
Cite as: Jansson, M.: Implementing a Zwart-Gerber-Belamri cavitation model. In Proceedings of CFD

with OpenSource Software, 2018, Edited by Nilsson. H., http://dx.doi.org/10.17196/OS_CFD#YEAR_2018

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Implementing a Zwart-Gerber-Belamri
cavitation model

Developed for OpenFOAM-1806 and gnuplot 5.2

Author:
Marcus Jansson
Linköping University
marcus.jansson@liu.se

Peer reviewed by:
Ebrahim Ghahramani

Sandip Wadekar

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone

through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

December 20, 2018

Learning outcomes

The reader will learn:

How to use it:

• How to adapt and run the throttle tutorial.

The theory of it:

• The theory of Schnerr-Sauer (SS) and Zwart-Gerber-Belamri (ZGB) cavitation models.

How it is implemented:

• How to implement the ZGB cavitation model in the phaseChangeTwoPhaseMixtures class.

How to modify it:

• How to modify the mass transfer rates.

1

Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• Fundamentals of fluid mechanics and bubble dynamics e.g. book by Brennen [1] or Franc and
Michel [2].

• Some understanding of cavitation modelling, e.g. Schnerr and Sauer [3] and Zwart et. al. [4]

• Run standard document tutorials like throttle tutorial and/or cavitatingBullet tutorial.

• Basic post-processing in paraFoam have been used to visualize the results. However, paraFoam
is not in the scope of this tutorial.

2

Contents

1 Introduction 4
1.1 Bubble dynamics and cavitation models . 4

1.1.1 Schnerr-Sauer cavitation model . 5
1.1.2 Zwart-Gerber-Belamri cavitation model . 6

2 interPhaseChangeFoam solver 7
2.1 throttle tutorial . 10

2.1.1 Boundary and initial conditions . 10
2.1.2 Transport properties . 11
2.1.3 Discretization schemes and solution control 11
2.1.4 Run and post-process . 12

2.2 ZGB cavitation model . 13
2.2.1 Implementation and compilation . 13
2.2.2 Pre- and post processing . 15

3

Chapter 1

Introduction

This tutorial describes how to add the Zwart-Gerber-Belamri (ZGB) cavitation model to the phaseChangeT-
woPhaseMixtures class used by interPhaseChangeFoam solver. Both the ZGB model and the default
Schnerr-Sauer (SS) model are described in this chapter. The solver is described briefly in Chap-
ter 2, followed by a simple test case with the default SS cavitation model. In Section 2.2, the ZGB
cavitation model is implemented and the same case is solved with this additional model.

1.1 Bubble dynamics and cavitation models

The dynamics of a single bubble subjected to a pressure field can be described by

pb − p∞
ρl

= R
d2R

dt2
+

3

2

(
dR

dt

)2

+
4νl
R

dR

dt
+

2S

ρlR
(1.1)

which is known as the Rayleigh-Plesset equation [1]. R = R(t) is the bubble radius, S is the
surface tension coefficient, pb is the bubble pressure and p∞ is the far-field pressure. ρl and νl
is the liquid density and liquid kinematic viscosity respectively. The Rayleigh-Plesset equation
assumes that bubbles are spherical and symmetric and that thermal effects are negligible. By
further neglecting higher order terms and the effects of surface tension and viscosity, eq. (1.1) can
be simplified to

dR

dt
=

√
2

3

pb − p
ρl

(1.2)

Due to evaporation and condensation, mass transfer occur between the liquid- and vapor phase.
This mass transfer is governed by a transport equation for the liquid fraction

∂

∂t
(αlρl) +∇ · (αlρl~v) = ṁ (1.3)

where ρl is the density of the liquid phase and ṁ is the mass transfer rate. In interPhaseChange-
Foam, which later will be described, the mass transfer is decomposed to vaporization- and conden-
sation terms

ṁ = αlṁ
−
α + (1− αl) ṁ+

α = αl
(
ṁ−α − ṁ+

α

)
+ ṁ+

α (1.4)

where ṁ−α and ṁ+
α are the destruction of liquid from evaporation and creation of liquid from

condensation, respectively. αl is the liquid volume fraction.

4

1.1. BUBBLE DYNAMICS AND CAVITATION MODELS CHAPTER 1. INTRODUCTION

Finally, eq. (1.3) is implemented in terms of volume fraction and decomposed volume transfer rates,
V̇ − and V̇ +,

∂αl
∂t

+∇ · (αl~v) =
(
∇ · ~v + V̇ − − V̇ +

)
αl + V̇ + (1.5)

where the volume transfer rate, V̇ , and velocity divergence, ∇ · ~v,

V̇ =

(
1

ρl
− αl

(
1

ρl
− 1

ρv

))
ṁ (1.6)

∇ · ~v =

(
1

ρl
− 1

ρv

)
ṁ (1.7)

have been used. The divergence of the velocity field, eq. (1.7), also appears on the RHS of the
pressure correction equation. In this case, the mass transfer can be decomposed to

ṁp =
ṁ

(p− pv)
= ṁ−p −m+

p (1.8)

where pv is a threshold pressure (the saturation pressure for the liquid). For a full description of
the discretized equations and the decomposition of mass transfer rates, refer to Asnaghi [5].

1.1.1 Schnerr-Sauer cavitation model

Schnerr and Sauer [3] derived an expression for the net mass change rate from the generalized vapor
transport equation. This model is implemented in OpenFoam through the mass source terms ṁ−α
and ṁ+

α

ṁ−α = Cv (1 + αnuc − αl)
3ρvρl
ρmRB

√
2

3ρl

1

|p− pv|
min (p− pv, 0) (1.9)

ṁ+
α = Ccαl

3ρvρl
ρmRB

√
2

3ρl

1

|p− pv|
max (p− pv, 0) (1.10)

which follow the decomposition in eq. (1.4). ρv is the vapor density. ρm is the mixture density,
a volume weighted average of the liquid and vapor density. αnuc is a numerical nucleation term that
is introduced to initialize cavitation. Without the presence of this term, eq. (1.9) equals zero for all
pressures in a pure liquid and cavitation would never occur. The relation between nucleation site
volume fraction, αnuc, and bubble radius, RB , is described according to

αnuc =
1
6nbπd

3
nuc

1 + 1
6nbπd

3
nuc

(1.11)

RB =

(
3

4πnb

1 + αnuc − αl
αl

) 1
3

(1.12)

where nb is the bubble number density and dnuc is the nucleation site diameter. It can be seen
that the mass transfer rates for evaporation and condensation are differentiated by the coefficients
Cv and Cc, respectively. The default value is however 1 for both coefficients.

5

1.1. BUBBLE DYNAMICS AND CAVITATION MODELS CHAPTER 1. INTRODUCTION

The phase change terms in the pressure correction equation are defined similarly, but according to
the decomposition in eq. (1.8),

ṁ−p = −Cvαl (1 + αnuc − αl)
3ρvρl
ρmRB

√
2

3ρl

1

|p− pv|
neg (p− pv) (1.13)

ṁ+
p = Ccαl (1− αl)

3ρvρl
ρmRB

√
2

3ρl

1

|p− pv|
pos (p− pv) (1.14)

where the neg function returns -1 when the input is negative and zero otherwise, and the pos
function returns 1 when the input is positive and zero otherwise.

1.1.2 Zwart-Gerber-Belamri cavitation model

In the ZGB cavitation model, the mass transfer rates are given as

ṁ−α = −Cvrnuc
3ρv
RB

√
2

3ρl

1

|p− pv|
min (p− pv, 0) (1.15)

ṁ+
α = Cc

3ρv
RB

√
2

3ρl

1

|p− pv|
max (p− pv, 0) (1.16)

where rnuc is the nucleation site volume fraction. Like the SS model, it is based on the simplified
Rayleigh-Plesset equation but assumes a constant nucleation site volume. Thus, both the nucleation
site volume fraction, rnuc, and nucleation site radius, RB , are model constants. According to Zwart
et. al. [4], these constants are rnuc = 5.0 ∗ 10−4 and RB = 1.0 ∗ 10−6 m by default. Following the
same decomposition as in the SS model, the phase change terms in the pressure correction equation
are

ṁ−p = −Cvrnucαl
3ρv
RB

√
2

3

|p− pv|
ρl

neg (p− pv) (1.17)

ṁ+
p = Cc (1− αl)

3ρv
RB

√
2

3

|p− pv|
ρl

pos (p− pv) (1.18)

6

Chapter 2

interPhaseChangeFoam solver

The interPhaseChangeFoam solver is a fully transient solver. Turbulence is generic, i.e. it can be
solved using either laminar, RAS or LES. It is based on the PIMPLE pressure correction. It solves
for two isothermal, incompressible fluids using a Volume of Fluids (VoF) approach where momen-
tum equations are solved for the mixture. interPhaseChangeFoam supports mass transfer through
cavitation and the available models are Merkle, Kunz, and Schnerr-Sauer. The Schnerr-Sauer model
is implemented as described in Section 1.1.1. Note that interPhaseChangeFoam solves for the liquid
fraction, which will affect how the mass transfer rate is implemented.

interPhaseChangeFoam

Allwclean

Allwmake

alphaControls.H

alphaEqn.H

alphaEqnSubCycle.H

createFields.H

interPhaseChangeDyMFoam/

interPhaseChangeFoam.C

Make/

pEqn.H

phaseChangeTwoPhaseMixtures/

Kunz/

lnInclude/

Make/

Merkle/

phaseChangeTwoPhaseMixture/

SchnerrSauer/

UEqn.H

The interPhaseChangeFoam directory contains both Allwmake and Allwclean. You can also find
a solver for dynamic meshing, interPhaseChangeDyMFoam, which will not be considered in this
tutorial. There are equations for p, U and alpha, which will be described later. One interesting
thing is that there is a class named phaseChangeTwoPhaseMixtures with its own Make directory.
This class is located in the solver, which is not the more common approach in OpenFOAM. We will
come back to both this class and the equations, but first take a look in interPhaseChangeFoam.C.

7

CHAPTER 2. INTERPHASECHANGEFOAM SOLVER

interPhaseChangeFoam.C
...
Info<< "\nStarting time loop\n" << endl;

while (runTime.run())
{

#include "readTimeControls.H"
#include "CourantNo.H"
#include "setDeltaT.H"

runTime++;

Info<< "Time = " << runTime.timeName() << nl << endl;

// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{

#include "alphaControls.H"

surfaceScalarField rhoPhi
(

IOobject
(

"rhoPhi",
runTime.timeName(),
mesh

),
mesh,
dimensionedScalar(dimMass/dimTime, Zero)

);

mixture->correct();

#include "alphaEqnSubCycle.H"
interface.correct();

#include "UEqn.H"

// --- Pressure corrector loop
while (pimple.correct())
{

#include "pEqn.H"
}

if (pimple.turbCorr())
{

turbulence->correct();
}

}

runTime.write();

runTime.printExecutionTime(Info);
}

Info<< "End\n" << endl;

return 0;

}

As mentioned, interPhaseChangeFoam is a PIMPLE solver. In the outer loop, before the pressure
correction, the interfaces are corrected by calling alphaEqnSubCycle.H. and solving the (liquid)
phase transport equation. The phase equation is found in alphaEqn.H. On the LHS we have, in
order, the transient term ∂α

∂t solved with first order Euler Scheme, the convective term ∇ · (α~v)
solved with upwind flux, and the convective source term ∇ · (αl~v) (on the RHS in eq. (1.5)). The
other source terms can be seen on the right hand side according to eq. (1.5). As indicated by the
names of the functions, vDotvAlphal and vDotcAlphal are volume source terms.

alphaEqn.H
...
Pair<tmp<volScalarField>> vDotAlphal =

mixture->vDotAlphal();
const volScalarField& vDotcAlphal = vDotAlphal[0]();
const volScalarField& vDotvAlphal = vDotAlphal[1]();
const volScalarField vDotvmcAlphal(vDotvAlphal - vDotcAlphal);
...
fvScalarMatrix alpha1Eqn
(

fv::EulerDdtScheme<scalar>(mesh).fvmDdt(alpha1)
+ fv::gaussConvectionScheme<scalar>

(
mesh,
phi,
upwind<scalar>(mesh, phi)

).fvmDiv(phi, alpha1)
- fvm::Sp(divU, alpha1)

==
fvm::Sp(vDotvmcAlphal, alpha1)

+ vDotcAlphal
);

The volume source terms vDotvAlphal (vaporization) and vDotcAlphal (condensation) are com-
ponents of the pair called vDotAlphal. This is found in the phaseChangeTwoPhaseMixtures class,
which is a part of the interPhaseChageFoam solver.

8

CHAPTER 2. INTERPHASECHANGEFOAM SOLVER

phaseChangeTwoPhaseMixture.C
...
Foam::Pair<Foam::tmp<Foam::volScalarField>>
Foam::phaseChangeTwoPhaseMixture::vDotAlphal() const
{

volScalarField alphalCoeff(1.0/rho1() - alpha1_*(1.0/rho1() - 1.0/rho2()));
Pair<tmp<volScalarField>> mDotAlphal = this->mDotAlphal();

return Pair<tmp<volScalarField>>
(

alphalCoeff*mDotAlphal[0],
alphalCoeff*mDotAlphal[1]

);
}

Foam::Pair<Foam::tmp<Foam::volScalarField>>
Foam::phaseChangeTwoPhaseMixture::vDotP() const
{

dimensionedScalar pCoeff(1.0/rho1() - 1.0/rho2());
Pair<tmp<volScalarField>> mDotP = this->mDotP();

return Pair<tmp<volScalarField>>(pCoeff*mDotP[0], pCoeff*mDotP[1]);
}

The volume source terms vDotAlphal are related to the mass source terms mDotAlphal with the
coefficient alphaCoeff, corresponding to eq. (1.6). The mass source terms are also part of the
phaseChangeTwoPhaseMixtures class, but specific for each individual cavitation model e.g. Schnerr-
Sauer which is found in SchnerrSauer.C.

SchnerrSauerr.C
...
Foam::tmp<Foam::volScalarField>
Foam::phaseChangeTwoPhaseMixtures::SchnerrSauer::pCoeff
(
const volScalarField& p

) const
{
volScalarField limitedAlpha1(min(max(alpha1_, scalar(0)), scalar(1)));
volScalarField rho
(

limitedAlpha1*rho1() + (scalar(1) - limitedAlpha1)*rho2()
);

return
(3*rho1()*rho2())*sqrt(2/(3*rho1()))

*rRb(limitedAlpha1)/(rho*sqrt(mag(p - pSat()) + 0.01*pSat()));
}

Foam::Pair<Foam::tmp<Foam::volScalarField>>
Foam::phaseChangeTwoPhaseMixtures::SchnerrSauer::mDotAlphal() const
{

const volScalarField& p = alpha1_.db().lookupObject<volScalarField>("p");
volScalarField pCoeff(this->pCoeff(p));

volScalarField limitedAlpha1(min(max(alpha1_, scalar(0)), scalar(1)));

return Pair<tmp<volScalarField>>
(

Cc_*limitedAlpha1*pCoeff*max(p - pSat(), p0_),

Cv_*(1.0 + alphaNuc() - limitedAlpha1)*pCoeff*min(p - pSat(), p0_)
);

}

SchnerrSauer.C returns a pair mDotAplhal with the mass transfer rates. The member func-
tions pCoeff and mDotAlphal together make the mass source terms seen in eq. (1.9)-(1.10).
limitedAlpha1 is just a bounded liquid fraction, since this value should be between 0 and 1.
0.01*pSat() is a small addition that prevents zero in the denominator. rRb is the reversed bub-
ble radius 1

RB
according to eq. (1.12). In mDotAlphal we can see alphaNuc, mentioned earlier in

eq. (1.11), which prevents zero value in the denominator. The volume fraction of nucleation sites,
alphaNuc, is a function of the bubble number density, n, and the initial bubble diameter, dNuc,
which are both model constants. rRb and alphaNuc are also specified in SchnerrSauer.C, but are
excluded here for brevity.

9

2.1. THROTTLE TUTORIAL CHAPTER 2. INTERPHASECHANGEFOAM SOLVER

2.1 throttle tutorial

This section describe how to pre-process, run and post-process a case involving incompressible flow
through a cavitating jet. The throttle geometry consists of two volumes connected through a narrow
section, shown in Figure 2.1. At the left side is a pressure inlet, and the right side a pressure outlet.
If the pressure difference between inlet and outlet is large enough, the change in dynamic pressure
in the narrow section will induce cavitation.

Figure 2.1: Geometry of the throttle tutorial case.

The following steps describe how to copy the throttle tutorial to the run directory and how to modify
it to solve with interPhaseChangeFoam. Start by copying and renaming the tutorial files. Clean up
some files that are not used.

cp -r $FOAM_TUTORIALS/multiphase/cavitatingFoam/RAS/throttle \

$FOAM_RUN/throttleSchnerr

cd $FOAM_RUN/throttleSchnerr

rm All*

rm system/topo*

rm system/refineMeshDict

To run the tutorial with interPhaseChangeFoam, some changes are needed in initial- and boundary
conditions and in the system directory.

2.1.1 Boundary and initial conditions

Boundary and initial conditions are found in the \0 directory where the following variables are found

alpha.vapour

k

nut

omega

p

rho

U

The interPhaseChangeFoam solver uses the dynamic pressure and the liquid fraction. It can be seen
from the boundary conditions that cavitatingFoam, which is the default solver for this tutorial,
solves for the vapor volume fraction instead. Rename the initial conditions for the pressure and
replace the initial conditions for the phase fraction. Reduce the outlet pressure to make sure that
cavitation occurs.

mv 0/p 0/p_rgh

sed -i s/"uniform 100e5;"/"uniform 50e5;"/g 0/p_rgh

rm 0/alpha.vapour

cp -r $FOAM_TUTORIALS/multiphase/interPhaseChangeFoam/cavitatingBullet/0.orig/alpha.water \

0/alpha.water

sed -i s/"inletOutlet"/"fixedValue"/g 0/alpha.water

sed -i s/"inletValue"/"value"/g 0/alpha.water

sed -i s/"bullet"/"frontBack"/g 0/alpha.water

10

2.1. THROTTLE TUTORIAL CHAPTER 2. INTERPHASECHANGEFOAM SOLVER

sed -i s/"zeroGradient"/"empty"/g 0/alpha.water

sed -i s/"symmetry"/"zeroGradient"/g 0/alpha.water

2.1.2 Transport properties

Replace /constant/transportProperties and remove /constant/thermodynamicProperties (since
interPhaseChangeFoam solves for isothermal fluids). Add the gravity g which is used to subtract
the hydrostatic pressure. Leave the default k-ω SST turbulence model.

rm constant/thermodynamicProperties

rm constant/transportProperties

cp -r $FOAM_TUTORIALS/multiphase/interPhaseChangeFoam/cavitatingBullet\

/constant/transportProperties constant/.

cp -r $FOAM_TUTORIALS/multiphase/interPhaseChangeFoam/cavitatingBullet/constant/g \

constant/.

2.1.3 Discretization schemes and solution control

As mentioned, interPhaseChangeFoam solves for the liquid fraction and not the vapor fraction.
Solver settings for the liquid fraction, and dynamic pressure, are found in system/fvSolution and
system/fvSchemes. Change solvers in system/fvSolution to

solvers
{

"alpha.water.*"
{

cAlpha 0;
nAlphaCorr 2;
nAlphaSubCycles 1;

MULESCorr yes;
nLimiterIter 5;

solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-8;
relTol 0;
maxIter 10;

};

"U.*"
{

solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-6;
relTol 0;

};

p_rgh
{

solver GAMG;
tolerance 1e-8;
relTol 0.1;

smoother DICGaussSeidel;

maxIter 50;
};

p_rghFinal
{

solver PCG;
preconditioner
{

preconditioner GAMG;

tolerance 1e-6;
relTol 0;

nVcycles 2;

smoother DICGaussSeidel;

};
tolerance 1e-7;
relTol 0;
maxIter 50;

};

"pcorr.*"
{

$p_rgh;
relTol 0;

};

Phi
{

$p_rgh;
relTol 0;

};

"(U|k|omega)"
{

solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-08;
relTol 0.1;

}

"(U|k|omega)Final"
{

solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-08;
relTol 0;

}
}

11

2.1. THROTTLE TUTORIAL CHAPTER 2. INTERPHASECHANGEFOAM SOLVER

and add after solvers

potentialFlow

{

nNonOrthogonalCorrectors 3;

}

In /system/fvSchemes, add the following divSchemes.

div(phi,alpha) Gauss vanLeer;

div(phirb,alpha) Gauss linear;

2.1.4 Run and post-process

Create a blockMesh and run interPhaseChangeFoam.

blockMesh >& log_blockMesh&

interPhaseChangeFoam >& log_run&

At the final time step, the velocity shown in Figure 2.2a has got stabilized and the jet takes a sym-
metric shape. From the water fraction shown in Figure 2.2b, it can be seen that the throttle cavitates.

Add a singleGraph file to the system directory to extract pressure values along a center line through
the domain.

touch system/singleGraph

Change the content of singleGraph to:

singleGraph

{

start (0.0 0.0 0.0);

end (0.017 0.0 0.0);

fields (p_rgh U);

#includeEtc "caseDicts/postProcessing/graphs/sampleDict.cfg"

setConfig

{

axis distance;

}

// Must be last entry

#includeEtc "caseDicts/postProcessing/graphs/graph.cfg"

}

Run the post processing with the singleGraph function.

postProcess -func singleGraph >& log_postProcess&

Plot the pressure using gnuplot. It can be seen in Figure 2.3 that the pressure in the throttle reaches
the vapor pressure, which explains the cavitation inception.

gnuplot

set style data linespoints

plot "postProcessing/singleGraph/0.0019/line_p_rgh.xy"

12

2.2. ZGB CAVITATION MODEL CHAPTER 2. INTERPHASECHANGEFOAM SOLVER

(a) Velocity (b) Water volume fraction

Figure 2.2: Last time step for throttle tutorial solved with interPhaseChangeFoam and Schnerr-Sauer cavi-
tation model.

Figure 2.3: Pressure along a centre line.

2.2 ZGB cavitation model

Since the ZGB cavitation model is not available by default, it has to be added to the phaseChangeTwoPhaseMixtures
class.

2.2.1 Implementation and compilation

Start by copying the existing cavitation models in phaseChangeTwoPhaseMixtures to your user
directory. Copy the SS cavitation model (which we will use as a starting point) and rename the files.

cp -r $FOAM_APP/solvers/multiphase/interPhaseChangeFoam/phaseChangeTwoPhaseMixtures \

$WM_PROJECT_USER_DIR/src/phaseChangeTwoPhaseMixtures

cd $WM_PROJECT_USER_DIR/src/phaseChangeTwoPhaseMixtures

cp -r SchnerrSauer Zwart

cd Zwart

mv SchnerrSauer.C Zwart.C

mv SchnerrSauer.H Zwart.H

Replace each ’SchnerrSauer’ with ’Zwart’ in Zwart.C and Zwart.H.

sed -i s/"SchnerrSauer"/"Zwart"/g Zwart.*

Make sure that Make/files ends with the following two lines:

...

Zwart/Zwart.C

LIB = $(FOAM_USER_LIBBIN)/libphaseChangeTwoPhaseMixtures

This ensures that the Zwart model is compiled and the binaries are put in the user directory, to
not interfere with the original installation. Try using wmake to see that the model compiles. Note

13

2.2. ZGB CAVITATION MODEL CHAPTER 2. INTERPHASECHANGEFOAM SOLVER

that it is still identical to the SS cavitation model. When the compilation is successful, the user
library phaseChangeTwoPhaseMixtures will be used as default instead of the library in the original
installation. You can check which library will be used by interPhaseChangeFoam.

ldd `which interPhaseChangeFoam` | grep phaseChange

It can be seen that the phaseChangeTwoPhaseMixtures library is read from the user directory.

libphaseChangeTwoPhaseMixtures.so =>/home/marcjans/OpenFOAM/marcjans-v1806/ \

platforms/linux64GccDPInt32Opt/lib/libphaseChangeTwoPhaseMixtures.so \

(0x00007fca9277d000)

When comparing eq. (1.9)-(1.10) to eq. (1.15)-(1.16), it can be seen that the differences are minor.
The ZGB model only considers the vapor density while the SS model also includes the fraction
between liquid- and mixture density. For small vapor fractions, however, this fraction will be close
to unity. Furthermore, there is a difference in the contribution of the phase volume fractions. Since
the SS model in OpenFOAM uses coefficients for evaporation and condensation, this is similar to
the ZGB model. The default values are different though, where ZGB uses Cv = 50 and Cc = 0.01.

As mentioned, the ZGB model uses constant values for nucleation site volume fraction, rnuc, and
nucleation site radius, RB . Start by removing the private member data for n_, dNuc_, rRb_ and
alphaNu_c in Zwart.H. Add the following new member data between Cv_ and p0_.

//- Nucleation site volume

dimensionedScalar rNuc_;

//- Nucleation site radius

dimensionedScalar Rb_;

Continue with Zwart.C. Remove the constructors for n_ and dNuc_. Add in the constructor, between
Cv_ and p0_:

rNuc_("rNuc", dimless, phaseChangeTwoPhaseMixtureCoeffs_),

Rb_("Rb", dimLength, phaseChangeTwoPhaseMixtureCoeffs_),

Remove the entire member functions rRb and alphaNuc. Replace the member functions pCoeff and
mDotAlpha so the mass transfer rates correspond to eqs. (1.15)-(1.16). Replace mDotP according to
eqs. (1.17)-(1.18).

Foam::tmp<Foam::volScalarField>
Foam::phaseChangeTwoPhaseMixtures::Zwart::pCoeff
(

const volScalarField& p
) const
{

return
(3*rho2())*sqrt(2/(3*rho1()))
/(Rb_*sqrt(mag(p - pSat()) + 0.01*pSat()));

}

14

2.2. ZGB CAVITATION MODEL CHAPTER 2. INTERPHASECHANGEFOAM SOLVER

Foam::Pair<Foam::tmp<Foam::volScalarField> >
Foam::phaseChangeTwoPhaseMixtures::Zwart::mDotAlphal() const
{

const volScalarField& p = alpha1_.db().lookupObject<volScalarField>("p");
volScalarField limitedAlpha1(min(max(alpha1_, scalar(0)), scalar(1)));

volScalarField pCoeff(this->pCoeff(p));

return Pair<tmp<volScalarField> >
(

Cc_*pCoeff*max(p - pSat(), p0_),

Cv_*rNuc_*pCoeff*min(p - pSat(), p0_)
);

}

Foam::Pair<Foam::tmp<Foam::volScalarField> >
Foam::phaseChangeTwoPhaseMixtures::Zwart::mDotP() const
{

const volScalarField& p = alpha1_.db().lookupObject<volScalarField>("p");
volScalarField pCoeff(this->pCoeff(p));

volScalarField limitedAlpha1(min(max(alpha1_, scalar(0)), scalar(1)));

return Pair<tmp<volScalarField> >
(

Cc_*(1.0 - limitedAlpha1)*pos(p - pSat())*pCoeff,

(-Cv_)*rNuc_*limitedAlpha1*neg(p - pSat())*pCoeff
);

}

Finally, remove n_ and dNuc_ from the read function and add rNuc_ and Rb_. Compile the class
again using wmake.

bool Foam::phaseChangeTwoPhaseMixtures::Zwart::read()
{

if (phaseChangeTwoPhaseMixture::read())
{

phaseChangeTwoPhaseMixtureCoeffs_ = optionalSubDict(type() + "Coeffs");

phaseChangeTwoPhaseMixtureCoeffs_.lookup("Cc") >> Cc_;
phaseChangeTwoPhaseMixtureCoeffs_.lookup("Cv") >> Cv_;
phaseChangeTwoPhaseMixtureCoeffs_.lookup("rNuc") >> rNuc_;
phaseChangeTwoPhaseMixtureCoeffs_.lookup("Rb") >> Rb_;

return true;
}
else
{

return false;
}

}

2.2.2 Pre- and post processing

Go to the run directory and copy the throttle tutorial. Remove the old time directories.

run

cp -r throttleSchnerr throttleZwart

cd throttleZwart

rm -r 0.*

rm -r postProcessing

In the constant/transportProperties, change phaseChangeTwoPhaseMixture from SchnerrSauer

to Zwart to use the new cavitation model. Add the new model coefficients after the section with
SchnerrSauerCoeffs.

15

2.2. ZGB CAVITATION MODEL CHAPTER 2. INTERPHASECHANGEFOAM SOLVER

ZwartCoeffs

{

Cc 0.01;

Cv 50;

rNuc 5.0e-04;

Rb 1.0e-06;

}

Note the additional coefficients rNuc and Rb and that the values for Cc and Cv are changed. Solve
the case, now with the new ZGB cavitation model.

interPhaseChangeFoam >& log_run&

Run the post processing.

postProcess -func singleGraph >& log_postProcess&

Plot the pressure using gnuplot. Both the pressure distribution and the vapor fraction shown in
Figure 2.4 are similar to the previous results. It should be noted that the models are sensitive to
their various parameters and have to be tuned for each specific case. Validation of the models and
their results are not in the scope of this tutorial.

gnuplot

set style data linespoints

plot "postProcessing/singleGraph/0.0019/line_p_rgh.xy"

(a) Pressure (b) Water fraction

Figure 2.4: Last time step for throttle tutorial solved with interPhaseChangeFoam and Zwart et. al. cavi-
tation model.

16

Bibliography

[1] C. E. Brennen. Cavitation and Bubble Dynamics. Oxford University Press, 1995.

[2] J-P. Franc and J-M. Michel. Fundamentals of Cavitation. Kluwer Academic Publishers, 2010.

[3] G. H. Shnerr and J. Sauer. Physical and numerical modeling of unsteady cavitation dynamics.
In Fourth International Conference on Multiphase Flow, New Orleans, USA, 2001.

[4] P. J. Zwart, A. G. Gerber, and T Belamri. A two-phase flow model for predicting cavitation
dynamics. In Proceedings of the International Conference on Multiphase Flow (ICMF 04), Yoko-
hama, Japan, 2004.

[5] Abolfazl Asnaghi. Developing computational methods for detailed assessment of cavitation on
marine propellers. PhD thesis, Department of Shipping and Marine Technology, Chalmers Uni-
versity of Technology, 2015.

17

Study questions

1. How do you check which libraries are used by a specific solver, e.g. interPhaseChangeFoam?

2. What are the main differences between the Schnerr-Sauer model and the Zwart-Gerber-Belamri
model?

3. What is the role of αnuc?

4. Why do you need to change the phase fraction boundary conditions for the throttle, cf. cavi-
tatingBullet? (disregard the different patch names)

18

