistryProperties.chemistryType.method to standard).

• Then setup your CCM dictionary according to the instructions in Chapter 4.5. Modify the
chemistryType.method to CCM.

• Run a few steps and stop. Check the terminal output to see the maximum/ minimum value
of some key variables and species. Adjust them according to your needs.

• Restart running and check the results.

4.7 Benchmark and analysis

We run the SandiaD_LTS case for 0.1 physical second with the standard, TDAC, and CCM library.
We also test growing CCM with and without adding HO2 to the CCM variables. Other settings are
identical. The time costs are summarized in Table 4.1. The TDAC is the fastest, followed by the
growing CCM. In this case, the ordinary CCM is even slower than the standard chemistry model,
this might owing to very small mesh size in the phase space and coarse grid in a 2D physical space, so
that the additional lookup operations compensate the time saved by fewer chemistry calculations. In
a larger 3D case, CCM will be significantly faster than the standard chemistry mode. And growing
CCM will be even faster with some sacrifice to the accuracy.

Then we examine the accuracy of the acceleration methods in Table 4.1 by showing some key
field distributions after running 0.05 seconds physical time.

As shown in Fig 4.3 and Fig 4.4, the temperture and heat release rate distributions are al-
most identical for all methods comopared to the standard chemistry results. TDAC is the worst-
performing method, predicting a relatively shorter flame.

We also compared some key species field, including HCO, H2O2, and HO2. Generally, both
ordinary CCM and growing CCM predict slightly better HCO field than TDAC. However, growing
CCM over predicts H2O2 field. Adding HO2 as another CCM variable will slightly improve the
results, but the discrepancy is still significant. It is worthwhile to note that the ordinary CCM

27

4.7. Benchmark and analysis Chapter 4. The usage of the CCM library

Figure 4.3: Temperature distributions in the SandiaD-LTS flame

Figure 4.4: Heat release distributions in the SandiaD-LTS flame

28

4.7. Benchmark and analysis Chapter 4. The usage of the CCM library

performs better than TDAC in predicting H2O2. It indicates that introducing ”history memory”
will boost the simulation speed, but the accuracy might suffer by looking up a inaccurate history
data.

Similar issues appear in HO2 field, the ordinary CCM performs slightly better than TDAC. The
growing CCM predicted fairly different HO2 distribution downstream. By adding HO2 as another
CCM variable, this issue can be partly resolved. But it will slightly increase the simulation time.

Figure 4.5: HCO distributions in the SandiaD-LTS flame

Figure 4.6: H2O2 distributions in the SandiaD-LTS flame

29

4.7. Benchmark and analysis Chapter 4. The usage of the CCM library

Figure 4.7: HO2 distributions in the SandiaD-LTS flame

30

Bibliography

[1] H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: the
finite volume method. Pearson education, 2007.

[2] “Gri-mech 3.0.” http://www.me.berkeley.edu/gri_mech/. Accessed: 2022-11-15.

[3] A. Wang, H. H. Lou, D. Chen, A. Yu, W. Dang, X. Li, C. Martin, V. Damodara, and A. Patki,
“Combustion mechanism development and cfd simulation for the prediction of soot emission
during flaring,” Frontiers of Chemical Science and Engineering, vol. 10, no. 4, pp. 459–471,
2016.

[4] F. Contino, H. Jeanmart, T. Lucchini, and G. D’Errico, “Coupling of in situ adaptive tabula-
tion and dynamic adaptive chemistry: An effective method for solving combustion in engine
simulations,” Proceedings of the Combustion Institute, vol. 33, no. 2, pp. 3057–3064, 2011.

[5] J. Van Oijen, A. Donini, R. Bastiaans, J. ten Thije Boonkkamp, and L. De Goey, “State-of-the-
art in premixed combustion modeling using flamelet generated manifolds,” Progress in Energy
and Combustion Science, vol. 57, pp. 30–74, 2016.

[6] Y. Zhang, H. Wang, A. Both, L. Ma, and M. Yao, “Effects of turbulence-chemistry interactions
on auto-ignition and flame structure for n-dodecane spray combustion,” Combustion Theory
and Modelling, vol. 23, no. 5, pp. 907–934, 2019.

[7] L. Liang, J. G. Stevens, S. Raman, and J. T. Farrell, “The use of dynamic adaptive chemistry
in combustion simulation of gasoline surrogate fuels,” Combustion and flame, vol. 156, no. 7,
pp. 1493–1502, 2009.

[8] S. B. Pope, “Computationally efficient implementation of combustion chemistry using in situ
adaptive tabulation,” Combustion Theory and Modelling, 1997.

[9] C. K. Law, Combustion physics. Cambridge university press, 2010.

[10] X.-S. Bai, Turbulent combustion. Lund University, 2021.

[11] M. Jangi and X.-S. Bai, “Multidimensional chemistry coordinate mapping approach for com-
bustion modelling with finite-rate chemistry,” Combustion Theory and Modelling, vol. 16, no. 6,
pp. 1109–1132, 2012.

[12] M. Gadalla, “Implementation of analytical jacobian and chemical explosive mode analysis
(cema) in openfoam,” in Proceedings of CFD with OpenSource Software (N. H, ed.), 2021.

[13] M. Bertsch, “Description of the reacting flow solver fgmfoam,” in Proceedings of CFD with
OpenSource Software (N. H, ed.), 2019.

[14] “Sandia/tud piloted ch4/air jet flames.” https://tnfworkshop.org/data-archives/

pilotedjet/ch4-air/. Accessed: 2022-12-13.

31

http://www.me.berkeley.edu/gri_mech/
https://tnfworkshop.org/data-archives/pilotedjet/ch4-air/
https://tnfworkshop.org/data-archives/pilotedjet/ch4-air/

Study questions

1. What is Chemistry Coordinate Mapping (CCM) and the basic procedure of that?

2. What is the basic theory behind CCM, or generally the basic theory behind a chemistry
acceleration method?

3. How do you choose some key variables to construct a reaction rate manifold for your simulation
case?

4. How do you use CCM and growing CCM to accelerate the combustion simulation?

5. How can you modify a chemistry library?

32

	Introduction
	The theory of CCM
	The calculation of the reaction rates
	Governing equations for species and energy
	The manifold concept
	The procedure of CCM
	CCM variables and index strategy

	The implementation of CCM
	General structure
	The implementation of CCM
	The calculation of reaction rates
	Indexing
	Grouping in parallel
	The attribution of reaction rates

	Adding growing features
	Additional indexing operations
	Additional grouping/assigning operations

	The usage of the CCM library
	Prerequisite
	Compile the code
	Prepare a cold case
	The usage of the CCM library
	Setting the CCM dictionary
	Recommended procedures
	Benchmark and analysis

