CFD wiTH OPENSOURCE SOFTWARE

A COURSE AT CHALMERS UNIVERSITY OF TECHNOLOGY
TAUGHT BY HAKAN NILSSON

Project work:

Descriptions and comparisons of
sprayFoam, reactingParcelFoam, and
basicSprayCloud, basicReactingCloud

Developed for OpenFOAM-2.1.x

Peer reviewed by:
OLIVIER PETIT
ALl AL SAM

Author:
SALMAN ARSHAD

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone
through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no
responsibility for the contents.

February 6, 2014

Chapter 1

1.1 Introduction

This tutorial provides description and comparison of the two compressible flow solvers i.e. reactingParcelFoam
and sprayFoam. It covers description and comparison of the clouds basicReactingCloud and
basicSprayCloud. In the end description is provided on how to use and modify properties of

both the clouds in case setup.

1.2 Description and comparison of reactingParcelFoam
and sprayFoam

This section covers the description and comparsion of solvers reactingParcelFoam and sprayFoam.

1.2.1 Comparsion of solvers

To see the difference of files included in both solvers, go to reactingParcelFoam solver directory.

0F21x

sol

cd lagrangian/reactingParcelFoam
1s

This directory contains files createClouds.H, createFields.H, hsEqn.H, pEqn.H,
reactingParcelFoam.C, reactingParcelFoam.dep, rhoEqn.H, UEgn.H and YEgn.H.

Now go to sprayFoam solver directory to see the files.

sol
cd lagrangian/sprayFoam
1s

This directory contains files createClouds.H, sprayFoam.C and sprayFoam.dep only. The sprayFoam
directory does not have any of the files createFields.H, hsEqn.H, pEqn.H, rhoEqn.H, UEqn.H
and YEqn.H. In order to locate these missing files in sprayFoam solver directory, go to directory Make
and open file options.

vi Make/options
The first two lines of the file are:

EXE_INC = \
-I$(FOAM_SOLVERS)/lagrangian/reactingParcelFoam \

1.2. DESCRIPTION AND COMPARISON OF REACTINGPARCELFOAM
AND SPRAYFOAM CHAPTER 1.

which shows the compiler that these missing files are actually included from the reactingParcelFoam
directory. The sprayFoam solver thus only differs from ReactingParcelFoam solver in the files
createClouds.H and obviously the top level solver file sprayFoam.C.

To investigate the differences on top level solver, go to reactingParcelFoam solver directory and
open file reactingParcelFoan.C.

sol
cd lagrangian/reactingParcelFoam
vi reactingParcelFoam.C

Also go to sprayFoam solver directory and open file sprayFoam.C.

sol
cd lagrangian/sprayFoam
vi sprayFoam.C

By opening the both top level solver files i.e. reactingParcelFoam.C and sprayFoam.C it is seen
that both are compressible flow solvers using pimple loop. It can be seen that the only major
difference is that they include two different types of clouds. The reactingParcelFoam.C includes

#include "basicReactingCloud.H"
and the sprayFoam.C includes
#include "basicSprayCloud.H"

This can be further investigated by opening the createClouds.Hfile. Go to directory of reactingParcelFoam
solver and open the file createClouds.H.

sol
cd lagrangian/reactingParcelFoam/
vi createClouds.H

This file reads as:

Info<< "\nConstructing reacting cloud" << endl;
basicReactingCloud parcels

(
"reactingCloudl",
rho,
U,
g
slgThermo
)

Now go to sprayFoam solver directory and open the file createClouds.H.

sol
cd lagrangian/sprayFoam/
vi createClouds.H

This file reads as:

Info<< "\nConstructing reacting cloud" << endl;
basicSprayCloud parcels

(
"sprayCloud",
rho,
U,
g
slgThermo
)3

1.3. DESCRIPTION AND COMPARISON OF BASICREACTINGCLOUD
AND BASICSPRAYCLOUD CHAPTER 1.

It can easily be concluded after reading the createClouds.H files that that the only major dif-
ference between the two solvers is that one solver (reactingParcelFoam) uses the cloud class
basicReactingCloud and other (sprayFoam) uses the cloud class basicSprayCloud. Also it can be
seen that both types of clouds i.e. basicReactingCloud and basicSprayCloud are initialized using
similar constructors in the files createClouds.H.

1.2.2 Description of solvers

As both of the solvers reactingParcelFoam and sprayFoam are similar so a short description of
any solver is enough. In the reactingParcelFoam solver, reacting parcels are evolved first in the
time loop and then density equation is solved. In the pressure velocity PIMPLE corrector loop, the
momentum, species and enthaply equations are solved followed by the pressure corrector loop.

1.3 Description and comparison of basicReactingCloud
and basicSprayCloud

This section will describe and compare the cloud classes basicReactingCloud and basicSprayCloud.

1.3.1 Overview of classes
Go to src/lagrangian directory and see all the directories inside it.

src
cd lagrangian
1s

Three directories are relevant here i.e. basic, intermediate and spray. Go to basic directory

cd basic
1s

The basic directory contains two important directories i.e. particle and Cloud. The particle
directory contains the base particle class and the Cloud directory contains the base cloud class
templated on particle type. Now go to intermediate directory

src
cd lagrangian/intermediate
1s

The intermediate directory contains many directories out of which three directories are important
i.e clouds, parcels and submodels. The directory parcels contains different types of particles in
which different submodels (available in the submodels directory) are added. To see different types
of particles, list all the directories inside the directory parcel

tree -d parcels

Two important directories are Templates and derived. The directory Templates has different
templated particle types while the directory derived contains combination of different particles to
acheive added funtionalities (submodels). The submodels asscoiated to each particle type can be
seen by listing all the directries in the submodels.

tree -d submodels
Go to the Clouds directory inside the intermediate directory

src
cd lagrangian/intermediate/clouds
1s

1.3. DESCRIPTION AND COMPARISON OF BASICREACTINGCLOUD
AND BASICSPRAYCLOUD CHAPTER 1.

Three directories can be seen i.e. baseClasses, derived and Templates. The directory baseClasses
contain virtual base classes for different templated clouds (avaialable in Templates directory). The
derived directory contains combination of different clouds. The class basicReactingCloud is ac-
tually located in this directory derived. Now go to directory spray.

src
cd lagrangian/spray
1s

Just like intermediate directory, this directory contains three important directories i.e. clouds,
parcels and submodels. These directories are similar to directories in intermediate except that
these directories now contain spray clouds, spray parcels and submodels associated with them as
shown by the following tree -d command.

src
cd lagrangian/spray
tree -d

The class basicSprayCloud is located in dircetory src/lagrangian/spray/clouds/derived/basicSprayCloud.

1.3.2 Description of classes

This section will provide description of classes basicReactingCloud and basicSprayCloud.

basicReactingCloud

Go to directory of class basicReactingCloud and open the file basicReactingCloud.H to see its
definition.

src
cd lagrangian/intermediate/clouds/derived/basicReactingCloud
vi basicReactingCloud.H

In the file basicReactingCloud.H, the definition of basicReactingCloud is:

typedef ReactingCloud

<
ThermoCloud
<
KinematicCloud
<
Cloud
<

basicReactingParcel

>
> basicReactingCloud;

In the above definition, it can be seen that basicReactingCloud is a short name (typedef) for
different layers of clouds on top of each other. ReactingCloud is layered on ThermoCloud which is
layered on KinematicCloud and all these clouds are layered on the base cloud class Cloud (tem-
plated on particle type). In every cloud layer, new funtionalities (models) are added to the base cloud
layer. The templated Cloud class is instantiated with class basicReactingParcel as type pararme-
ter. Now it is important to see the definition of basicReactingParcel. To see the definition of
basicReactingParcel class go to its directory and open file basicReactingParcel.H.

1.3. DESCRIPTION AND COMPARISON OF BASICREACTINGCLOUD
AND BASICSPRAYCLOUD CHAPTER 1.

src
cd lagrangian/intermediate/parcels/derived/basicReactingParcel
vi basicReactingParcel.H

The definition of basicReactingParcel in the file basicReactingParcel.H is given as:

typedef ReactingParcel

<

ThermoParcel

<
KinematicParcel
<

particle

>

>

> basicReactingParcel;

This definition shows that basicReactingParcel is a short name (typedef) for different layers of
parcels on top of each other just like basicReactingCloud was a short name for different layers
of clouds on top of each other. ReactingParcel is layered on ThermoParcel which is layered on
KinematicParcel and all these parcel types are layered on the base particle class particle.

basicSprayCloud
Go to directory of basicSprayCloud class and see it definition in the file basicSprayCloud.H.

src
cd lagrangian/spray/clouds/derived/basicSprayCloud
vi basicSprayCloud.H

The definition in the file basicSprayCloud.H is:

typedef SprayCloud

<
ReactingCloud
<
ThermoCloud
<
KinematicCloud
<
Cloud
<
basicSprayParcel
>
>
>
>

> basicSprayCloud;

According to the definition, basicSprayCloud is a short name (typedef) for an extra layer of
SprayCloud on top of other layers of clouds which are similar to the cloud layers defined for the
basicReactingCloud (which has been described earlier in this section 1.3.2). The difference now is
that the templated base cloud class Cloud has been instantiated with class basicSprayParcel.

To see the definition of basicSprayParcel class, go to its directory and open file basicSprayParcel . H.

1.3. DESCRIPTION AND COMPARISON OF BASICREACTINGCLOUD
AND BASICSPRAYCLOUD CHAPTER 1.

src
cd lagrangian/spray/parcels/derived/basicSprayParcel
vi basicSprayParcel.H

The definition of basicSprayParcel is:

typedef SprayParcel

<
ReactingParcel
<
ThermoParcel
<
KinematicParcel
<
particle
>
>
>

> basicSprayParcel;

So basicSprayParcel has now an extra layer of SprayParcel on top of the basicReactingParcel
(which also has been described earlier in this section 1.3.2).

1.3.3 Submodels of classes

As described previously in the description of e.g. basicReactingCloud class that each layer adds
some funtionality to the base layer. To see this description in OpenFOAM, go to

src
cd lagrangian/intermediate/clouds/Templates/ReactingCloud
vi ReactingCloud.H

In the header portion of this file ReactingCloud.H, it is written as

Class
Foam: :ReactingCloud

Description
Templated base class for reacting cloud

- Adds to thermodynamic cloud
- Variable composition (single phase)
- Phase change

The above desciption in header file shows that templated ReactingCloud class adds variable com-
position and phase change funtionalities to the base templated thermodnamic class ThermoCloud

Also go to

src
cd lagrangian/spray/parcels/Templates/SprayParcel
vi SprayParcel.H

In the header portion of SprayParcel.H, it is written as

Class
Foam: : SprayParcel

Description
Reacting spray parcel, with added functionality for atomization and breakup

1.3. DESCRIPTION AND COMPARISON OF BASICREACTINGCLOUD
AND BASICSPRAYCLOUD CHAPTER 1.

This descirption shows that templated SprayParcel adds functionalities of atomization and breakup
to the templated ReactingParcel

Location of submodels

To see all the available submodels for the templated ReactingCloud class, go to

src
cd lagrangian/intermediate/submodels/Reacting
tree -d

The above commands show following tree on terminal

CompositionModel
CompositionModel
NoComposition
SingleMixtureFraction
SinglePhaseMixture

InjectionModel
ReactinglookupTableInjection

PhaseChangeModel
LiquidEvaporation
LiquidEvaporationBoil
NoPhaseChange
PhaseChangeModel

As described earlier in this section 1.3.3 (in the header file of ReactingCloud.H) that templated
ReactingCloud class adds functionalities of composition and phase change to the templated ThermoCloud
class and can be seen from the above tree. The avaialble submodels for e.g. composition models

are NoComposition, SingleMixtureFraction and SinglePhaseMixture. In the tree the directory
CompositionModel inside the directory CompositionModel is a virtual base class and other directo-
ries NoComposition, SingleMixtureFraction and SinglePhaseMixture are the submodels to the
composition model to be selected on run time.

To see all the available submodels for the templated SprayCloud class, go to

src
cd lagrangian/spray/submodels
tree -d

The above commands show following tree on terminal

AtomizationModel
AtomizationModel
BlobsSheetAtomization
LISAAtomization
NoAtomization

BreakupModel
BreakupModel
ETAB
NoBreakup
PilchErdman
ReitzDiwakar
ReitzKHRT
SHF
TAB

StochasticCollision
NoStochasticCollision

1.3. DESCRIPTION AND COMPARISON OF BASICREACTINGCLOUD
AND BASICSPRAYCLOUD CHAPTER 1.

ORourkeCollision
StochasticCollisionModel
TrajectoryCollision

As described before in this section 1.3.3 (in the header file of SprayParcel.H) that templated
SprayParcel class adds functionalities of atomization and breakup to the templated ReactingParcel
class and can be seen from the above tree. The avaialble submodels for e.g atomization models are
BlobsSheetAtomization, LISAAtomization and NoAtomization (atomization of spray is not mod-
elled at all).

Adding or removing submodels

Go to

src
cd lagrangian/intermediate/parcels/derived/basicReactingParcel
vi makeBasicReactingParcelSubmodels.C

This file makeBasicReactingParcelSubmodels.Creads as:

makeParcelCloudFunctionObjects(basicReactingCloud) ;

// Kinematic sub-models
makeThermoParcelForces(basicReactingCloud) ;
makeParcelDispersionModels(basicReactingCloud) ;
makeReactingParcelInjectionModels (basicReactingCloud) ;
makeParcelPatchInteractionModels(basicReactingCloud) ;

// Thermo sub-models
makeParcelHeatTransferModels (basicReactingCloud) ;

// Reacting sub-models

makeReactingParcelCompositionModels (basicReactingCloud) ;
makeReactingParcelPhaseChangeModels (basicReactingCloud) ;
makeReactingParcelSurfaceFilmModels (basicReactingCloud) ;

This file contains all the funtionalities that will be added to the basicReactingCloud class. This
file shows that ReactingCloud submodels are added to the ThermoCloud and KinemticCloud sub-
models.

If any other functionality needs to be added then it must be defined in the submodels directory and
also added to this file makeBasicReactingParcelSubmodels.C. For removing any functionality, it
must be removed from the submodels directory and the file makeBasicReactingParcelSubmodels.C.
Now to see all the functionalities for basicSprayCloud class, go to

src
cd lagrangian/spray/parcels/derived/basicSprayParcel
vi makeBasicSprayParcelSubmodels.C

This file makeBasicSprayParcelSubmodels.C reads as:

makeParcelCloudFunctionObjects(basicSprayCloud) ;

// Kinematic sub-models

makeThermoParcelForces (basicSprayCloud) ;
makeParcelDispersionModels (basicSprayCloud) ;
makeSprayParcelInjectionModels (basicSprayCloud) ;
makeParcelPatchInteractionModels (basicSprayCloud) ;

1.3. DESCRIPTION AND COMPARISON OF BASICREACTINGCLOUD
AND BASICSPRAYCLOUD CHAPTER 1.

// Thermo sub-models
makeParcelHeatTransferModels (basicSprayCloud) ;

// Reacting sub-models

makeReactingParcelCompositionModels (basicSprayCloud) ;
makeReactingParcelPhaseChangeModels (basicSprayCloud) ;
makeReactingParcelSurfaceFilmModels (basicSprayCloud) ;

// Spray sub-models
makeSprayParcelAtomizationModels (basicSprayCloud) ;
makeSprayParcelBreakupModels (basicSprayCloud) ;
makeSprayParcelCollisionModels (basicSprayCloud) ;

This file shows that SprayCloud submodels are added to the ReactingCloud, ThermoCloud and
KinematicCloud submodels.

Inheritance Diagrams of submodel classes

This portion shows and desrcibes the inheritance diagrams of submodel classes in OpenFOAM. The
inheritance diagram for composition submodel classes is shown in figure 1.1.

‘ NoComposition= CloudType =

SingleMixtureFraction
< CloudType >

SubMode/Base< CloudType > }q—{ CompositionModel< CloudType >

SinglePhaseMixture

< Feam::ReactingCloud < CioudType >

< CloudType = =

CompositionModel< Foam
ReactingCloud< CloudType > >

Figure 1.1: Inheritance diagram for composition submodel classes

The legend for all the figures in this section is:

A dark blue arrow is used to visualize a public inheritance relation between two classes.
A yellow dashed arrow denotes a relation between a template instance and the template
class it was instantiated from. The arrow is labeled with the template parameters
of the instance.

The figure 1.1 shows that the templated classes NoComposition<CloudType>, SingleMixtureFormation<CloudType>
and SinglePhaseMixture<CloudType> are publically inherited from the templated base class
CompositionModel<CloudType>. The template instance CompositionModel<Foam: :ReactingCloud<CloudType>>
is instantiated from template class CompositionModel<CloudType> with template parameter of in-

stance <Foam: :ReactingCloud<CloudType>>.

1.3. DESCRIPTION AND COMPARISON OF BASICREACTINGCLOUD
AND BASICSPRAYCLOUD CHAPTER 1.

The inheritance diagram for phase change submodel classes is shown in figure 1.2. The figure 1.2

LiquidEvaporation=
CloudType =

LiquidEvaporationBeil
< CloudType =

SubModklBase< CloudType > ’-1—' PhaseChangeModel< CloudType =

< Foam:ReactingCloud NoPhaseChange< CloudType >

< CloudType = =

PhaseChangeModel< Foam
:ReactingCloud= CloudType > >

Figure 1.2: Inheritance diagram for phase change submodel classes

shows that the templated classes NoPhaseChange<CloudType>, LiquidEvaporation<CloudType>
and LiquidEvaporationBoil<CloudType> are inherited publically from the templated base class
PhaseChaneModel<CloudType>. The template instance

PhaseChangeModel<Foam: :ReactingCloud<CloudType>> is instantiated from template class
PhaseChangeModel<CloudType>.

The inheritance diagram for breakup submodel classes is shown in figure 1.3. The figure 1.3 shows

| ETAB< CloudType > |

‘ NoBreakup< CloudType = |

‘ PilchErdman< CloudType >

ReitzDiwakar< CloudType = ‘

BreakupMedel< CloudTyps =

SubMedkelBase< CloudTyps =

ReitzKHRT< CloudType > |

[SHF< CloudType >

< Foam:SprayCloud
< CloudType > > ‘ TAB< CloudType > |

BreakupModel< Foam
:SprayCloud< CloudType > >

Figure 1.3: Inheritance diagram for breakup submodel classes

public inheritance of the templated classes NoBreakup<CloudType>, ETAB<CloudType>, PilchErdman<CloudType>,
ReitzDiwakar<CloudType>, ReitzKHRT<CloudType>, SHF<CloudType> and TAB<CloudType> from

the templated base class BreakupModel<CloudType>. The template instance

BreakupModel<Foam: : SprayCloud<CloudType>> is instantiated from template class BreakupModel<CloudType>
with template parameter of instance <Foam: : SprayCloud<CloudType>>.

10

1.3. DESCRIPTION AND COMPARISON OF BASICREACTINGCLOUD
AND BASICSPRAYCLOUD CHAPTER 1.

The inheritance diagram for atomization submodels is shown in figure 1.4. This figure shows
that the templated classes NoAtomization<CloudType>, BlobsSheetAtomization<CloudType> and
LISAAtomization<CloudType> are publically inherited from the templated base class
AtomizationModel<CloudType>. The template instance AtomizationModel<Foam: : SprayCloud<CloudType>>
is instantiated from template class AtomizationModel<CloudType> with template parameter of in-
stance <Foam: : SprayCloud<CloudType>>.

BlobsSheetAtomization
< CloudType =

/ SAAtomization= CloudType > |

SubModelBase< CloudType = H AtomizationModel< CloudType =

NoAtomization< CloudType =

< Foam::SprayCloud
< CloudType = =

AtomizationModel< Foam
:SprayClouds CloudType > >

Figure 1.4: Inheritance diagram for atomization submodels

1.3.4 Use of cloud classes

The cloud class basicSprayCloud is used instead of basicReactingCloud when the effects of
atomization, breakup and collision need to be included. The reason is that basicSprayCloud
has extra submodels of atomization, breakup and collision included other than the submodels of
basicReactingCloud.

1.3.5 Usage and modification of cloud properties in cases

This section shows how to use and modify the cloud properties in case setup.

basicReactingCloud

Go to OpenFOAM tutorials directory and copy the original case evaporationTest (related to solver
reactingParcelFoam) to the run directory.

tut
cp -r lagrangian/reactingParcelFoam/evaporationTest/ $FOAM_RUN

The original case evaporationTest will not be modified and only studied here. Open the file
reactingCloudlPositions

run
cd evaporationTest/constant
vi reactingCloud1Positions

This file reads as:

(

(0.002 0.002 0.00005)
(0.004 0.002 0.00005)
(0.006 0.002 0.00005)
(0.008 0.002 0.00005)

11

1.3. DESCRIPTION AND COMPARISON OF BASICREACTINGCLOUD

AND BASICSPRAYCLOUD CHAPTER 1.
(0.010 0.002 0.00005)
(0.002 0.004 0.00005)
(0.004 0.004 0.00005)
(0.006 0.004 0.00005)
(0.008 0.004 0.00005)
(0.010 0.004 0.00005)
(0.002 0.006 0.00005)
(0.004 0.006 0.00005)
(0.006 0.006 0.00005)
(0.008 0.006 0.00005)
(0.010 0.006 0.00005)
(0.002 0.008 0.00005)
(0.004 0.008 0.00005)
(0.006 0.008 0.00005)
(0.008 0.008 0.00005)
(0.010 0.008 0.00005)
(0.002 0.010 0.00005)
(0.004 0.010 0.00005)
(0.006 0.010 0.00005)
(0.008 0.010 0.00005)
(0.010 0.010 0.00005)

)

This file shows the position of twenty five reacting particles in three dimensional coordinate system.
Now open the dictionary file reactingCloudiProperties.

run
cd evaporationTest/constant
vi reactingCloudlProperties

This file reactingCloud1Properties contains information about submodels. The portion of this
file about submodels reads as:

subModels

{
particleForces
{
}

injectionModel manuallnjection;
dispersionModel none;

patchInteractionModel standardWallInteraction;
heatTransferModel none; // RanzMarshall;
compositionModel singlePhaseMixture;
phaseChangeModel none ; // liquidEvaporation;
surfaceFilmModel none;

radiation off;

12

1.3. DESCRIPTION AND COMPARISON OF BASICREACTINGCLOUD
AND BASICSPRAYCLOUD CHAPTER 1.

manualInjectionCoeffs

{
massTotal le-3;
parcelBasisType mass;
S0I 0;
positionsFile "reactingCloud1Positions";
Uo (0-0.10);
sizeDistribution
{
type uniform;
uniformDistribution
{
minValue 1e-04;
maxValue 1le-04;
}
}
}
standardWallInteractionCoeffs
{
type rebound;
}
RanzMarshallCoeffs
{
BirdCorrection true;
}
singlePhaseMixtureCoeffs
{
phases
(
liquid
{
H20 1;
}
)
}
liquidEvaporationCoeffs
{
enthalpyTransfer enthalpyDifference;
activeliquids (H20);
}

3

The above file shows that the injection model being used in this case is manualInjection which
is specified by manualInjectionCoeffs. The manualInjectionCoeffs contains information about
mass and position of reacting particles. It also shows that velocity is 0.1 m/s in negative Y-direction
and particles are uniformly distributed. There is no dispersion and heat transfer model being used
in the case. Also phase change, surface film and radiation effects are not being modelled. For
interaction of particles with patches, standardWallInteraction model is used. The properties of
standardWallInteraction model are specified by standardWallInteractionCoeffs which show

13

1.3. DESCRIPTION AND COMPARISON OF BASICREACTINGCLOUD
AND BASICSPRAYCLOUD CHAPTER 1.

that particles will rebound on hitting the wall. The particles are composed of water droplets as de-
fined by singlePhaseMixtureCoeffs. The RanzMarshallCoeffs and liquidEvaporationCoeffs
corresponding to the models RanzMarshall and liquidEvaporation are also available in case but
they are not being used for now (they are commented out). So submodels for reacting cloud can
easily be selected and modified for any case by changing this file reactingCloudiProperties.
Now make the mesh, run the solver and open the post processor.

blockMesh
reactingParcelFoam
paraFoam

After post processing of results, figure 1.5 is obtained which shows that 25 water droplets are moving
in Y-direction and bouncing up and down after striking the wall.

Figure 1.5: 25 water droplets inside the domain

basicSprayCloud

Go to tutorials directory of OpenFOAM and copy the case aachenBomb (corresponding to solver
sprayFoam) to the OpenFOAM run directory.

tut
cp -r lagrangian/sprayFoam/aachenBomb/ $FOAM_RUN

The original case aachenBomb will not be modified and only studied here. Go to diectory aachenBomb/constant
and open the dictionary file sprayCloudProperties.

run
cd aachenBomb/constant
vi sprayCloudProperties

The part of this file related to submodels reads as:

14

1.3. DESCRIPTION AND COMPARISON OF BASICREACTINGCLOUD
AND BASICSPRAYCLOUD

CHAPTER 1.

subModels
{
particleForces
{
sphereDrag;
}

injectionModel coneNozzleInjection;
dispersionModel none;
patchInteractionModel standardWallInteraction;
heatTransferModel RanzMarshall;
compositionModel singlePhaseMixture;
phaseChangeModel liquidEvaporationBoil;
surfaceFilmModel none;
atomizationModel none;
breakupModel ReitzDiwakar; // ReitzKHRT;
stochasticCollisionModel none;
radiation off;
coneNozzleInjectionCoeffs
{

S0I 0;

massTotal 6.0e-6;

parcelBasisType mass;

injectionMethod disc;

flowType flowRateAndDischarge;

outerDiameter 1.9e-4;
innerDiameter 0;

duration 1.25e-3;
position (0 0.0995 0);
direction (0-10);

parcelsPerSecond 20000000;

flowRateProfile table

(
(0 0.1272)
(4.16667e-05 6.1634)
(8.33333e-05 9.4778)
(0.000125 9.5806)
(0.000166667 9.4184)
(0.000208333 9.0926)
(0.00025 8.7011)
(0.000291667 8.2239)
(0.000333333 8.0401)
(0.000375 8.845)

15

1.3. DESCRIPTION AND COMPARISON OF BASICREACTINGCLOUD

AND BASICSPRAYCLOUD

CHAPTER 1.

(0.
(0.
(0.
(0.
(0.
(0.
(0.
(0.
(0.
(0.
(0.
(0.
(0.
(0.
(0.
(0.
(0.
(0.
(0.
(0.
(0.

)

000416667 8.9174)
000458333 8.8688)
0005 8.8882)
000541667 8.6923)
000583333 8.0014)
000625 7.2582)
000666667 7.2757)
000708333 6.968)
00075 6.7608)
000791667 6.6502)
000833333 6.7695)
000875 5.5774)
000916667 4.8649)
000958333 5.0805)
001 4.9547)
00104167 4.5613)
00108333 4.4536)
001125 5.2651)
00116667 5.256)
00120833 5.1737)
00125 3.9213)

Cd constant 0.9;
thetalnner constant 0.0;
thetaluter constant 10.0;
sizeDistribution
{
type RosinRammler;
RosinRammlerDistribution
{
minValue 1e-06;
maxValue 0.00015;
d 0.00015;
n 3;
}
}
}
standardWallInteractionCoeffs
{
type rebound;
}
RanzMarshallCoeffs
{
BirdCorrection true;
¥

singlePhaseMixtureCoeffs

{

16

1.3. DESCRIPTION AND COMPARISON OF BASICREACTINGCLOUD
AND BASICSPRAYCLOUD

CHAPTER 1.

/%

*/

}

The above file shows that the injection model being used in this case is coneNozzleInjection which
is specified by coneNozzleInjectionCoeffs. The coneNozzleInjectionCoeffs describes that the
spray is injected as a cone nozzle spray with RosinRammler size distribution. It also gives information
about total mass, start of injection, outer and inner diameter of cone nozzle, duration, position and
direction of spray injection, nozzle discharge coefficients, parcels injected per second and flow rate
profile of spray injection. There is no dispersion, stochastic collision and atomization model being
used in the case. Also surface film and radiation effects are neglected. The interaction of spray with
wall patches is modelled such that the spray parcels will be rebounded on hitting the wall as defined
by patchInteractionModel and standardWallInteractionCoeffs. The particles are composed of

phases
(
liquid
{
C7TH16 1;
}
)
}
liquidEvaporationBoilCoeffs
{
enthalpyTransfer enthalpyDifference;
activelLiquids (C7H16);
}
ReitzDiwakarCoeffs
{
solveOscillationEq yes;
Cbag 6;
Cb 0.785;
Cstrip 0.5;
Cs 10;
}
ReitzKHRTCoeffs
{
solveOscillationEq yes;
BO 0.61;
B1 40;
Ctau 1;
CRT 0.1;
msLimit 0.2;
WeberLimit 6;
}
TABCoeffs
{
yO 0;
yDotO 0;
Cmu 10;
Comega 8;
WeCrit 12;
}

17

1.4. CREATING AND ADDING NEW SUBMODEL CHAPTER 1.

liquid n-heptane as defined by singlePhaseMixtureCoeffs. The breakup model is ReitzDiwakar
which is defined by ReitzDiwakarCoeffs. T'wo other breakup models ReitzKHRT and TAB have their
properties defined by ReitzKHRTCoeffs and TABCoeffs but are not being used here. So submodels
for spray cloud can be selected and modified by doing changes in this file sprayCloudProperties.
Now run this case after making mesh.

blockMesh
sprayFoam
paraFoam

Post processing of results gives figure 1.6 which shows the cone shaped spray injection of liquid
n-heptane.

.
800.1089
800

/00

600

508.7433

Figure 1.6: Cone shaped spray injection

1.4 Creating and adding new submodel

This section shows how to create and add a new submodel. Go to run directory and copy the
submodels there:

run
cp -r $FO0AM_SRC/lagrangian/intermediate/ .
cd intermediate/submodels/Reacting/PhaseChangeModel/

Create a new submodel from an old one:

cp -r NoPhaseChange MyPhaseChange

cd MyPhaseChange

mv NoPhaseChange.C MyPhaseChange.C

mv NoPhaseChange.H MyPhaseChange.H

sed -i s/NoPhaseChange/MyPhaseChange/g MyPhaseChange.H
sed -i s/NoPhaseChange/MyPhaseChange/g MyPhaseChange.C
sed -i s/none/MyPhaseChange/g MyPhaseChange.H

sed -i s/false/true/g MyPhaseChange.C

18

1.4. CREATING AND ADDING NEW SUBMODEL CHAPTER 1.

Add the newly created submodel as:

run
cd intermediate/parcels/include/
vi makeReactingParcelPhaseChangeModels.H

Add the following two lines to the file makeReactingParcelPhaseChangeModels.H:
#include "MyPhaseChange.H"

and

makePhaseChangeModelType (MyPhaseChange, CloudType) ;

Now go to directory intermediate/Make.

run
cd intermediate/Make/
vi files

Replace the last line in the files as:
LIB = $(FOAM_USER_LIBBIN)/libmylagrangianIntermediate
Now compile the library.

cd ..
wclean
wmake libso

19

