
Cite as: Fangqing Liu.: A Thorough Description Of How Wall Functions Are Implemented In OpenFOAM.

In Proceedings of CFD with OpenSource Software, 2016, Edited by Nilsson. H.,

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2016

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Project work:

A Thorough Description Of How Wall
Functions Are Implemented In

OpenFOAM

Developed for OpenFOAM-4.0.x

Author:
Fangqing Liu
Chalmers university of techology
fangqing@student.chalmers.se

Peer reviewed by:
Håkan Nilsson

Mohsen Irannezhad

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone

through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

January 22, 2017

Learning outcomes

This tutorial will mainly teach four points: How to use it, The theory of it, How it is implemented,
and How to modify it. Therefore the list of learning outcomes is organized with those headers.

The reader will learn:

How to use it:

• How to set wall functions as boundary conditions.

The theory of it:

• The basic principle and derivation of wall functions.

How it is implemented:

• The difference of wall functions between theroy and codes in OpenFOAM.

• How a solver set boundary condition using wall function.

How to modify it:

• The first step of how to implement a new wall function.

1

Contents

1 General theoretical description about wall functions 3
1.1 Introduction . 3
1.2 Why using wall functions approach . 3
1.3 What are wall functions . 4

1.3.1 The near wall region . 4
1.3.2 Derivations of wall functions . 5

2 Wall functions in OpenFOAM 8
2.1 KqRWallFunctions . 9

2.1.1 kqRWallFunction . 9
2.1.2 kLowReWallFunction . 9

2.2 V2WallFunction . 12
2.3 fWallFunctions . 13
2.4 epsilonWallFunctions . 13

2.4.1 epsilonWallFunction . 14
2.4.2 epsilonLowReWallFunction . 20

2.5 OmegaWallFunctions . 20
2.6 nutWallFunctions . 22

2.6.1 nutWallFunction . 23
2.6.2 nutLowReWallFunction . 23
2.6.3 nutkWallFunction . 24
2.6.4 nutUWallFunction . 25
2.6.5 nutUSpaldingWallFunction . 26

2.7 Conclusion . 27

3 Structure of wall function and implementation 28
3.1 Structure of wall functions . 28
3.2 Implementing a new wall function . 29

4 Future work 31

5 Study question 32

2

Chapter 1

General theoretical description
about wall functions

1.1 Introduction

In the present report simple principle of wall functions will be illustrated and the details of the wall
functions code in OpenFOAM are explained. The way how wall functions are used in solver will be
illustrated, together with the first step of implementing a new wall function.

1.2 Why using wall functions approach

Nowadays turbulence models are heavily used when doing CFD simulations. However, some mature
turbulence models such as k-ε are only valid in the area of turbulence fully developed, and don’t
perform well in the area close to the wall. In order to deal with the near wall region, two ways
are usually proposed. One way is to integrate the turbulence to the wall. Turbulence models are
modified to enable the viscosity-affected region to be resolved with all the mesh down to the wall,
including the viscous sublayer. When using modified low Reynolds turbulence model to solve the
near-wall region the first cell center must be placed in the viscous sublayer (preferably y+=1). This
approach leads to requirement of abundant mesh number, which means a substantial computational
resource is needed. Another way is to use so-called wall functions, which can model the near wall
region. Wall functions are empirical equations used to satisfy the physics of the flow in the near wall
region and the first cell center needs to be placed in the log-law region to ensure the accuracy of
the result. Wall functions are used to bridge the inner region between the wall and the turbulence
fully developed region, in order to provide near-wall boundary conditions for the momentum and
turbulence transport equations, rather than to specify those conditions at the wall itself[1].
It can be noted that when using wall functions approach there is no need to resolve the boundary
layer, which yields to a significant reduction of the mesh size and the computational domain. Despite
wall functions are based on the empirical relations that are only valid under some conditions, the
result is relatively accurate if used correctly ([2]).
The wall function approach was first proposed by Launder and Spalding in 1972 ([3]) and the require-
ment of the earliest wall functions is the first cell center at the wall to be located in the logarithmic
layer. If the cell center lies in the viscous sublayer, the results from wall functions approach are very
inaccurate. However, that is a very strict constraint which will often be violated by the grid. Thus
some noble wall functions are given to reduce this restrain.
In OpenFOAM the existing wall functions have been modified to ensure that they can provide the
accurate result so wherever the position of the first cell center. The theory of wall functions used in
OpenFOAM is based on the paper proposed by Georgi Kalitzin ([4]).

3

1.3. WHAT ARE WALL FUNCTIONSCHAPTER 1. GENERAL THEORETICAL DESCRIPTION ABOUT WALL FUNCTIONS

1.3 What are wall functions

The wall boundary layer, together with some important parameters which are important to define
and derive wall functions are illustrated. Then the process of wall functions derivation are explained.
It should be noted that the main purpose of introducing the derivation of wall functions is to compare
them with that in OpenFOAM to check how wall functions are implemented.

1.3.1 The near wall region

To know in which condition wall functions approach can be used correctly, the near-wall region
should be introduced. Some parameters which be used to introduce the near wall region ([1] [2]).

y+ =
y × uτ
ν

(1.1)

uτ =

√
τw
ρ

(1.2)

where uτ is the friction velocity, which can be used to define dimensionless velocity later. τw is
the wall shear stress, y is the distance to the wall and y+ is a non-dimensional. The viscosity and
density of fluid which are used in equation (1.1) and (1.2) are represented by greek letter nu and
rho differently. The value of y+ of the first cell is essential since it judge where the first cell located.
The dimensionless velocity is given by

u+ =
u

uτ
(1.3)

Then it comes to the near-wall boundary layer.

The near-wall region can be divided into 3 parties: the viscous sub-layer, the buffer layer and the
logarithmic region. In figure 1.1 these sublayers, together with the relationship between y+ and u+

is demonstrated[1].

1. The viscous sublayer (y+ < 5)
In the viscous layer the fluid is dominated by the viscous affect so it can be assumed that the
shear stress of fluid is equal to the wall shear stress τw. In viscous layer viscous stress decide
the flow and the velocity profile is liner, given by

u+ = y+ (1.4)

In figure 1.1, the blue line in the viscous sublayer represents the liner relation.

2. The logarithmic area (30 < y+ < 200).
In the logarithmic layer turbulence stress dominate the flow and velocity profile varies very
slowly with a logarithmic function along the distance y, given by

u+ =
1

κ
× In(Ey+) (1.5)

where k is the von karmon constant equal to 0.41 and E is equal to 9.8 for the smooth walls.
In figure 1.1, the red line in the logarithmic region represents the logarithmic relation.

3. The Buffer layer
Viscous and turbulent stresses are of similar magnitude and since it is complex velocity profile
is not well defined and the original wall functions avoid the first cell center located in this
region. However, the improved wall functions allow the first cell center is located in buffer
layer. In OpenFOAM buffer layer is divided 2 parties. One is using the liner relation as that
in viscous sublayer, the other is to use logarithmic function as that in logarithmic region.

4

1.3. WHAT ARE WALL FUNCTIONSCHAPTER 1. GENERAL THEORETICAL DESCRIPTION ABOUT WALL FUNCTIONS

Figure 1.1: Relation between uplus and yplus in three parties of inner region

1.3.2 Derivations of wall functions

The process of deriving wall functions, including ε, f , k, ν, v2 and ω are here explained. Velocity
and turbulence parameters are given in non-dimensional form , given by

U+ =
U

uτ
; k+ =

k

uτ 2
; ε+ =

εν

uτ 4
; v2

+
=

v2

uτ 2
; f+ =

fν

uτ 2
; ω+ =

νω

uτ 2
(1.6)

Two turbulence models are discussed. The first one is v2 − f turbulence model which needs wall
functions k, ε, v2 and f wall functions. The second one is k − ω which needs wall functions (the
greek letter omega)ω.

The v2 − f turbulence model

In the viscous sub-layer, the v2 − f turbulence model equations can be simplified as ([4])

−ε+ +
d2k+

(dy+)2
= 0 (1.7)

−Cε2
6

(ε+)1.5 +
d2ε+

(dy+)2
= 0 (1.8)

−N ε+(v2)+

k+
+ k+f+ +

d2(v2)+

(dy+)2
= 0 (1.9)

2

3
(Cf1 − 1)− (N − Cf1)

(v2)+

k+
− 6

(ε+)0.5
f+ +

C2
ηC

2
L6

ε+
d2f+

(dy+)2
= 0 (1.10)

Based on the above equations ε+ is given by

ε+ =
14400

C2
ε2

1

(y+ + C)4
(1.11)

5

1.3. WHAT ARE WALL FUNCTIONSCHAPTER 1. GENERAL THEORETICAL DESCRIPTION ABOUT WALL FUNCTIONS

With the boundary condition k+(0) is equal to zero and the gradient dk+/dy+(0) is zero, we can
use result of ε+ to do the integration analytically in order to get k+.
So the k+ is given by

k+ =
2400

C2
ε2

× [
1

(y+ + C)4
+

2y+

C3
− 1

C2
] (1.12)

A local quadratic behavior is imposed on k+ by assuming k+ = Ck (y+)2 and put this in the
turbulence equations we get a unique condition for ε+, as

ε+ = 2
k+

(y+)2
(1.13)

The boundary condition f+ is derived by assuming that (v2)+ behaves locally as (v2)
+

=CV 2((y+)4)
and put it in equations of the v2 − f model and then getting the f+ [5].

f+ =
−4(6−N)(v2)

+

ε+(y+)4
(1.14)

In the logarithmic layer, it can be assumed that the diffusion term is small, yielding

κy+
dk+

dy+
= Ck (1.15)

Integrating equation (1.15) k+ is given by

k+ =
Ck
κ
log(y+) +Bk (1.16)

v2
+

is derived in the same way as

v2
+

=
CV 2

κ
log(y+) +BV 2 (1.17)

The ε+ is given by

ε+ =
1

κy+
(1.18)

f+ is given by

f+ = N
v2

+

(k+)2
ε+ (1.19)

In these derived equations some constants used are listed in table 1.1. These values are the same as
that in OpenFOAM.

Table 1.1: The constants values

Ck = −0.416 Bk = 8.366 CV 2 = 0.193 BV 2 = −0.940

The k-ω turbulence model

Similar to the v2 − f turbulence model, k − ω model equations are simplified to get the behaviour
of ω in viscous sub-layer and logarithmic region.
In the viscous layer the standard equations of k − ω can be simplified as

Cµω
+k+ +

d2k+

(dy+)2
= 0 (1.20)

6

1.3. WHAT ARE WALL FUNCTIONSCHAPTER 1. GENERAL THEORETICAL DESCRIPTION ABOUT WALL FUNCTIONS

−β1(ω+)2 +
d2ω+

(dy+)2
= 0 (1.21)

According to the above two equations the singular solution of ω+ is given by

ω+ =
6

β1(y+)2
(1.22)

In the logarithmic layer, ω+ is given by

ω+ =
1

κ
√
Cµy+

(1.23)

In the intermediate region ω+ is usually obtained according a combination of the viscous sub-layer
and the log-law layer value, which is given by

ω+ =
√

[ω+
vis]

2 + [ω+
log]

2 (1.24)

7

Chapter 2

Wall functions in OpenFOAM

In this chapter the details of wall functions is explained. Firstly, there are some knowledge back-
ground needed to be introduced.

Wall functions are boundary conditions and in OpenFOAM all of them inherit from the abstract
class FvPatchField. They provide Dirichlet and Neumann boundary condition, which inherit from
FixedValue and zeroGradient differently. However, in order to understand the exact definitions of
boundary conditions, it is efficient to check the function updateCoeffs() and evaluate() in specific
wall functions classes since in OpenFOAM a lot of boundary conditions are defined in one of them.

Another essential characteristics of wall functions is ypluslam. As mentioned before in OpenFOAM
buffer layer is divided into viscous sublayer and logarithmic region in order to provide a effective
definition of boundary condition when the first cell center is located in the buffer layer. Ypluslam
can be understood as the intersection between the viscous and logarithmic layer. In some wall func-
tions which can provide two calculation modes, yplusLam is usually calculated at the beginning of
definition class.

Last but not least, the calculation process (or calculation position) should be demonstrated. In
OpenFOAM, based on the calculation process wall functions can be divided into 2 types. One is
calculating the value on the face of the first cell, such as kwallfunctions etc. Another type is calcu-
lating the value of center of the cell adjacent to the wall, such as epsilon and omega wall functions.
The reason we need to distinguish calculation process is that there are some differences in the final
result, which is explained latter.

The reader should keep the above three important points about wall functions in mind, the following
description will be made based on them.

Wall functions directory in OpenFOAM is located in the path

$FOAM_SRC/TurbulenceModels/turbulenceModels/derivedFvPatchFields/wallFunctions

In wallFunctions directory there are six types of wall function sub-directories

• epsilonWallFunctions

• kqRWallFunctions

• omegaWallFunctions

• fWallFunctions

• nutWallFunctions

8

2.1. KQRWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

• v2WallFunctions

So in this chapter, each section will introduce one type of wall functions. For some types of wall
functions which provide more than 1 kind, there is description in a sub-section under relative section.
At the end there is a section where an general conclusion, such as characteristics of each wall function,
is made.

2.1 KqRWallFunctions

In OpenFOAM there are two kinds of k wall functions and in kqRWallFunctions directory there
are two sub-directories.

• kqRWallFunction

• kLowReWallFunction

Each one will be illustrated.

2.1.1 kqRWallFunction

kqRWallFunction inherits from the zeroGradientFvPatchField, which means it provides Neumann
boundary (the only Neumann boundary of wall functions). As said at the beginning in this chapter,
to know the exact meaning, checking the function evaluate()

120 template<class Type>

121 void Foam::kqRWallFunctionFvPatchField<Type>::evaluate

122 (

123 const Pstream::commsTypes commsType

124)

125 {

126 zeroGradientFvPatchField<Type>::evaluate(commsType);

127 }

It provides a pure zero-gradient boundary condition.

2.1.2 kLowReWallFunction

kLowReWallFunction provides a turbulence kinetic energy boundary condition for low- and high-
Reynolds number turbulent flow cases. And it can supply boundary condition if the first cell center
is located in buffer layer, so ypluslam is calculated at the beginning.

34 Foam::scalar Foam::epsilonLowReWallFunctionFvPatchScalarField::yPlusLam

35 (

36 const scalar kappa,

37 const scalar E

38)

39 {

40 scalar ypl = 11.0;

41

42 for (int i=0; i<10; i++)

43 {

44 ypl = log(max(E*ypl, 1))/kappa;

45 }

46

47 return ypl;

48 }

9

2.1. KQRWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

The parameter yPlusLam is calculated through ten iteration steps and the result is approximately
11.5. kappa is von karman constant with value of 0.41, E is the roughness coefficient with value of
9. In most wall functions which can operate two modes, the ypluslam is calculated at the beginning
using the same member function as above. The equation is given by

ypl =
log(max(E × ypl+, 1))

κ
(2.1)

Then checking function to know exact definition. updateCoeffs().

164 void kLowReWallFunctionFvPatchScalarField::updateCoeffs()

165 {

166 if (updated())

167 {

168 return;

169 }

170

171 const label patchi = patch().index();

172

173 const turbulenceModel& turbModel = db().lookupObject<turbulenceModel>

174 (

175 IOobject::groupName

176 (

177 turbulenceModel::propertiesName,

178 internalField().group()

179)

180);

181 const scalarField& y = turbModel.y()[patchi];

182

183 const tmp<volScalarField> tk = turbModel.k();

184 const volScalarField& k = tk();

185

186 const tmp<scalarField> tnuw = turbModel.nu(patchi);

187 const scalarField& nuw = tnuw();

188

189 const scalar Cmu25 = pow025(Cmu_);

190

191 scalarField& kw = *this;

192

193 // Set k wall values

194 forAll(kw, facei)

195 {

196 label faceCelli = patch().faceCells()[facei];

197

198 scalar uTau = Cmu25*sqrt(k[faceCelli]);

199

200 scalar yPlus = uTau*y[facei]/nuw[facei];

201

202 if (yPlus > yPlusLam_)

203 {

204 scalar Ck = -0.416;

205 scalar Bk = 8.366;

206 kw[facei] = Ck/kappa_*log(yPlus) + Bk;

207 }

208 else

10

2.1. KQRWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

209 {

210 scalar C = 11.0;

211 scalar Cf = (1.0/sqr(yPlus + C) + 2.0*yPlus/pow3(C) - 1.0/sqr(C));

212 kw[facei] = 2400.0/sqr(Ceps2_)*Cf;

213 }

214

215 kw[facei] *= sqr(uTau);

216 }

217

There is a if statement in the beginning. If update() then return without doing anything. To know
the reason we should check the definition of update().
Declaration class kLowReWallFunctionFvPatchScalarField.H inherits from the class fixedValueFvPatchField.H.
But the function update() cannot be found in this function. So checking higher level class. fixedValueFvPatchField.H
inherits from fvPatchField.H. In fvPatchField.H function update() is found and the code is given
by

//- Return true if the boundary condition has already been updated

bool updated() const

{

return updated_;

}

Checking the updateCoeffs()

void Foam::fvPatchField<Type>::updateCoeffs()

{

updated_ = true;

}

Based on the definitions of functions of update() and updateCoeffs() in the class fvPatchField.H,
we can understand the purpose of if statement in the beginning of updateCoeffs() in kLowReWall-
Function. If the update() has been used, if it has been updated return the updated_. In the
updateCoeffs() if statement condition is satisfied so updateCoeffs() do nothing. The above steps
are done in updateCoeffs() function of most wall function definition classes in order to judge if the
boundary condition has been updated.

Let us get back to the updateCoeffs() functions in kLowReWallFunction. Firstly boundary is divided
into different patches, and label every patch with patchi. Then some parameters are defined. Line
181 defined y. y() is the member function of turbulenceModel.H. To check y(), k() and nu() go to
turbulenceModel.H to check

157 //- Return the near wall distances

158 const nearWallDist& y() const

159 {

160 return y_;

161 }

The distance of the first cell center to the wall y is defined here. For k() and nu() the definition
processes are the same as y().

Going back to updateCoeffs() (in page 10), nuw at line 187 means the friction velocity and cmu25

is a scalar which uses constant Cmu_ to calculate. From line 193 the calculation based on the two
modes starts.

11

2.2. V2WALLFUNCTION CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

First going all faces of one patch. The important parameter yplus(y+) is calculated through
uTau(uτ). uTau is friction velocity, which is calculated through the equation given by

uτ = C1/4
µ

√
k (2.2)

Where k(k(faceCelli)) is the value of kinematic energy of the cell center adjacent to the wall.

After getting y+ value, it comes to the calculation of k+.
When y+ > yPlusLam

k+ =
Ck
κ
× log(y+) +Bk (2.3)

The constant value Ck and Bk are the same as the theory described in chapter one.
When y+ < yPlusLam

k+ =
2400

C2
eps2

× Cf . (2.4)

where Cf is calculated through the equation

Cf = [
1

(y+ + C)2
+

2y+

C3
− 1

C2
] (2.5)

The final step is to change the non-dimensional k+ into k value on the wall(face of cell).

k = k+ × u2τ (2.6)

Then doing the above steps for all patches.

2.2 V2WallFunction

V2Wallfunction provide the stress normal to streamlines boundary condition. The code structure
is similar to kLowReWallFunction. So just checking the calculation part. v2 is calculated in the
non-dimensional form.

197 forAll(V^2, facei)

198 {

205 if (yPlus > yPlusLam_)

206 {

207 scalar CV^2 = 0.193;

208 scalar BV^2 = -0.94;

209 V^2[facei] = CV^2/kappa_*log(yPlus) + BV^2;

210 }

211 else

212 {

213 scalar CV^2 = 0.193;

214 V^2[facei] = CV^2*pow4(yPlus);

215 }

216

217 V^2[facei] *= sqr(uTau);

218 }

(v2)+ is calculated depending on the position of y+.

(v2)+ = [
CV 2

κ
ln(y+) +BV 2] (2.7)

When y+ < yPlusLam

12

2.3. FWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

(v2)+ = CV 2(y+)2 (2.8)

Here the constant value of CV 2 and BV 2 have the same value as theory description before. Finally
the value of (v2) on the wall is obtained, as

(v2) = (v2)+ × u2τ (2.9)

The equations in OpenFOAM is the same as that in the theroy description.

2.3 fWallFunctions

fWllfunctions provides the damping function both for low and high Reynolds numbers. The code
structure is similar as v2 and provides two modes.

When y+ > yPlusLam

f =
Nv2ε

k2u2τ
(2.10)

When y+ < yPlusLam
f = 0 (2.11)

Where N is constant with value of 6.
However formula is totally different from theory, which means when using f wall function as boundary
condition, checking your case requirement in advance.

2.4 epsilonWallFunctions

Unlike k, v2 or f wall function, in the epsilon wall function the value of the cell center, rather than
the value on the cell face, is calculated.

In epsilonWallFunctions directory there are two sub-directories:

• epsilonWallFunction

• epsilonLowReWallFunction

Before explaining the code the parameter ’weights’ should be introduced first. Weights means
that how many faces of one cell use this boundary condition. If three faces of one cell use the
epsilonWallFunctionFvPatchScalarField boundary condition, the weights of this cell is three. The
purpose of calculating the weights is obtaining the value of the cell center. In figure 2.1 the weight
is 3.

Figure 2.1: The calculation of cell center of epsilon

13

2.4. EPSILONWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

In figure 2.1 the epsilon value of each face is calculated and then summing them up through equation
(2.12) to get the cell center’s value.

εcenter =
1

3
ε1 +

1

3
ε2 +

1

3
ε3 (2.12)

2.4.1 epsilonWallFunction

As before, updateCoeffs() is mainly focused. Three functions should be analysed Since they have
big influence on the calculation process.

1. setMaster()

setMaster() is used to set the master patch, the master patch which be set here is used in
the following calculation steps. In this function master_ is the ID of the master patch and it
is the member data of patch.

2. createAveragingWeights()

createAveragingWeights() is used to create the averaging corner weights when doing the
calculations. Corner weight is parameter to be used in the calculation, which is illustrated
later. In the function cornerWeights_ is used to list the averaging corner weights.

3. calculateTurbulenceFields()

The main process of calculation is done in this function and it call member function calculate
to do the exact calculation.

Initially the code of updateCoeffs() is show as

void Foam::epsilonWallFunctionFvPatchScalarField::updateCoeffs()

400 {

401 if (updated())

402 {

403 return;

404 }

405

406 const turbulenceModel& turbModel = db().lookupObject<turbulenceModel>

407 (

408 IOobject::groupName

409 (

410 turbulenceModel::propertiesName,

411 internalField().group()

412)

413);

414

415 setMaster();

416

417 if (patch().index() == master_)

418 {

419 createAveragingWeights();

420 calculateTurbulenceFields(turbModel, G(true), epsilon(true));

421 }

422

423 const scalarField& G0 = this->G();

424 const scalarField& epsilon0 = this->epsilon();

425

14

2.4. EPSILONWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

426 typedef DimensionedField<scalar, volMesh> FieldType;

427

428 FieldType& G =

429 const_cast<FieldType&>

430 (

431 db().lookupObject<FieldType>(turbModel.GName())

432);

433

434 FieldType& epsilon = const_cast<FieldType&>(internalField());

435

436 forAll(*this, facei)

437 {

438 label celli = patch().faceCells()[facei];

439

440 G[celli] = G0[celli];

441 epsilon[celli] = epsilon0[celli];

442 }

443

444 fvPatchField<scalar>::updateCoeffs();

445 }

The function setMaster() is called in line 415. createAveragingWeights() is called in line 419
and calculateTurbulenceFields(turbModel, G(true), epsilon(true)) is called in line 420.
In the beginning if (update()) is used again to judge whether this boundary condition has been
updated. Then it comes to the setMaster(). First start going through setMaster().

setMaster()

65 void Foam::epsilonWallFunctionFvPatchScalarField::setMaster()

66 {

67 if (master_ != -1)

68 {

69 return;

70 }

71

72 const volScalarField& epsilon =

73 static_cast<const volScalarField&>(this->internalField());

74

75 const volScalarField::Boundary& bf = epsilon.boundaryField();

76

77 label master = -1;

78 forAll(bf, patchi)

79 {

80 if (isA<epsilonWallFunctionFvPatchScalarField>(bf[patchi]))

81 {

82 epsilonWallFunctionFvPatchScalarField& epf = epsilonPatch(patchi);

83

84 if (master == -1)

85 {

86 master = patchi;

87 }

88

89 epf.master() = master;

90 }

15

2.4. EPSILONWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

91 }

92 }

As said before, the purpose of this function is to set the master patch. master_is the ID of master
patch. The initial value of master_ is -1.

Line 67-71 is judging whether this master patch has been settled.

Then in the line 75 variable bf has gotten the boundary field of the epsilon.

In the line 77 a temporary variable master has been set to -1.

From the line 77 to 89. For all the patches and bf. If the patch of boundary using epsilonWallFunc-
tionFvPatchScalarField, then judging the master is whether equal to -1.
when master = −1 , the value of patchI has been given to master, and then give the master value to
the member data master_ of this patchI.(since the function master() return master_ to the patch)
Thus the match which has gotten master_ value is master patch. After setting master patch the
relevant calculation is done around master patch.

An simple example can be given to illustrat. There are two patches: the first patch with its patch
index patchI=0 and second patch with patch index patchI=1. Firstly when it comes to the patch
with patchI=0, its member data master_ is of course -1 (haven’t been handled) so setMaster() will
handle it. Because the patchI of first patch is 0 so when the function has been run over to the end the
member data master_ of the first patch is zero. When the second patch with its patch index equal
to 1 the setMaster() also will handle it. However when going to line 84 master is now 0 rather
than 1. (it has been changed to 0 when handling the first patch) so the second patch won’t give
its patch index patchI=1 to its member data master since the condition of if statement cannot be
satisfied. Its member data master will be given value of 0 directly. Thus the patch index patchI and
member data master of the first patch are both equal to 0 but second patch has its patchI=1 and its
member data master_=0. The purpose is the function can using the judge sentence to pick the mas-
ter patch (can be understood as the patchI and master_ of master patch are equal) to do calculation.

After understanding how setMaster() set the master patch going back to updateCoeffs() to line
417. There is an if statement. It is for picking master patch since only master patch has the same
patchI(patch index) and master_, in the big parentheses two functions describe the calculation for
the master patch which will discussed later.
In the updateCoeffs()line 423 and 424 member functions G() and epsilon() give the value to the
data G0 and epsilon0. These two functions are very similar so only opening one to check what value
has been return in these functions.

epsilon()

364 Foam::scalarField& Foam::epsilonWallFunctionFvPatchScalarField::epsilon(bool init)

365 {

366 if (patch().index() == master_)

367 {

368 if (init)

369 {

370 epsilon_ = 0.0;

371 }

372

373 return epsilon_;

374 }

375

16

2.4. EPSILONWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

376 return epsilonPatch(master_).epsilon();

377 }

In the line 366 of function epsilon() the same if statement appeared in function updateCoeffs()

is used and it is clear now that it picks the master patch.

In the line 368 if statement is used, since the init value is false, so epsilon() will return epsilon_(local
copy of turbulence epsilon field) directly. In the line 366 if statement is not satisfied (not master
patch) the function epsilon() will return the epsilon of master patch. (since the function epsilon-
Patch(patchi) return access to the epsilon patch and the pathI of master patch is master_).

An simple conclusion can be made: an under study boundary has a lot of patches and the patch
with the smallest patch index patchI will be set into master patch , the relevant calculation is done
together with the master patch. These non-master patches just read the results (turbulence field
G_and turbulence epsilon field epsilon_) from master patch since the master patch getting the
whole internal values so there is no need for other patches to do the same calculation again.

In the end of the upfateCoeffs() the main process is that give the value of temporary parameter
G0 and epsilon0 to the cells adjacent to the wall.

After understanding how the function updateCoeffs() works the important part of calculation
should be analysed. As said before the function createAveragingWeights() and calculateTurbulenceFields

are mainly related to calculation. First checking the createAveragingWeights().

createAveragingWeights()

95 void Foam::epsilonWallFunctionFvPatchScalarField::createAveragingWeights()

96 {

97 const volScalarField& epsilon =

98 static_cast<const volScalarField&>(this->internalField());

99

100 const volScalarField::Boundary& bf = epsilon.boundaryField();

101

102 const fvMesh& mesh = epsilon.mesh();

103

104 if (initialised_ && !mesh.changing())

105 {

106 return;

107 }

108

109 volScalarField weights

110 (

111 IOobject

112 (

113 "weights",

114 mesh.time().timeName(),

115 mesh,

116 IOobject::NO_READ,

117 IOobject::NO_WRITE,

118 false // do not register

119),

120 mesh,

121 dimensionedScalar("zero", dimless, 0.0)

122);

123

17

2.4. EPSILONWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

124 DynamicList<label> epsilonPatches(bf.size());

125 forAll(bf, patchi)

126 {

127 if (isA<epsilonWallFunctionFvPatchScalarField>(bf[patchi]))

128 {

129 epsilonPatches.append(patchi);

130

131 const labelUList& faceCells = bf[patchi].patch().faceCells();

132 forAll(faceCells, i)

133 {

134 weights[faceCells[i]]++;

135 }

136 }

137 }

138

139 cornerWeights_.setSize(bf.size());

140 forAll(epsilonPatches, i)

141 {

142 label patchi = epsilonPatches[i];

143 const fvPatchScalarField& wf = weights.boundaryField()[patchi];

144 cornerWeights_[patchi] = 1.0/wf.patchInternalField();

145 }

146

147 G_.setSize(internalField().size(), 0.0);

148 epsilon_.setSize(internalField().size(), 0.0);

149

150 initialised_ = true;

151 }

From the line 109 to 122 the volScalarField weights has been initialed as an IOobject and set the
initial value of 0.

In the line 124 a dynamicList epsilonPatches has been defined and line 125 to 129 illustrates if the
patch (with index of patchI) of boundary use the epsilonWallFunctionFvPatchScalarField condition
then add this patch in the list of epsilonPatches which will used in line 140 later.

In the line 134 parameter weights is calculated.

From line 139 an important parameter cornerWeight is obtained. For all the patches which use ep-
silonWallFunctionFvPatchScalarField boundary (in line 140), the cornerWeight (line 143 and 144)
of one face is the reciprocal of weights of the cell which this face belongs to. In the previous example
cornerweight is 1/3 (the cornerWeight of each face is equal).

In the line 147 and 148 the member data G_ has been initialized to zero (interfield() means the
value is inside the cells).

Then checking the function calculateTurbulenceFields().

calculateTurbulenceFields()

void Foam::epsilonWallFunctionFvPatchScalarField::calculateTurbulenceFields

170 (

171 const turbulenceModel& turbulence,

172 scalarField& G0,

173 scalarField& epsilon0

18

2.4. EPSILONWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

174)

175 {

176 // accumulate all of the G and epsilon contributions

177 forAll(cornerWeights_, patchi)

178 {

179 if (!cornerWeights_[patchi].empty())

180 {

181 epsilonWallFunctionFvPatchScalarField& epf = epsilonPatch(patchi);

182

183 const List<scalar>& w = cornerWeights_[patchi];

184

185 epf.calculate(turbulence, w, epf.patch(), G0, epsilon0);

186 }

187 }

188

189 // apply zero-gradient condition for epsilon

190 forAll(cornerWeights_, patchi)

191 {

192 if (!cornerWeights_[patchi].empty())

193 {

194 epsilonWallFunctionFvPatchScalarField& epf = epsilonPatch(patchi);

195

196 epf == scalarField(epsilon0, epf.patch().faceCells());

197 }

198 }

199 }

In line 177, statement !cornerWeights_[patchi].empty() is used to judge whether the patch uses
epsilon boundary condition. In line 185 member function calculate is called to do the calculation.
In line 189 using the zero-gradient condition and put the value of the cell center to the boundary.

The function calculate does the exact calculation. So opening it and checking the equations of
boundary condition.

calculate(turbulence, w, epf.patch(), G0, epsilon0)

231 // Set epsilon and G

232 forAll(nutw, facei)

233 {

234 label celli = patch.faceCells()[facei];

235

236 scalar w = cornerWeights[facei];

237

238 epsilon[celli] += w*Cmu75*pow(k[celli], 1.5)/(kappa_*y[facei]);

239

240 G[celli] +=

241 w

242 *(nutw[facei] + nuw[facei])

243 *magGradUw[facei]

244 *Cmu25*sqrt(k[celli])

245 /(kappa_*y[facei]);

246 }

247 }

19

2.5. OMEGAWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

It can be found that the cell center value is the sum of value of each face times the cornerweight.

ε =
1

W

W∑
f=i

(
c
3/4
µ k3/2

κyi

)
(2.13)

It calculates the sum of the value on each face based on the weights.
Where W is the weight of the cell, k is the value of the cell center and y is the distance from the
center of cell to the wall.

2.4.2 epsilonLowReWallFunction

The epsilonLowReWallFunctionFvPatchScalarField inherits from epsilonWallFunctionFvPatchScalarField

So process of this wall function is similar as before, except that this wall function provides two calcu-
lation models based on the position of y+, Only part of calculation need to paid attention (checking
calculate function).

86 // Set epsilon and G

87 forAll(nutw, facei)

88 {

95 if (yPlus > yPlusLam_)

96 {

97 epsilon0[celli] += w*Cmu75*pow(k[celli], 1.5)/(kappa_*y[facei]);

98

99 G0[celli] +=

100 w

101 *(nutw[facei] + nuw[facei])

102 *magGradUw[facei]

103 *Cmu25*sqrt(k[celli])

104 /(kappa_*y[facei]);

105 }

106 else

107 {

108 epsilon0[celli] += w*2.0*k[celli]*nuw[facei]/sqr(y[facei]);

109 G0[celli] += G[celli];

110 }

111 }

112 }

When y+ > yPlusLam the equation is same as in the epsilonWallFunction.
When y+ < yPlusLam

ε =
1

W

W∑
f=i

(
2 · kνi
y2i

) (2.14)

In the theory non-dimensional epsilon value in the viscous sublayer is given by

ε+ = 2
k+

(y+)2
(2.15)

This function provide boundary condition for low Reynolds k − ε and v2 − f turbulence model.

2.5 OmegaWallFunctions

Omega wall functions provide the constraint on turbulence specific dissipation.

20

2.5. OMEGAWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

As the theory mentioned before, the omega wall function provides the combination of viscous and
log equation. In the OpenFOAM omegaWallFunction is a special wall function which can switch
between viscous and logarithmic region according to the position of y+. In the intersection of the
viscous sublayer and log-law region value is calculated through blending the viscous and log-law
sublayer value.

Value of the cells center is calculated (same as epsilon), which considers two or more than two faces
using omegaWallFunctionFvPatchScalarField boundary.

Function updateCoeffs() is very similar to the that of epsilonWallFunction, thus only focusing on
the function calculate.

234

235 // Set omega and G

236 forAll(nutw, facei)

237 {

238 label celli = patch.faceCells()[facei];

239

240 scalar w = cornerWeights[facei];

241

242 scalar omegaVis = 6.0*nuw[facei]/(beta1_*sqr(y[facei]));

243

244 scalar omegaLog = sqrt(k[celli])/(Cmu25*kappa_*y[facei]);

245

246 omega[celli] += w*sqrt(sqr(omegaVis) + sqr(omegaLog));

247

248 G[celli] +=

249 w

250 *(nutw[facei] + nuw[facei])

251 *magGradUw[facei]

252 *Cmu25*sqrt(k[celli])

253 /(kappa_*y[facei]);

254 }

255 }

Only focusing the main calculation part of function. From the equation it can be seen that the
omegaVis and omegaLog is calculated on the face of the cell, Then blending them together and
calculating the value of cell center.
In the viscous layer, the equation is given by

ωV is =
6.0ν

β1y2
(2.16)

Where β1 is constant with value of 0.075
In the log-law layer the equation is given by

ωLog =
k1/2

C
1/4
µ κy

(2.17)

Where k is the value of cell. Finally getting the combination of equation (2.16) and equation (2.17)

ω =
√
ω2
V is + ω2

Log (2.18)

So when using the turbulence model based on the omega (such as k − ω), this wall function can be
used.

21

2.6. NUTWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

2.6 nutWallFunctions

nutWallFunctions is simple but important which provides eight kinds of turbulence viscosity of the
wall boundary condition.

Firstly what is the turbulence viscosity? The shear stress can be represented as ([1])

τw = ν · ∂U
∂n
|w (2.19)

In order to solve the equation (2.19), there are two ways. The first way is doing the DNS simulations
to get the curve of between velocity profile and y, then getting the derivative to get the correct
gradient. The second way is using the equation (2.20) to calculate.

τw = ν
Uc − Uw

y
(2.20)

Where Uc is the velocity of first cell center and Uw is velocity of the flow on the wall.

But in fact since the velocity gradient near the wall is very large so two equations are not equal.
But we can make an effective viscosity to make them equal. The second way is much better since
we don’t need to modify the momentum equations but only setting the new viscosity to correct the
shear stress on the wall.
In logarithmic area kinematic energy k is represented as ([1])

k+ =
1√
Cµ

= k/u2τ (2.21)

Friction velocity can be obtained as
uτ = C1/4

µ k1/2 (2.22)

And the shear stress on the wall can be also represented as

τw = ρu2τ (2.23)

Friction velocity is equal to u divided by the non-dimensional u+. So the equation (2.23) can be
represented as

τw = ρuτ ·
U

U+
=
ρuτ (Uc − Uw)

1
κ ln(Ey+)

(2.24)

U is the velocity of the first cell center parallel to the wall.

Compared with the equation (2.44), a new effective viscosity can be redefined

νnew =
uτy

1
κ ln(Ey+)

=
y+ν

1
κ ln(Ey+)

= ν + νt (2.25)

So the turbulence viscosity can be obtained as

νt = ν ·
(

κy+

ln(Ey+)
− 1

)
(2.26)

This is a simple example of getting turbulence viscosity. y+ can be obtained through different ways.
Turbulence viscosity can be used to correct the viscosity to get the proper wall shear stress when
using turbulence model to do the CFD simulations.

In the nutwallFunctions directory, there are a lot of types of turbulence viscosity wall functions.
But not each of them provides one specific type of turbulence viscosity boundary condition. The
nutWallFunction is the abstract class which don’t provide a specific turbulence viscosity. Figure
2.2 can illustrate the inheriting relationship between different classes.

22

2.6. NUTWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

Figure 2.2: Inherit Relationship among turbulence viscosity wall functions

2.6.1 nutWallFunction

The class nutWallFunction is an abstract class in the nutWallFunctions directory and it inherits
from the fixedValueFvPatchScalarField so it provides Dirichlet boundary condition.

Checking updateCoeffs()

169 void nutWallFunctionFvPatchScalarField::updateCoeffs()

170 {

171 if (updated())

172 {

173 return;

174 }

175

176 operator==(calcNut());

177

178 fixedValueFvPatchScalarField::updateCoeffs();

179 }

An operator is defined and equal to the function calcNut() which means the calculation will be
done in calcNut(), then turbulence viscosity value is aligned to each patch. Function calcNut()

is defined as a virtual function which has been initialized to zero and for different nutwallfunction,
thus this function will be redefined. In order to understand what kind of turbulence viscosity that
each nutwallfunction supply it is better to check the function calcNut() in each class.

What should also been mentioned that the value of yPlusLam is calculated in the nutWallFunction.
In other nut wall functions if some of them provide two models for viscous and logarithm layer they
can use the value directly.

2.6.2 nutLowReWallFunction

Checking the function calcNut()

tmp<scalarField> nutLowReWallFunctionFvPatchScalarField::calcNut() const

{

return tmp<scalarField>(new scalarField(patch().size(), 0.0));

}

It is obvious that nutLowReWallFunction set the turbulence viscosity into zero.

23

2.6. NUTWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

2.6.3 nutkWallFunction

The wall function nutkWallFunction provides a turbulence viscosity condition based on the turbu-
lence kinetic energy. First checking the function CalcNut()

40 tmp<scalarField> nutkWallFunctionFvPatchScalarField::calcNut() const

41 {

42 const label patchi = patch().index();

43

44 const turbulenceModel& turbModel = db().lookupObject<turbulenceModel>

45 (

46 IOobject::groupName

47 (

48 turbulenceModel::propertiesName,

49 internalField().group()

50)

51);

52

53 const scalarField& y = turbModel.y()[patchi];

54 const tmp<volScalarField> tk = turbModel.k();

55 const volScalarField& k = tk();

56 const tmp<scalarField> tnuw = turbModel.nu(patchi);

57 const scalarField& nuw = tnuw();

58

59 const scalar Cmu25 = pow025(Cmu_);

60

61 tmp<scalarField> tnutw(new scalarField(patch().size(), 0.0));

62 scalarField& nutw = tnutw.ref();

63

64 forAll(nutw, facei)

65 {

66 label faceCelli = patch().faceCells()[facei];

67

68 scalar yPlus = Cmu25*y[facei]*sqrt(k[faceCelli])/nuw[facei];

69

70 if (yPlus > yPlusLam_)

71 {

72 nutw[facei] = nuw[facei]*(yPlus*kappa_/log(E_*yPlus) - 1.0);

73 }

74 }

75

76 return tnutw;

77 }

From line 56 to 57 the viscosity(nuw) of each patch is obtained.

In line 61 the turbulence viscosity (tnutw) is initialized with the value of 0. In the calculation nutw

is the turbulence viscosity. This function supply two modes
When y+ > yPlusLam

νt = ν ·
(

κy+

ln(Ey+)
− 1

)
(2.27)

When y+ < yPlusLam

νt = 0 (2.28)

24

2.6. NUTWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

It is same as it in theory and in the theory part u+ is obtained from logarithmic region so when
using this boundary condition it is better to put the first cell center in the logarithmic area.

The member function yPlus() is defined here but not use. However for other functions it can be
used to calculate yplus. For example there is a class called yPlusRAS() uses this function to calculate
the yplus for all wall patches when using RAS turbulence models.
yPlusRAS() is located in the FOAM-extend-4.0

$HOME/foam/foam-extend-4.0/applications/utilities/postProcessing/wall/yPlusRAS+

Opening yPlusRAS.C

45 #include "nutWallFunction/nutWallFunctionFvPatchScalarField.H"

In the beginning the nutWallFunctionFvPatchScalarField.H has been included.
In the line 63 there is typedef command for using wallFunctionPatchField to represent nutWallFunc-
tionFvPatchScalarField.

63 typedef incompressible::RASModels::nutWallFunctionFvPatchScalarField

64 wallFunctionPatchField;

In the calculation process of yPlus, nutPW means nutWallFunctionFvScalarField. In the line 169
function yPlus() which is defined in the nutwallfunction has been called to calculated the yPlus at
each patch.

bool foundNutPatch = false;

79 forAll(nutPatches, patchi)

80 {

81 if (isA<wallFunctionPatchField>(nutPatches[patchi]))

82 {

83 foundNutPatch = true;

84

85 const wallFunctionPatchField& nutPw =

86 dynamic_cast<const wallFunctionPatchField&>

87 (nutPatches[patchi]);

88

89 yPlus.boundaryField()[patchi] = nutPw.yPlus();

90 const scalarField& Yp = yPlus.boundaryField()[patchi];

Yp is the final result.

2.6.4 nutUWallFunction

The structure of this class is similar to nutkWallFunction. So just checking the calculation part.

62 forAll(yPlus, facei)

63 {

64 if (yPlus[facei] > yPlusLam_)

65 {

66 nutw[facei] =

67 nuw[facei]*(yPlus[facei]*kappa_/log(E_*yPlus[facei]) - 1.0);

68 }

69 }

70

71 return tnutw;

25

2.6. NUTWALLFUNCTIONS CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

The calculation equation is same as that in nutkWallFunction. So when using nutUWallFunction as
boundary condition trying to put the first cell center in the logarithmic area.

Here function CalcYPlus should be paid attention. The principle can be summarized as.

In logarithmic area the velocity profile and distance is given by

U+ =
Uc
uτ

=
1

κ
ln(Ey+) (2.29)

Doing some modifications we can get

Uc
yuτ/ν

· (y/ν) =
Uc
y+
· (y/ν) =

1

κ
ln(Ey+) (2.30)

Then we can get

y+ ln(Ey+)− κyUp
ν

= 0 (2.31)

We solve it using Newton-Raphson as ([1])

y+n+1 = y+n −
f(y+)

f ′(y+)
= y+n −

y+n ln(Ey+n)− κyUc

ν

1 + ln(Ey+n)
=

y+n + κyUc

ν

1 + ln(Ey+n)
(2.32)

This is an iteration process. It can be seen that the calculation part in the code is the same as that
in theroy. The code is given by

97 forAll(yPlus, facei)

98 {

99 scalar kappaRe = kappa_*magUp[facei]*y[facei]/nuw[facei];

100

101 scalar yp = yPlusLam_;

102 scalar ryPlusLam = 1.0/yp;

103

104 int iter = 0;

105 scalar yPlusLast = 0.0;

106

107 do

108 {

109 yPlusLast = yp;

110 yp = (kappaRe + yp)/(1.0 + log(E_*yp));

111

112 } while (mag(ryPlusLam*(yp - yPlusLast)) > 0.01 && ++iter < 10);

113

114 yPlus[facei] = max(0.0, yp);

115 }

116

117 return tyPlus;

118 }

In the line 99 it calculate the second item of equation (2.31). And from the 107 to 114 Newton-
Raphson iteration is done. The equation (2.32) is implemented in the code from line 110.

2.6.5 nutUSpaldingWallFunction

This wall function is based on the special relationship between y+ and u+.The curve can fit the
curve of u+ = y+ in the viscous layer and u+ = Ey+/κ in the log area.

y+ = u+ +
1

E

[
eκu

+

− 1− κu+ − 1

2
(κu+)2 − 1

6
(κu+)3

]
(2.33)

26

2.7. CONCLUSION CHAPTER 2. WALL FUNCTIONS IN OPENFOAM

42

43 const turbulenceModel& turbModel = db().lookupObject<turbulenceModel>

44 (

45 IOobject::groupName

46 (

47 turbulenceModel::propertiesName,

48 internalField().group()

49)

50);

51 const fvPatchVectorField& Uw = turbModel.U().boundaryField()[patchi];

52 const scalarField magGradU(mag(Uw.snGrad()));

53 const tmp<scalarField> tnuw = turbModel.nu(patchi);

54 const scalarField& nuw = tnuw();

55

56 return max

57 (

58 scalar(0),

59 sqr(calcUTau(magGradU))/(magGradU + ROOTVSMALL) - nuw

60);

61 }

Focusing from line 56 to 61. It supplies the maximum value of 0 or equation. The function
mag(Uw.snGrad() means the gradient of the value. (here it means gradient of velocity).

νt =
(uτ)2

∂U
∂n

− ν (2.34)

In this class the yplus is calculated based on the function calcUTau() which is also done through
Newton-Raphton method. Since this wall function can operate in two modes so if the position of
first cell center can not be guarantee in viscous or logarithmic area, just choosing this wall function.

2.7 Conclusion

Some types of wall functions have been described thoroughly and characteristics and purpose of wall
functions are made in table 2.1.

Table 2.1: The wall function

kqRWallFunction For high Re, zero gradient condition
kLowReWallFunction for high and low Re, the condition based on the position of y+

epsilonWallFunction High Re
epsilonLowReWallFunction for High and Low Re, the condition based on the position of y+

V2WallFunction For High and Low Re, The condition based on the position of y+

fWallFunction For High and Low Re, The condition based on the position of y+

omegaWallFunction For High and Low Re, The condition based the blending of viscous and log layer
nutWallFunction abstract class, not provide specific nut

nutLowReWallFunction for low Re, the condition is zero
nutUWallFunction condition based on the velocity
nutkWallFunction condition based on the kinematic

utUSpaldingWallFunction for the whole area

27

Chapter 3

Structure of wall function and
implementation

3.1 Structure of wall functions

In this section how wall functions are used in a solver is illustrated. Based on OpenFOAM lectures
we use simpleFoam to explain.

In the simpleFoam.C it can be found that.

turbulence->correct();

We realize that the object named turbulence is a pointer, since the functions of the object are called
using ->. The operation of those member functions depend on which turbulence model we are using,
which is specified when we run the case. So the object name called turbulence can call any member
function in the turbulence model we use ([6]).

So it means it will call the function correct() in the relatively turbulence model ,since here we use
KEpsilon turbulence model. So we check the correct() in KEpsilon.C

251 // Update epsilon and G at the wall

252 epsilon_.boundaryFieldRef().updateCoeffs();

Here epsilon_ is an object of class, and it use its member function, Checking the function bound-
aryFieldRef(). It is defined in the function GeometricField.C, The location is

$WM_PROJECT_DIR/src/OpenFOAM/fields/GeometricFields/GeometricField/GeometricField.C

In the line 739 the definition is found.

736 template<class Type, template<class> class PatchField, class GeoMesh>

737 typename

738 Foam::GeometricField<Type, PatchField, GeoMesh>::Boundary&

739 Foam::GeometricField<Type, PatchField, GeoMesh>::boundaryFieldRef()

740 {

741 this->setUpToDate();

742 storeOldTimes();

743 return boundaryField_;

744 }

It is used to return the reference to the internal field and boundaryField_ is boundary type field
containing boundary field values. It return the boundaryField_ so it called the boundary field of

28

3.2. IMPLEMENTING A NEW WALL FUNCTIONCHAPTER 3. STRUCTURE OF WALL FUNCTION AND IMPLEMENTATION

epsilon and updateCoeffs() is called. updateCoeffs() is the function which is defined in the epsilon
wall function.

In the kEpsilon.C there is another important function epsEqn.ref().boundaryManipulate(epsilon_.boundaryFieldRef());

This function is used to find the adjacent cells to the boundaries whose conditions are ”epsilonWall-
Function” and eliminate the corresponding equations in these cells from the matrix.

3.2 Implementing a new wall function

when building a new turbulence model such as ζ-f turbulence model, a new kind of wall function ζ
should be redefined. In this section an example of how to implement new wall function is showed.
Here no modifications of existing wall functions are going to presented.
First initializing the environment and copying the whole TurbulenceModels under the src directory
to user directory

OF4x

cd $WM_PROJECT_USER_DIR/src

cp -r --parents $WM_PROJECT_DIR/src/TurbulenceModel .

cd TurbulenceModels/turbulenceModels/derivedFvPatchFields/wallFunctions

As said above, the list of wall function can be found here.
Then go back to the directory where Make directory appear:

cd ../..

vi Make/files

And change to

LIB = $(FOAM_USER_LIBBIN)/libturbulenceModels

Compiling with wmake.

The next step is copy from an existing wall function and name zetaWallFunctions

cd derivedFvPatchFields/wallFunctions/

cp -r fWallFunctions zetaWallFunctions

Since etaWallFunctions contain fWallFunction so re-name it. And then rename the defination class
and declaration class. And replace all the fWallFunctionFvPatchScalarField to zetaWallFunction-
FvPatchScalarField.

mv zetaWallFunctions/fWallFunction zetaWallFunctions/zetaWallFunction

cd zetaWallFunctions/zetaWallFunction

mv fWallFunctionFvPatchScalarField.C zetaWallFunctionFvPatchScalarField.C

mv fWallFunctionFvPatchScalarField.H zetaWallFunctionFvPatchScalarField.H

sed -i s/fWallFunctionFvPatchScalarField/zetaWallFunctionFvPatchScalarField/g

zetaWallFunctionFvPatchScalarField.*

sed -i s/fWallFunction/zetaWallFunction/g

zetaWallFunctionFvPatchScalarField.*

The come back and open the Make files

/* Wall function BCs */

wallFunctions = derivedFvPatchFields/wallFunctions

29

3.2. IMPLEMENTING A NEW WALL FUNCTIONCHAPTER 3. STRUCTURE OF WALL FUNCTION AND IMPLEMENTATION

nutWallFunctions = $(wallFunctions)/nutWallFunctions

$(nutWallFunctions)/nutWallFunction/nutWallFunctionFvPatchScalarField.C

$(nutWallFunctions)/nutkWallFunction/nutkWallFunctionFvPatchScalarField.C

$(nutWallFunctions)/nutkRoughWallFunction/nutkRoughWallFunctionFvPatchScalarField.C

$(nutWallFunctions)/nutkAtmRoughWallFunction/nutkAtmRoughWallFunctionFvPatchScalarField.C

So just add the following line in here

zetaWallFunctions = $(wallFunctions)/zetaWallFunctions

$(zetaWallFunctions)/zetaWallFunction/zetaWallFunctionFvPatchScalarField.C

Compiling it

wmake libso

As said before, wall function is one kind of boundary condition.

To valid whether it can be chosen, we can write a wrong name in the boundaryField file and seeing
how it happens. So just copying a pitzDaily of simpleFoam tutorial and then entering 0 direcory.
Finding a lot of turbulence properties, just opening a random file such as epsilon.

Changing from the epsilonWallFunction to a random name and running the simulation.

The system reports that an Unknown patchField type, together with a list of patchField you can
use. zetaWallFunction is one of them, which indicates zetaWallFunction can be used to set the pitch
Field. If you have your own case and idea how to make a new wall function, you can follow the
above steps.

30

Chapter 4

Future work

In the present report only the description of existing wall functions in OpenFOAM is made and the
first step of implementing a new wall function is showed. The next step is introducing a new wall
function.

In FOAM-extent there are a lot of different kinds of wall functions provided. Some of them are
similar to the wall functions which has been described in chapter 2, while others are not.

The description of f wall function in the OpenFOAM is different from that in the theory part. The
reason could be that the equations have been modified to make it more stable when using it. Or
maybe it use another theory when making codes. So it could be better to figure out it before using
f wall functions.

The y+ calculation in some nutWallFunction is very complex so it is better to know how are they
be defined.

31

Chapter 5

Study question

1. Q: Why do we want to use wall function.

2. Q: In terms of calculation process, how many kinds of wall funcion exist in OpenFOAM.

3. Q: In epsilonWallFunction, which function should be modified if you want to introduce a new
wall function.

4. Q :Which function provide definition of turbulence viscosity in nutWallFunctions.

5. Q : If you want to use yplus function, which class should be used.

32

Bibliography

[1] H K Versteeg and W Malalasekera. An Introduction to Computational Fluid Dynamics. Bell
Bain, 2003.

[2] Lars Davidson. An Introduction to Turbulence Models. Chalmers university of technology, 2003.

[3] D. B. SPALDING. A single formula for the law of the wall. Applied Mechanics, 28(3):455, 1961.

[4] Georgi Kalitzin ; Gorazd Medic; Gianluca Iaccarino; Paul Durbin. Near-wall behavior of rans
turbulence models and implications for wall functions. Computational physics, 204(205):265–291,
2004.

[5] B.A. Pettersson Reif P.A. Durbin. Statistical Theory and Modeling for Turbulent Flow. Wiley,
2011.

[6] H̊akan Nilsson. Implement turbulence model, https://pingpong.chalmers.se/courseid/7056/content.do?id=3256524.

33

