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Details of the divergence term fvm::div(phi, T)

We will go through how div(phi, T) works using Doxygen.

This is an example how you can understand the code in OpenFOAM which might be useful if

you want to investigate a piece of OpenFOAM code.
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• In this section, we will go through the implementation of div(phi, T) function. Since

depending on our selection during runtime in fvSchemes file, different implementations are

used, we assume that we have selected the following in the fvSchemes file.

div(phi,T) Gauss upwind;

• This selection means that for discretization of a term like ∇ · (UT ), we first transform the

volume integral to a surface integral using Gauss’s theorem and then we use upwind inter-

polation to obtain the interpolated values to the faces, Tf .

∫

V

∇ · (UT ) dV =

∮

S

dS ·UT

︸ ︷︷ ︸

Gauss’s theorem

=
∑

f

Sf ·UfTf =
∑

f

FTf

• Note that in the above equation F which is the flux of U at the faces, is equivalent to phi in

OpenFOAM notation.
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• To start with, we go to the start page of the Doxygen document of OpenFOAM

https://www.openfoam.com/documentation/guides/latest/doc/

• fvm::div(phi, T) means that the div(phi, T) is implemented in the namespace fvm.

To find the implementation of div(phi, T), we can search for the namespace fvm in search

bar on the top right and select the first option.

• As we can see in the description, this namespace includes functions used for implicit dis-

cretization.

• We find four div functions in this namespace. The one which its parameters match with
the parameters in div(phi,T) is,

div (const surfaceScalarField &flux, const GeometricField< Type, fvPatchField, volMesh > &vf)

• If we check the implementation of this function, we can see that this function calls another
div function in its return line.

return fvm::div(flux, vf, "div("+flux.name()+','+vf.name()+')');

• Compared to the previous div function, the function has additional argument which is a

string based on the name of the flux and the field. For div(phi, T), this string would be

"div(phi, T)".
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• If we check this div function, we can see that this function first calls a function called New

which belongs to the class in the convectionScheme class and then applies the operator ()

and lastly calls fvmDiv function which belongs to the object returned by the new function

followed by the operator ().

return fv::convectionScheme<Type>::New

(

vf.mesh(),

flux,

vf.mesh().divScheme(name)

)().fvmDiv(flux, vf);

• If we check the implementation of this class, we can see that the function is defined as

static which means that we can call it without creating an object of convectionScheme

class. We can also see that the function returns an object of the class tmp with the template

parameter set to convectionScheme class.

static tmp<convectionScheme<Type>> New

( const fvMesh & mesh,

const surfaceScalarField & faceFlux,

Istream & schemeData

)
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• The New function is a selector function in the runtime selection mechanism in OpenFOAM.

It is implemented in the base class and the purpose is to create an object of derived classes

based on the input we provide during the runtime.

• tmp is a wrapper class for managing temporary objects. It allows the function to return an

object without the need to copy the object and deleting the original one. This would lead to

less peak memory usage when a large object is returned by a function.

• The tmp class is extensively used in OpenFOAM especially when an object is returned by a

function. The operator () and the function ref() in this class are also used extensively.

• The operator () returns a constant reference to the temporary object in the tmp object.

• The ref() returns a reference to the temporary object in the tmp object. Using this function

we can change the temporary object itself.



CFD with OpenSource Software, 2020

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 7

Details of the divergence term fvm::div(phi, T)

• To sum up, the fv::convectionScheme<Type>::New followed by () operator returns an

object of one of convectionScheme’s sub-classes based on input at the runtime.

• Now let’s check the implementation of fvmDiv(flux, vf) function. If we search for this

function in Doxygen, we can find four implementations. One is the implementation in

convectionScheme class which is the base class and the others are the implementations

in the sub-classes of convectionScheme class.

• As shown before, depending on the output of new function, fvmDiv(flux, vf) imple-

mented in one of the derived classes of convectionScheme class is called. Here, we as-

sume that the new function returns an object of gaussConvectionScheme class, so we

only check the implementation of fvmDiv(flux, vf) in this class.

• The fvmDiv function first creates a constant reference to the output of the weights(vf)

function which belongs to the object tinterpScheme_().

tmp<surfaceScalarField> tweights = tinterpScheme_().weights(vf);

const surfaceScalarField& weights = tweights();

• Note that tinterpScheme_ is an object of the tmp class with the template variable set to

surfaceInterpolationScheme class. As mentioned before the operator () return a con-

stant reference to the object which tmp object is wrapped around. Therefore, tinterpScheme_()

returns a constant reference to an object of surfaceInterpolationScheme class.
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• If we check the constructor of this class, we see that tinterpScheme_ is initialized by the

new function in surfaceInterpolationScheme class. This new function returns the a

temporary object of the derived classes of the surfaceInterpolationScheme depending

on the input in the divScheme dictionary.

• To see what weights() function returns, we should check the implementation of this func-

tion in surfaceInterpolationScheme and its derived classes.

• In surfaceInterpolationScheme class, this function is a pure virtual function meaning

that its implementation is in the derived classes.

• All of the interpolation schemes which are derived from surfaceInterpolationScheme

class have their own implementation of weights() function. Here, we only check the im-

plementation for the upwind scheme.

• We can check the inheritance diagram of surfaceInterpolationScheme class to find

upwind class. We should also note that that upwind class in not a direct derived class of

the surfaceInterpolationScheme class but it is a derived class of

limitedSurfaceInterpolation class which is a derived class of

surfaceInterpolationScheme class.
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• The weights() function in upwind class returns one if the this->faceFlux_ is zero or
positive, otherwise.

//- Return the interpolation weighting factors

tmp<surfaceScalarField> weights() const

{

return pos0(this->faceFlux_);

}

• This is the weighting factor of the owner cells in the interpolated value on the faces. To

clearly show this, consider the upwind interpolation on the highlighted face. If we assume

that the flux is positive (from owner to neighbor in OpenFOAM notation), the weights()

function return one which is the weighting factor of the owner cell. The weighting factor of

the neighbor cell is simply 1-weights().
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• Now let’s go back to the implementation of fvmDiv(flux, vf) function in

gaussConvectionScheme class. To sum up what we understood so far, the weights stores

the weighing factor of owner cells in the interpolated value on the faces.

• The function then creates a temporary object of the fvMatrix class which is constructed

using the new keyword. Then the ref() function in tmp class is called and its return is

stored in the object fvm. Note the ref() function in tmp class returns a reference to the

empty object of fvMatrix which tfvm is wrapped around.

tmp<fvMatrix<Type>> tfvm

(

new fvMatrix<Type>

(

vf,

faceFlux.dimensions()*vf.dimensions()

)

);

fvMatrix<Type>& fvm = tfvm.ref();

• In the rest of the code, the function stores the information in Ax=b in the fvMatrix, fvm.

Before going into the detail of the code, we will have a look at how a linear equation system,

Ax=b is created when div(phi, T) is discretized on a very simple domain. Then we will

connect the coefficients in this linear equation system with the coefficients which are stored

in the fvMatrix, fvm.
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• The domain is 1D in OpenFOAM and has 3 cells with the labels {0,1,2}. There are two

internal faces with the labels {0,1} and two non-empty boundary faces with the label {2,3}.

For the boundary face 2, we assume that the boundary condition is fixedValue while for

the boundary face 3, we assume that the boundary condition is zeroGradient.

• For each cell of the domain, we apply the finite volume discretization of div(phi, T) as follows,
∫

V

∇ · (UT ) dV =

∮

S

dS ·UT

︸ ︷︷ ︸

Gauss’s theorem

=
∑

f

Sf ·UfTf =
∑

f

FTf
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• For the cell 0, one face is a boundary face with fixed value and the other one is the internal

face 0. The discretization would be

∑

f

FTf = F0(w0T0 + (1− w0)T1)
︸ ︷︷ ︸

f0

+F2Tf2︸ ︷︷ ︸
f2

= (F0w0)T0 + (F0(1− w0))T1 + F2Tf2

where F2 is the flux at the boundary face 2, Tf2 is a given value at the boundary face 2, F0

is the flux at the face 0 and w0 is the weighting factor of the owner cell in the interpolation

on the face 0. Note here that for the face 0, the owner cell is cell 0. In OpenFOAM, for each

face, the cell with smaller label is the owner and the cell with larger label is the neighbor.
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• For the cell 1, we have two internal faces. The discretization would be,

∑

f

FTf = −F0(w0T0 + (1− w0)T1)
︸ ︷︷ ︸

f0

+F1(w1T1 + (1− w1)T2)
︸ ︷︷ ︸

f1

= (−F0w0)T0 + (−F0(1− w0) + F1w1)T1 + (F1(1− w1))T2

where F1 is the flux at the face 1 and w1 is the weighting factor of the owner cell in the

interpolation on the face 1.
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• For the cell 2, we have one internal face and one boundary face. The discretization would

be,

∑

f

FTf = −F1(w1T1 + (1− w1)T2)
︸ ︷︷ ︸

f1

+F3T2︸︷︷︸
f3

= (−F1w1)T1 + (−F1(1− w1) + F3)T2

where F1 is the flux at the face 1 and w1 is the weighting factor of the owner cell in the

interpolation on the face 1.
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• Using the discretized equations in the previous slides, we can create a linear equation sys-

tem, Ax=b, as below.





F0w0 F0(1− w0) 0

−F0w0 −F0(1− w0) + F1w1 F1(1− w1)

0 −F1w1 −F1(1− w1) + F3









T0

T1

T2



 =





− F2Tf2

0

0





• Now, we can have a look at the code and make a connection between the coefficients the

above system and the information stored in the fvMatrix, fvm.

• After creating an empty matrix, the code assigns values to two functions in fvm fvMatrix,
lower() and upper().

fvm.lower() = -weights.primitiveField()*faceFlux.primitiveField();

fvm.upper() = fvm.lower() + faceFlux.primitiveField();

• The implementation of these functions are not in the fvMatrix class but in its base class,

lduMatrix.
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• Here, the lower() and upper() functions returns a reference to zero scalarFields which

their pointers are stored in fvm object. By assigning values to these functions, these zero

scalarFields get values.

• On the other side of these assignments, the primitiveField() function belonging to

weights and faceFlux are called. Note that both weights and faceFlux are a

surfaceScalarField which is a typedef of GeometricField class. If we check the im-

plementation of this class, we can see that primitiveField() returns a constant reference

to the values for internal faces.

• We know from previous slides that the weights returns the weighting factor of the owner

cells. Therefore, for our simple domain,

fvm.lower()= {−w0F0,−w1F1} : Non-zero coefficients in the lower triangle of A

fvm.upper()= {−w0F0 + F0,−w1F1 + F1} : Non-zero coefficients in the upper triangle of A





F0w0 F0(1− w0) 0

−F0w0 −F0(1− w0) + F1w1 F1(1− w1)

0 −F1w1 −F1(1− w1) + F3









T0

T1

T2



 =





− F2Tf2

0

0




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• In the next line of the code, the function fvm.negSumDiag() is called. Similar to the

lower() and upper() function, the implementation of this function is in the lduMatrix

class. We can check the implementation of this function in this class.

• The negSumDiag() first stores the constant reference to return of the functions lower()

and upper().

const scalarField& Lower = const_cast<const lduMatrix&>(*this).lower();

const scalarField& Upper = const_cast<const lduMatrix&>(*this).upper();

• The function then calls the function diag() and store the reference to its return in Diag.

scalarField& Diag = diag();

• diag() function is implemented in lduMatrix class. It returns a reference to zero scalarField

in this case.

• The function then calls lowerAddr() and upperAddr() functions on the return of lduAddr()

functions. The returns of these functions are stored in the constant reference variables to u

and l.

const labelUList& l = lduAddr().lowerAddr();

const labelUList& u = lduAddr().upperAddr();
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• lowerAddr() and upperAddr() returns addressing for the coefficients stored in lower()

and upper(). The reason for the need to have this addressing is that OpenFOAM only

stores the non-zero values of the off-diagonal coefficients. However,in order to construct the

Ax=B which is needed for solving the equation, the exact position of the coefficients are

needed. lowerAddr() and upperAddr() have information about these positions.

• lowerAddr() returns the label list of the owner cells while upperAddr() returns the label

list of the neighbor cells. In our simple domain, the lowerAddr() and the upperAddr()

return,

l: lowerAddr(): {0,1}

u : upperAddr(): {1,2}

• As mentioned before, the lower() and the upper() contain the non-zero off-diagonal co-

efficients. You can use the lowerAddr() and upperAddr() to get the position of these

coefficients.

Lower = {−F0w0,−F1w1} : {a1,0, a2,1} : {au,l}

Upper = {F0(1− w0), F1(1− w1)} : {a0,1, a1,2} : {al,u}
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• The last part of the code, loop over the faces and assigns values to Diag. To understand what

is exactly assigned to Diag, we simply perform the loop for faces in our simple domain.

face = 0 →

{
l[0] = 0

u[0] = 1
→

{
Diag[0] = Diag[0]- Lower[0] = 0 + F0w0

Diag[1] = Diag[1] - Upper[0] = 0− F0(1− w0)

face = 1 →

{
l[1] = 1

u[1] = 2
→

{
Diag[1] = Diag[1]- Lower[1] = −F0(1− w0) + F1w1

Diag[2] = Diag[2] - Upper[1] = 0− F1(1− w1)

• If we compare Diag with the system of linear equation, what is stored in Diag is the diago-

nal coefficients without the contribution of the boundary condition.





F0w0 F0(1− w0) 0

−F0w0 −F0(1− w0) + F1w1 F1(1− w1)

0 −F1w1 −F1(1− w1) + F3









T0

T1

T2



 =





− F2Tf2

0

0




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• We saw that the boundary faces can also contribute to the diagonal coefficients and source

terms depending on what boundary condition is used. In the following line, the diagonal

and the source term contribution of the boundary faces are added to fvm.

forAll(vf.boundaryField(), patchi)

{

const fvPatchField<Type>& psf = vf.boundaryField()[patchi];

const fvsPatchScalarField& patchFlux = faceFlux.boundaryField()[patchi];

const fvsPatchScalarField& pw = weights.boundaryField()[patchi];

fvm.internalCoeffs()[patchi] = patchFlux*psf.valueInternalCoeffs(pw);

fvm.boundaryCoeffs()[patchi] = -patchFlux*psf.valueBoundaryCoeffs(pw);

}

• The code first gets access to the values, (psf), fluxes (patchFlux), weighting factors of the

boundary faces, (pw).

• It assigns values to the return of internalCoeffs() and boundaryCoeffs() using the

flux values and return of the functions valueInternalCoeffs(pw) and

valueBoundaryCoeffs(pw).

• The function internalCoeffs() returns a reference to a private member data

internalCoeffs_ which is of type FieldField, i.e. a Field of Fields. The size of the outer

Field is the number of the patches and each inner Fields are initialized as a zero Field with

the size of the faces in each patch.
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• The function boundaryCoeffs() returns a reference to a private member data

boundaryCoeffs_. boundaryCoeffs_ is of type FieldField, i.e. a Field of Fields and is

set zero in the constructor.

• To understand what is stored in the return of the functions, boundaryCoeffs() and

internalCoeffs() , we need to know what is returned by the functions

valueInternalCoeffs() and valueBoundaryCoeffs().

• If we search for these functions in Doxygen, we can see that these functions are imple-

mented in the classes related to boundary conditions. Let’s check the implementation these

functions for the fixedValue boundary condition.

• The class for the fixedValue boundary condition is fixedValueFvsPatchField. The

valueInternalCoeffs() function in this class returns a zero volField and the

valueBoundaryCoeffs() returns *this which is the vf.boundaryField()[patchi],

i.e the values at the boundary faces.

• For our simple domain, the boundary condition for face 2 is set fixedValue. For this face,

fvm.internalCoeffs()[patchi] : 0

fvm.boundaryCoeffs()[patchi] : −F2Tf2
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• We can also look for the implementation of these functions in the zeroGradientFvPatchField

which is the class for the zero gradient boundary condition. The valueInternalCoeffs()

function in this class returns a one volField and the valueBoundaryCoeffs() returns

zero volField.

• For our simple domain and the boundary condition for face 2 where the boundary condition

is set to fixedValue. For this face,

fvm.internalCoeffs()[patchi] : F3

fvm.boundaryCoeffs()[patchi] : 0

• fvm.internalCoeffs() stores the diagonal terms coming from the boundary faces a while

fvm.boundaryCoeffs() stores the source terms coming from the boundary faces.





F0w0 F0(1− w0) 0

−F0w0 −F0(1− w0) + F1w1 F1(1− w1)

0 −F1w1 −F1(1− w1) + F3









T0

T1

T2



 =





− F2Tf2

0

0




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• The last part of the function checks whether the return of corrected() function in

tinterpScheme_ is true or not. If it is true, the function the adds the contribution of the

correction in the interpolation scheme to fvm.

if (tinterpScheme_().corrected())

{

fvm += fvc::surfaceIntegrate(faceFlux*tinterpScheme_().correction(vf));

}

• To find the implementation of the corrected() and correction(vf) functions, we should

look into the surfaceInterpolationScheme class as tinterpScheme_ is an object of

this class.

• Based on the description of the corrected() function, it returns true if the interpolation

scheme has an explicit correction. In surfaceInterpolationScheme, this function re-

turns False. Note, however, that the function is defined as virtual which means that the

function can be defined in derived classes, i.e, interpolation schemes. There are some de-

rived classes where this function returns True.
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• For the correction(vf) function, the description says that it returns the explicit correc-

tion of the face interpolation. We can find the implementation of this function in

surfaceInterpolationScheme. However, this function is redefined in all of the derived

classes where corrected() returns True. So, the implementation of correction(vf) in

surfaceInterpolationScheme class is never called.

• The last line of the code finally returns the fvMatrix, fvm.


