
Cite as: Zabaleta, F.: Incorporation of Greimann and Holly interparticle stress model to sedFoam. In

Proceedings of CFD with OpenSource Software, 2018, Edited by Nilsson. H.,

http://dx.doi.org/10.17196/OS_CFD#YEAR_2018

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Incorporation of Greimann and Holly
interparticle stress model to sedFoam

Developed for OpenFOAM-6.0.x
Requires: swak4Foam and sed-
Foam

Author:
Federico Zabaleta
University of California, Davis
fzabaleta@ucdavis.edu

Peer reviewed by:
Ebrahim Ghahramani

Jiangyuan Zhang

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone

through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

January 3, 2019

Learning outcomes

The reader will learn:

How to use it:

� How the sedFoam solver works.

� How to use the solver.

The theory of it:

� Two-fluid flow theory.

� Interparticle stress modelling.

How it is implemented:

� How sedFoam is implemented.

How to modify it:

� How to implement new inter-particle stress models.

� The effect of the new model on the simulation of sediment distribution in an open channel.

1

Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

� Fundamentals of fluid mechanics.

� Fundamentals of two-phase flows.

� Run standard document tutorials like damBreak tutorial

� Be able to read and understand C++.

2

Contents

1 Theoretical Framework 4
1.1 Introduction . 4
1.2 Two Fluid Model . 4

1.2.1 Phase-Intensive Formulation . 5
1.2.2 Phase continuity equation . 6

1.3 Interaction forces . 7
1.4 Interparticle-stress . 8

1.4.1 Simplification by Greimann and Holly . 9

2 Description of sedFoam 11
2.1 SedFoam Installation . 11
2.2 Swak4foam installation . 11
2.3 Code structure . 12
2.4 Main code . 12
2.5 Class phaseModel . 13
2.6 Kinetic Theory class . 14
2.7 Inter-granular stress . 15

3 Implementations 17
3.1 Greimann and Holly Model . 17
3.2 Implementation . 18

4 Tutorial sedFoam 27
4.1 Case structure . 27
4.2 Mesh generation and boundary conditions . 28
4.3 Case configuration . 29
4.4 Running the tutorial . 30

3

Chapter 1

Theoretical Framework

1.1 Introduction

Sediment laden flows consist of two phases (water and sediment) moving and interacting with each
other. The carrier phase (water) is responsible of the motion of the dispersed phase (sediment),
which at the same time affects the water flow. An ideal numerical model for the particle phase
would resolve the dynamics of each individual particle in the system. However, typical engineering
applications involve millions of particles, and the time and resources to account for the dynamics of
every particle exceeds the computational capabilities nowadays.

First approaches to model suspended sediment in open channels considered the dispersed phase as
a scalar transported by the carrier phase. This approach considers the sediment moving at the same
stream-wise velocity of the fluid, and the vertical velocities of the sediment as a result of the settling
velocity and the turbulent diffusion. Under these considerations, assuming a vertical sediment
diffusivity proportional to the momentum diffusivity, and describing the fluid velocity distribution
with the law of the wall, Rouse (1957) [4] derived an equation that describes the vertical distribution
of sediment under equilibrium conditions in an open-channel, known as Rousean distribution. This
equation represents a very good approximation of the shape of the sediment distribution, but fails
to predict the concentration of sediment in the wall-normal direction. Good representations can be
achieved by adjusting the Rouse number in order to adjust the measured data, but this equation
is not capable by itself to predict the wall-normal sediment distribution. Several authors proposed
methods to correct the Rousean distribution. These attempts included modification of the von-
Karman constant, adjusting the values of the Schmidt number (ratio between the eddy viscosity of
the flow and the suspended sediment diffusion coefficient) and including mechanisms to account for
different velocities of the flow and the sediment.

A more complex method is the particle cloud approach, in which ”bulk” properties are identified
and interpreted in terms of mixing. In particular we are interested in the eulerian version of the
particle cloud approach, also called two fluid model, where the properties of the particles are assumed
to be continuous like those of a fluid. Equations are developed for the conservation of mass and
momentum, and discretized into algebraic equations and then solved using the same procedures used
for the carrier phase.

1.2 Two Fluid Model

Two-phase flow models consist of a set of equations of mass, momentum and energy conservations
for both phases. These models treat both phases as a continuum, no matter if they really are. To
use this assumption, ensemble or volume averaged variables are considered for both phases (for more
information see Crowe (2012) [3]).

For a water sediment flow, mass and momentum equations account for the interaction between
both phases (the energy equation is decoupled from the other two). Assuming that the pressure at

4

1.2. TWO FLUID MODEL CHAPTER 1. THEORETICAL FRAMEWORK

both phases is the same, averaging over turbulence, and using the Boussinesq model to represent
the Reynolds stresses of the carrier and disperse phases, we can write the mass and momentum
conservation equations for both phases like it is presented in Equations 1.1 and 1.2. The overbars
for turbulence averaging have been dropped for simplicity.

∂αkρk

∂t
+∇ · (αkρkUk) = 0 (1.1)

∂αkρkUk

∂t
+∇ · (αkρkUkUk) = −αk∇p+∇ ·

(
αk
[
Tk + ξk

])
+ αkρkg + Fk (1.2)

In this equations, k indicates the phases. These are the carrier phase (water, with superscript
c) and the disperse phase (sediment, with superscript d); αk is the volume fraction of the phase k;
ρk is the density of the phase k; Uk is the velocity of the phase k; t indicates time; p denotes the
pressure; Tk represent the viscous and Reynolds stresses, ξk represent the stresses due to interparticle
collisions (ξc = 0); g is the gravity acceleration, and Fk represent all the interaction forces among
phases for the phase k. This forces are typically drag, lift, virtual mass and turbulent dispersion.

The total stresses (Tk) can be represented as the sum of the viscous stress and the Reynolds
stress (Equation 1.3). Assuming a newtonian fluid to represent the viscous stresses, and using the
Boussinesq approximation to estimate the Reynold stresses, they can be expressed as follows,

Tk = τ k + Rk (1.3)

τ k = ρkνk
(
∇Uk +∇UkT

)
+

2

3
ρkνk

(
∇ ·Uk

)
I (1.4)

Rk = ρkνkt

(
∇Uk +∇UkT

)
+

2

3
ρkνkt

(
∇ ·Uk

)
I +

2

3
ρkKkI (1.5)

These two stresses can be combined using an efficient viscosity νeff = νk+νkt . Then the total stress
can be rewritten as,

Tk = ρkνkeff

(
∇Uk +∇UkT

)
+

2

3
ρkνkeff

(
∇ ·Uk

)
I +

2

3
ρkKkI (1.6)

1.2.1 Phase-Intensive Formulation

The solver sedFoam uses the phase-intesive formulations of the phase momentum equations [7]. This
formulation is used to avoid instabilities when αk → 0. To obtain this formulation, the continuity
equation is multiplied by Uk and subtracted from the mommentum equation. Then the new equation
is divided by αk. Assuming an incompressible flow (e.g. ρk constant), the phase intensive formulation
of the mommentum equation (of the carrier phase, k = c) can be expressed as,

∂Uk

∂t
+ Uk · ∇Uk +∇ · T

k

ρk
+
∇αk

αk
· T

k

ρk
= −∇p

ρk
+ g +

Fk

αkρk
(1.7)

Then the total stress can be divided into a diffusive component and a correction term.

Tk

ρk
= −νkeff∇U

k + Tk
C (1.8)

Tk
C = −νkeff∇U

kT +
2

3
νkeff

(
∇ ·Uk

)
I +

2

3
KkI (1.9)

Then Equation 1.7 can be rewritten as,

5

1.2. TWO FLUID MODEL CHAPTER 1. THEORETICAL FRAMEWORK

∂Uk

∂t
+ Uk · ∇Uk −∇ · (νkeff∇U

k)− ∇α
k

αk
· (νkeff∇U

k)

+∇ ·Tk
C +

∇αk

αk
·Tk

C = −∇p
ρk

+ g +
Fk

αkρk
(1.10)

Taking into account the following identities,

Uk · ∇Uk = ∇ · (UkUk)−Uk
(
∇ ·Uk

)
(1.11)

∇αk

αk
· (νkeff∇U

k) = νkeff∇ · (∇αkU
k)−Uk

(
∇ · [νkeff∇αk]

)
(1.12)

Equation 1.10 can be finally rewritten as,

∂Uk

∂t
+∇ · (UkUk)−Uk

(
∇ ·Uk

)
− νkeff∇2Uk − νkeff∇ · (∇αkU

k)−Uk
(
∇ · [νkeff∇αk]

)
= −∇ ·Tk

C −
∇αk

αk
·Tk

C −
∇p
ρk

+ g +
Fk

αkρk
(1.13)

This is the final expression used in sedFoam. The left hand side is calculated implicitly, while the
parts on the right hand side are calculated explicitly and transferred to the pressure Equation. An
additional term that comes from the drag model is also calculated implicitly. This equation can be
found in the code on the file solvers/UEqn.H. A similar approach can be done with the dispersed
phase. A piece of that code is reproduced here,

surfaceScalarField phiRb =

(

- fvc::interpolate(nuEffb)*mesh.magSf()*(fvc::snGrad(beta))

/fvc::interpolate(beta)

);

fvVectorMatrix UbEqn

(

fvm::ddt(Ub)

+ fvm::div(phib, Ub, "div(phib,Ub)")

- fvm::Sp(fvc::div(phib), Ub)

- fvm::laplacian(nuEffb, Ub)

+ fvm::div(phiRb, Ub, "div(phiRb,Ub)")

- fvm::Sp(fvc::div(phiRb), Ub)

==

... (Corresponding to interaction forces)

);

1.2.2 Phase continuity equation

The continuity equation for both phases should be solved in a way that guarantee boundedness for
each phase (e.g αk should be in between 0 and 1). In order to do this, the continuity equation for
both phases are combined. The total and relative velocities are defined as follows,

U = αcUc + αdUd ; Ur = Ud −Uc (1.14)

Then the velocity of the dispersed phase can be rewritten as,

6

1.3. INTERACTION FORCES CHAPTER 1. THEORETICAL FRAMEWORK

Ud = U + αcUr (1.15)

Substituting the last expression in the continuity equation of the dispersed phase, this one can be
rewritten as,

∂αd

∂t
+∇ · (αdU) +∇ · (αd(1− αd)Ur) = 0 (1.16)

This expression is used in sedFoam to solve the continuity equation of the dispersed phase. A
piece of the code showing this equation is presented below. If this equation is solved fully implicitly,
then the solution should be bounded. Finally, the phase fraction of the carrier phase is calculated
as αc = 1− αd.

surfaceScalarField phi("phi", phia + phib);

surfaceScalarField phir("phir", phia - phib);

fvScalarMatrix alphaEqn

(

fvm::ddt(alpha)

+ fvm::div(phi, alpha, scheme)

+ fvm::div(-fvc::flux(-phir, beta, schemer), alpha, schemer)

);

alphaEqn.relax();

alphaEqn.solve();

alpha.min(alphaMax);

alpha.max(0);

beta = scalar(1.0) - alpha;

1.3 Interaction forces

The interaction forces Fk can be calculated as,

Fk = FD + FL + FVM + FSUS

Where the drag force (FD) can be calculated as [1],

FD = αdβ(Uc −Ud) (1.17)

β =


150

αdνcρc

αcd2
+ 1.75

ρc|Uc −Ud|
d

αc ≥ 0.2

0.75 ∗ CDρc|Uc −Ud|(1− αd)−1.65

d
αc < 0.2

(1.18)

The lift force (FL) can be calculated as [2],

FL = −CLαdρc(Uc −Ud)× (∇×Uc) (1.19)

CL =
1

4
(1.20)

The virtual mass force, for a spherical particle submerged in an inviscid, incompressible fluid is given
by [3],

7

1.4. INTERPARTICLE-STRESS CHAPTER 1. THEORETICAL FRAMEWORK

FVM =
1

2
αdρc

(
DUc

Dt
− ∂Ud

∂t

)
(1.21)

FSUS represents the turbulent resuspension term [1], and can be calculated as,

FSUS =
1

σc
βKνdt∇αd (1.22)

1.4 Interparticle-stress

The interparticle stress occurs due to collision between particles. Probably the most used approach
to model this stress is the Kinetic Theory of Granular Flows. This model includes a parameter called
granular temperature which is obtained solving a partial differential equation. SedFoam recently
introduced the Dense Granular Flow Rheology model to represent the interparticle stress. This
model is not going to be discussed here, but more information can be found on Chauchat et. al
(2017) [1].

The interparticle stress is divided into the normal (p) and off-diagonal (τ) components. These
components can be divided into a collisional kinetic component (superscript sc) and a frictional
component (superscript sf). They can be expressed as,

ξd = pdI + τ d = ξdc + ξdf (1.23)

pd = pdc + pdf ; τ d = τ dc + τ df (1.24)

The normal components can be calculated as follows,

pdc =

{
0 αd < αdL

F
(αd−αd

L)
m

(αd
max−αd)n

αd > αdL
; pdf = ρdαd

[
1 + 2(1 + e)αdgs0

]
Φ (1.25)

where F , m and n are empirical coefficients, Φ is the granular temperature, and gs0 is defined as,

gs0 =
2− αd

2(1− αd)3
(1.26)

The tangential stress components can be calculated as:

τ dc = 2µdcSd (1.27)

τ df = 2µdfSd + λ(∇ ·Ud) (1.28)

and,

Sd =
1

2

(
∇Ud +∇UdT

)
− 1

3
∇ ·Ud (1.29)

where µdf is the particle frictional viscosity, µdc is the particle collisional viscosity and λ is the
bulk viscosity. The first one is a function of the friction angle and the last two are functions of the
granular temperature (Φ). They can be calculated as follows [1],

µdf =
pdf sin(θf)√
||Sd||

(1.30)

µdc = ρdds
√

Φ

(
4αd

2
gs0(1 + e)

5π
+

√
πgs0(1 + e)(3e− 1)αd

2

15(3− e)
+

√
παd

6(3− e)

)
(1.31)

8

1.4. INTERPARTICLE-STRESS CHAPTER 1. THEORETICAL FRAMEWORK

λ =
4

3
αd

2
ρddsgs0(1 + e)

√
Φ

π
(1.32)

where θf is the friction angle, e is the is the coefficient of restitution during the collision and ds is
the particle diameter. The granular temperature (Φ) can be calculated with the balance equation
[1],

3

2

(
∂αdρdΦ

∂t
+∇ · (αdρdUdΦ)

)
=
(
−pdcI + τ dc

)
∇Ud −∇ · q− γs + Jint (1.33)

The closure of granular temperature flux (qj) is assumed to be analogous to Fourier’s law of con-
duction,

q = −κdc∇Φ (1.34)

where κdc is the conductivity of granular temperature, calculated as [1],

κdc = ρdds
√

Φ

(
2αd

2
gs0(1 + e)

π
+

9
√
πgs0(1 + e)(2e− 1)αd

2

2(49− 33e)
+

5
√
παd

2(49− 33e)

)
(1.35)

The dissipation rate due to inelastic collision is calculated based on that proposed by Ding and
Gidaspow (1990),

γs = 3
(
1− e2

)
(αd)2ρdgs0Φ

(
4

ds

√
Φ

π
−
∂Udj
∂xj

)
(1.36)

Due to the presence of the carrier fluid phase, carrier-flow turbulence can also induce particle fluc-
tuations. Following Hsu et al (2004), the fluid-particle interaction term can be expressed as,

Jint = αdK (2tmk
c − 3Φ) (1.37)

where tm represents the correlation between particle and fluid velocity fluctuations and kc the
turbulent kinetic energy of the carrier phase.

1.4.1 Simplification by Greimann and Holly

In this project we are going to implement the equations proposed by Greimann and Holly [5]. These
equations are a simplification of the Kinetic Theory model obtained using a mixing length approach
for the particle phase. These equations have the advantage that they do not need to solve a partial
differential equation to obtain the granular temperature. In this model an algebraic model for the
granular temperature is obtained. They express the frictional interparticle stress (ξdc) as,

ξdc = −2αdρdgo(1 + e)ΦI− 4

5
αdρdg0(1 + e)

(
Md − ΦI

)
+

4

5
αdρddpg0(1 + e)

√
τ

π

(
2Sd + (∇ ·Ud)I

)
(1.38)

where Φ is the granular temperature, Md is the second order moment of the particle phase and Sd

is the strain rate tensor. Md is defined as,

Md = ΦI− Sd (1.39)

the rest of the parameters are defined as follows,

g0 =

(
1− αd

αdmax

)−2.5αd
max

; Φ =
2Kd

3
; Kd =

Turbulent Kinetic Energy (TKE)
of disperse phase

(1.40)

Substituting Equation 1.39 in Equation 1.38 and rearranging we obtain Equation 1.41.

9

1.4. INTERPARTICLE-STRESS CHAPTER 1. THEORETICAL FRAMEWORK

ξdc = −2αdρdgo(1 + e)ΦI +

[
4

5
αdρdg0(1 + e)νdT +

4

5
αdρddpg0(1 + e)

√
Φ

π

](
∇Ud +∇UdT

)
+

[
8

15
αdρdg0(1 + e)νdT +

4

5
αdρddpg0(1 + e)

√
Φ

π

](
(∇ ·Ud)I

)
(1.41)

10

Chapter 2

Description of sedFoam

SedFoam is a solver derived from twoPhaseEulerFoam of OpenFOAM version 2.1.0. SedFoam adds
to twoPhaseEulerFoam specific models designed for sediment transport simulations. It also includes
new subroutines to increase the model’s stability. The solver can be obtained from the following
website: http://github.com/sedfoam/sedfoam [1]. In this chapter we are going to describe the
elements that compose a sedFoam case, and how the code has been implemented and structured.

2.1 SedFoam Installation

For OpenFOAM 5.0 (or version 6 or OpenFOAM Plus version 1806), download the official SedFoam-
3.0 package:

git clone http://github.com/sedfoam/sedfoam/

access to the sedFoam folder,

cd sedfoam

compile it with,

./Allwmake

For OpenFOAM-6.0.x the following line in solver/sedFoam.C should be commented,

if (pimple.corrPISO()<pimple.nCorrPISO())

and the following line uncommented,

if (!pimple.finalPISOIter())

2.2 Swak4foam installation

Swak4foam is a library that offers the user the possibility to specify expressions involving the fields
and evaluates them. It offers a number of utilities (for instance funkySetFields to set fields us-
ing expression), boundary conditions (groovyBC to specify arbitrary boundary conditions based
on expressions) and function objects that allow doing many things that would otherwise require
programming. In order to install it the following steps should be followed,

hg clone http://hg.code.sf.net/p/openfoam-extend/swak4Foam -u develop

cd swak4Foam

./maintainanceScripts/compileRequirements.sh

./Allwmake

11

2.3. CODE STRUCTURE CHAPTER 2. DESCRIPTION OF SEDFOAM

2.3 Code structure

SedFoam is organized in three main directories. The first one contains the solver, the second one
the new turbulence closures implemented for sediment transport, and the third one several tutorials.
The solver directory contains the main files, and five other directories: granularRheologyModels,
griemannHolly, kinetic TheoryModels, interfacialModels, and phaseModel. The first three
contain the models for the interparticle stress (included the new one) and all the submodels inside
them. The directory interfacialModels contains the models to calculate the interaction forces
and lastly phaseModel contains the class that defines the two phases.

sedFoam

|

|--- solver

| |--- granularRheologyModels

| | |--- FluidViscosityModel

| | |--- FrictionModel

| | |--- granularRheologyModel

| | |--- PPressureModel

| |

| |--- griemannHollyModel

| |--- interfacialModels

| |--- kineticTheoryModels

| | |--- conductivityModel

| | |--- frictionalStressModel

| | |--- granularPressureModel

| | |--- kineticTheoryModel

| | |--- radialModel

| | |--- viscosityModel

| |

| |--- phaseModel

|

|--- TurbulenceModels

| |--- turbulenceModels

|

|--- Tutorials

2.4 Main code

A part of the main code is included below (sedFoam.C). During the runTime the equations mentioned
in previous chapters are solved as follows,

1. Solve continuity equation (alphaEqn.H).

2. Calculate lift and drag coefficients (liftDragCoeffs.H).

3. Compute parameters from the Kinetic Theory. Solve granular temperature equation (callKineticTheory.H).

4. Compute contact pressure and frictional stress (callFrictionStress.H).

5. Create mommentum equations (UEqns.H).

6. Solves pressure Equation (pEqns.H).

7. At the end of each PIMPLE correction loop recalculates 1-4.

12

2.5. CLASS PHASEMODEL CHAPTER 2. DESCRIPTION OF SEDFOAM

8. Solves turbulence model.

while (runTime.run())

{

..

while (pimple.loop())

{

#include "alphaEqn.H"

#include "liftDragCoeffs.H"

#include "callKineticTheory.H"

#include "callFrictionStress.H"

#include "UEqns.H"

while (pimple.correct())

{

#include "pEqn.H"

if (!pimple.finalPISOIter())

{

if (correctAlpha)

{

#include "alphaEqn.H"

}

#include "liftDragCoeffs.H"

#include "callKineticTheory.H"

#include "callFrictionStress.H"

}

if (pimple.turbCorr())

{

#include "updateTwoPhaseRASTurbulence.H"

turbulenceb->correct();

}

}

#include "DDtU.H"

}

...

}

2.5 Class phaseModel

The main class implemented in sedFoam is the phaseModel class, located at sedFoam/phaseModel.
An object of this class is defined for each phase we are modeling (in this case 2), and the members
of the object include all information of the class such as the name of the phase, diameter of the
phase, viscosity, density, velocity, concentration, between others. It does not contains any member
function other than the constructor and functions to return the members of the class. The members
are define as follows,

class phaseModel

{

// Private data

13

2.6. KINETIC THEORY CLASS CHAPTER 2. DESCRIPTION OF SEDFOAM

dictionary dict_;

//- Name of phase

word name_;

//- Characteristic diameter of phase

dimensionedScalar d_;

//- shape factor for non-sperical particles

dimensionedScalar sF_;

//- exponent of the hindrance function for drag coeeficient

dimensionedScalar hExp_;

//- kinematic viscosity

dimensionedScalar nu_;

//- density

dimensionedScalar rho_;

//- Velocity

volVectorField U_;

//- Concentration

volScalarField alpha_;

//- Fluxes

autoPtr<surfaceScalarField> phiPtr_;

...

}

2.6 Kinetic Theory class

The kinetic theory class manages all the aspects related to the kinetic theory model. The class
members are composed of the different parameters that are needed to compute shear and nor-
mal stresses. The values that have to be specified by the user are defined in dictionary called
kineticTheoryProperties located in the constant directory. The class members include five
pointers that point to different submodels. These submodels are:

1. Viscosity Model

(a) Gidaspow

(b) Hrenya Sinclair

(c) Syamlal

(d) none

2. Conductivity Model

(a) Gidaspow

(b) Hrenya Sinclair

(c) Syamlal

14

2.7. INTER-GRANULAR STRESS CHAPTER 2. DESCRIPTION OF SEDFOAM

3. Radial Model

(a) Carnahan Starling

(b) Gidaspow

(c) Lun Savage

(d) Sinclair Jackson

(e) Torquato

4. Granular Pressure Model

(a) Lun

(b) Syamlal Rogers O’Brien

(c) Torquato

5. Frictional Stress Model

(a) Johnson Jackson

(b) Schaeffer

(c) Srivastava Sundaresan

These models will define how some of the variables in the Kinetic Theory Model are defined. In
the previous section the Kinetic Theory Model was explained using Syamlal for the Viscosity and
Conductivity models, Lun for the Granular Pressure model, Srivastava Sundaresan for the frictional
Stress model and Carnahan Starling for the radial model.

2.7 Inter-granular stress

The Kinetic Theory Model and the Granular Rheology Model are manipulated using objects called
kineticTheory from the class kineticTheoryModel and granularRheology from the class granularRhe-
ologyModel. These objects are created in createFields.H,

kineticTheoryModel kineticTheory

(

phasea,

Ub,

draga

);

granularRheologyModel granularRheology

(

phasea,

phaseb,

pa

);

One big disadvantage of this method is that both files kineticTheoryProperties and also
granularRheologyProperties have to be fully defined, independently of which model is going
to be used. This comes from version of twoPhaseEulerFoam from which sedFoam was devel-
oped. Newer versions use pointers to select the interparticle stress model. The computation
of the granular temperature and derived parameters is performed in callKineticTheory.H and
callFrictionStress.H using conditional statements and members functions,

15

2.7. INTER-GRANULAR STRESS CHAPTER 2. DESCRIPTION OF SEDFOAM

if (kineticTheory.on())

{

// Compute Kinetic Theory including granular temperature solution

kineticTheory.solve

(

galpha, gradUaT, turbulenceb->k(), turbulenceb->epsilon(), tur$

B, runTime

);

...

}

if (granularRheology.on())

{

// Solving granular rheology

granularRheology.solve(gradUaT,pff,alphaSmall,runTime.deltaT());

...

}

16

Chapter 3

Implementations

3.1 Greimann and Holly Model

In order to implement the Greimann and Holly Model to sedFoam, Equation 1.41 has to be adapted
to the framework in which sedFoam was implemented. As we saw in the previous section, the
interparticle stress is divided into frictional and contact component. These at the same time are
divided in normal and shear stresses. These components are introduced individually in the equations,
and therefore Equation 1.41 cannot be introduced all together into the model. Equation 1.41 can
be rewritten as follows,

ξdc = K1I +K2

(
∇Ud +∇UdT

)
+K3

(
(∇ ·Ud)I

)
(3.1)

Where K1, K2 and K3 can be found in Equation 1.41. From the Kinetic Theory of Granular
Flows, and combining Equations 1.23, 1.25 and 1.28 we can rewrite the frictional component of the
interparticle stress as,

ξdf = pdfI + µdf
(
∇Ud +∇UdT

)
+

(
λ− 1

3
µdf
)
∇ ·Ud (3.2)

Therefore by analogy of Equations 3.1 and 3.2 we can see that the model can be implemented
by using,

pdf = K1 ; µdf = K2 ; λ = K3 +
1

3
µdf (3.3)

or

pdf = −2αdρdgo(1 + e)Φ (3.4)

µdf =
4

5
αdρdg0(1 + e)νdT +

4

5
αdρddpg0(1 + e)

√
Φ

π
(3.5)

λ =
8

15
αdρdg0(1 + e)νdT +

4

5
αdρddpg0(1 + e)

√
Φ

π
− 1

3
µdf (3.6)

SedFoam does not take into account any turbulence closure for the disperse phase. Nevertheless,
νdT can be assumed equal to zero for the disperse phase [6], and the TKE of the disperse phase in
equilibrium with the carrier phase. Using these assumptions the previous equations can be simplified
as follows,

pdf = −2αdρdgo(1 + e)Φ (3.7)

17

3.2. IMPLEMENTATION CHAPTER 3. IMPLEMENTATIONS

µdf =
4

5
αdρddpg0(1 + e)

√
τ

π
(3.8)

λ =
4

5
αdρddpg0(1 + e)

√
τ

π
− 1

3
µdf =

2

3
µdf (3.9)

3.2 Implementation

Following the same logic used in sedFoam, a new class called griemannHollyModel is created that
contains all the information of the Greimann Holly Model. Assuming that we are located at the sed-
Foam main folder, we can proceed as follows: Create a copy of the solver directory called mySolver,

cp -r solver mySolver

edit Allwmake adding the following line at the end,

mySolver/Allwmake

rename sedFoam.C,

mv mySolver/sedFoam.C mySolver/mySedFoam.C

modify mySolver/Make/files changing it by,

mySedFoam.C

EXE = $(FOAM_USER_APPBIN)/mySedFoam

compile and test that no error arises by using,

./Allwmake

If everything went without errors then we can continue by creating a new class that will represent
the new model. Because this model is a simplification of the Kinetic Theory Model, we can start
with a copy of the kineticTheoryModel class and then modify it. Create the folder,

mkdir mySolver/griemannHollyModel

copy the class declaration and definition from the kinneticTheoryModels directory,

cp -r mySolver/kineticTheoryModels/Make/ mySolver/griemannHollyModel/

cp mySolver/kineticTheoryModels/kineticTheoryModel/kineticTheoryModel.*

mySolver/griemannHollyModel/

rename the files,

mv mySolver/griemannHollyModel/kineticTheoryModel.C

mySolver/griemannHollyModel/griemannHollyModel.C

mv mySolver/griemannHollyModel/kineticTheoryModel.H

mySolver/griemannHollyModel/griemannHollyModel.H

add to mySolver/Allwmake before wmake the following line,

wmake libso griemannHollyModel

add to mySolver/Allwclean before wclean the following line,

18

3.2. IMPLEMENTATION CHAPTER 3. IMPLEMENTATIONS

wclean libso griemannHollyModel

edit mySolver/griemannHolly/Make/files so it look as follows,

griemannHollyModel.C

LIB = $(FOAM_USER_LIBBIN)/libgriemannHollyModel

Finally the following lines in mySolver/griemannHolly/Make/options can be removed,

-I$(LIB_SRC)/foam/lnInclude \

-I../interfacialModels/lnInclude

Because several members of the class are the same, the class should be edited by removing and
adding some members and functions. The final version of the class header is,

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.

\\/ M anipulation |

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class

Foam::griemannHollyModel

Description

SourceFiles

griemannHollyModel.C

---/

#ifndef griemannHollyModel_H

#define griemannHollyModel_H

#include "phaseModel.H"

#include "autoPtr.H"

#include "fvCFD.H"

// * //

19

3.2. IMPLEMENTATION CHAPTER 3. IMPLEMENTATIONS

namespace Foam

{

/*---*\

Class griemannHollyModel Declaration

---/

class griemannHollyModel

{

// Private data

const phaseModel& phasea_;

const volVectorField& Ua_;

const volScalarField& alpha_;

const surfaceScalarField& phia_;

const dimensionedScalar& rhoa_;

const dimensionedScalar& da_;

const dimensionedScalar& nua_;

//- dictionary holding the modeling info

IOdictionary griemannHollyProperties_;

//- use kinetic theory or not.

Switch griemannHolly_;

//- Use nuta = nutb.

Switch turbulentViscosityb_;

//- coefficient of restitution

const dimensionedScalar e_;

//- angle of internal friction

const dimensionedScalar phi_;

//- The granular energy/temperature

volScalarField Theta_;

//- The granular viscosity

volScalarField mua_;

volScalarField muf_;

//- The granular bulk viscosity

volScalarField lambda_;

//- The granular pressure

volScalarField pa_;

//- frictional stress

volScalarField pf_;

//- The radial distribution function

volScalarField gs0_;

20

3.2. IMPLEMENTATION CHAPTER 3. IMPLEMENTATIONS

// Private Member Functions

//- Disallow default bitwise copy construct

griemannHollyModel(const griemannHollyModel&);

//- Disallow default bitwise assignment

void operator=(const griemannHollyModel&);

public:

// Constructors

//- Construct from components

griemannHollyModel

(

const phaseModel& phasea

);

//- Destructor

virtual ~griemannHollyModel();

// Member Functions

void update(const volScalarField& kb, const volScalarField& nutb);

bool on() const

{

return griemannHolly_;

}

const volScalarField& Theta() const

{

return Theta_;

}

const volScalarField& mua() const

{

return mua_;

}

const volScalarField& muf() const

{

return muf_;

}

const volScalarField& pa() const

{

return pa_;

}

21

3.2. IMPLEMENTATION CHAPTER 3. IMPLEMENTATIONS

const volScalarField& pf() const

{

return pf_;

}

const volScalarField& lambda() const

{

return lambda_;

}

const dimensionedScalar& phi() const

{

return phi_;

}

};

// * //

} // End namespace Foam

// * //

#endif

// *** //

The update function is used to update the values of the differently parameters each time step. It
calculate the parameters different if nudT = 0 or nudT = nucT . It is defined in griemannHollyModel.C.
The final version of the file is:

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.

\\/ M anipulation |

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

22

3.2. IMPLEMENTATION CHAPTER 3. IMPLEMENTATIONS

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "griemannHollyModel.H"

#include "mathematicalConstants.H"

#include "fvCFD.H"

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::griemannHollyModel::griemannHollyModel

(

const Foam::phaseModel& phasea

)

:

phasea_(phasea),

Ua_(phasea.U()),

alpha_(phasea.alpha()),

phia_(phasea.phi()),

rhoa_(phasea.rho()),

da_(phasea.d()),

nua_(phasea.nu()),

griemannHollyProperties_

(

IOobject

(

"griemannHollyProperties",

Ua_.time().constant(),

Ua_.mesh(),

IOobject::MUST_READ,

IOobject::NO_WRITE

)

),

griemannHolly_(griemannHollyProperties_.lookup("griemannHolly")),

turbulentViscosityb_(griemannHollyProperties_.lookup("turbulentViscosityb")),

e_(griemannHollyProperties_.lookup("e")),

phi_(dimensionedScalar(griemannHollyProperties_.lookup("phi"))*M_PI/180.0),

Theta_

(

IOobject

(

"Theta",

Ua_.time().timeName(),

Ua_.mesh(),

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

Ua_.mesh()

),

mua_

(

IOobject

(

23

3.2. IMPLEMENTATION CHAPTER 3. IMPLEMENTATIONS

"mua",

Ua_.time().timeName(),

Ua_.mesh(),

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

Ua_.mesh(),

dimensionedScalar("zero", dimensionSet(1, -1, -1, 0, 0), 0.0)

),

muf_

(

IOobject

(

"muf",

Ua_.time().timeName(),

Ua_.mesh(),

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

Ua_.mesh(),

dimensionedScalar("zero", dimensionSet(1, -1, -1, 0, 0), 0.0)

),

lambda_

(

IOobject

(

"lambda",

Ua_.time().timeName(),

Ua_.mesh(),

IOobject::NO_READ,

IOobject::NO_WRITE

),

Ua_.mesh(),

dimensionedScalar("zero", dimensionSet(1, -1, -1, 0, 0), 0.0)

),

pa_

(

IOobject

(

"pa",

Ua_.time().timeName(),

Ua_.mesh(),

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

Ua_.mesh(),

dimensionedScalar("zero", dimensionSet(1, -1, -2, 0, 0), 0.0)

),

pf_

(

IOobject

(

"pf_",

Ua_.time().timeName(),

24

3.2. IMPLEMENTATION CHAPTER 3. IMPLEMENTATIONS

Ua_.mesh(),

IOobject::NO_READ,

IOobject::NO_WRITE

),

Ua_.mesh(),

dimensionedScalar("zero", dimensionSet(1, -1, -2, 0, 0), 0.0)

),

gs0_

(

IOobject

(

"gs0",

Ua_.time().timeName(),

Ua_.mesh(),

IOobject::NO_READ,

IOobject::NO_WRITE

),

Ua_.mesh(),

dimensionedScalar("zero", dimensionSet(0, 0, 0, 0, 0), 1.0)

)

{}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::griemannHollyModel::~griemannHollyModel()

{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

// Update parameters

void Foam::griemannHollyModel::update(const volScalarField& kb, const volScalarField& nutb)

{

Info << "Updating Griemann and Holly parameters" << endl;

gs0_ = (2 - alpha_)/(2*pow((1-alpha_),3));

Theta_ = 2.0/3.0 * kb;

if(turbulentViscosityb_)

{

mua_=nutb*4.0/5.0*alpha_*rhoa_*gs0_*(1+e_)

+4.0/5.0*alpha_*rhoa_*da_* gs0_*(1+e_)*sqrt(Theta_/M_PI);

lambda_=- 8.0/15.0*alpha_*rhoa_*gs0_*(1+e_)*nutb

+4.0/5.0*alpha_*rhoa_*da_*gs0_*(1+e_)*sqrt(Theta_/M_PI)-1.0/3.0*mua_;

}

else

{

mua_=4.0/5.0*alpha_*rhoa_*da_*gs0_*(1+e_) *sqrt(Theta_/M_PI);

lambda_=2.0/3.0*mua_;

}

25

3.2. IMPLEMENTATION CHAPTER 3. IMPLEMENTATIONS

pa_=-2.0*alpha_*rhoa_*gs0_*(1+e_)*Theta_;

}

//}

// *** //

In order to include the new model in the code, a new object is created in createFields.H. The
following lines should be added after the creations of the objects of kineticTheoryModel and granu-
larRheologyModel,

griemannHollyModel griemannHolly

(

phasea

);

also the following header should be added to mySolver/mySedFoam.C,

#include "griemannHollyModel.H"

Then a conditional statement is included in callFrictionStress.H:

else if(griemannHolly.on())

{

volTensorField dU = fvc::grad(Ua);

volSymmTensorField dUU = symm(dU);

volSymmTensorField devS = dUU - (scalar(1.0)/scalar(3.0))*tr(dUU)*I;

dimensionedScalar I2Dsmall

(

"small",

dimensionSet(0 , 0 ,-2 ,0 , 0, 0, 0),

scalar(1.0e-40)

);

griemannHolly.update(turbulenceb->k(),turbulenceb->nut());

nuEffa = griemannHolly.mua()/((alpha + alphaSmall)*rhoa);

lambdaUa = griemannHolly.lambda();

pa = griemannHolly.pa();

volScalarField muEff_f =

(

pff*Foam::sin(kineticTheory.phi())

/sqrt(scalar(2.0)*(devS && devS) + I2Dsmall)

);

nuFra = muEff_f/rhoa;

nuEffb = turbulenceb->nut() + nub;

}

In order to compile the new model, the mySolver/Make/options file has to be modified. The
following lines should be added,

-IgriemannHollyModel/lnInclude \

-lgriemannHollyModel\

Finally, the model can be compiled with ./Allwmake.

26

Chapter 4

Tutorial sedFoam

This chapter will describe an openChannel simulation with two different interparticle stress models:
Granular Rheology model and Griemann and Holly model. The Griemann and Holly model will be
simulated with νdT = 0 and with νdT = νcT . The simulation will consist of a turbulent flow over a flat
erodible bed. The averaged flow velocity is about U =0.52 m/s. The height of the flow is 0.17 m.

4.1 Case structure

A general case is structured in the usual way: a 0/, constant/ and system/ folders. The contentes
of 0/ and constant/ folders are described in tables 4.1 and 4.2. The contents of the system\ folder
do not differ from other solvers.

File Content
alpha_a Sediment phase fraction
alpha_b Water phase fraction
epsilon Dissipation of turbulence energy
k Turbulent kinetic energy
mua Collisional dynamic viscosity (µdc)
muf Frictional dynamic viscosity (µdf)
muI Friction coefficient (Granular Rheology model)
nuEffa Effective kinematic viscosity of the sediment phase (νdeff)

nuEffb Effective kinematic viscosity of the water phase (νceff)

nuFra Frictional kinematic viscosity of the sediment phase (νceff)

nut Turbulent kinematic viscosity of the water phase(νct)
nuvb Fluid effective viscosity (Granular Rheology model)
p Pressure
pa Normal collisional stress (pdc)
pff Normal frictional stress (pdf)
phia Sediment phase flux
phib Water phase flux
p_rbgh Pressure minus ρbgh
SUStilde Turbulent suspension force
Theta Granular temperature (Φ)
U Total velocity (U)

Ua Sediment phase velocity (Ud)
Ub Sediment phase velocity (Uc)

Table 4.1: Contents of 0/ folder.

27

4.2. MESH GENERATION AND BOUNDARY CONDITIONSCHAPTER 4. TUTORIAL SEDFOAM

File Content
forceProperties Define virtual mass, lift and eddy diffusivity coeffi-

cients
g Definition of gravity
granularRheologyProperties Includes a switch on/off the Granular Rheology

model and the definition of all the parameters needed
for the model

griemannHollyProperties Includes a switch on/off the Greimann and Holly
model and the definition of all the parameters needed
for the model

interfacialProperties Define drag models
kineticTheoryProperties Includes a switch on/off the Kinetic Theory of Gran-

ular Flows model and the definition of all the param-
eters needed for the model

ppProperties Define parameters for normal frictional stress
transportProperties Define properties of sediment and water phases
turbulenceProperties Selection of turbulence model and related parame-

ters.
twophaseRASProperties Definition of additional turbulence parameters spe-

cific for two-phase flows

Table 4.2: Contents of constant/ folder.

4.2 Mesh generation and boundary conditions

The numerical domain consists of unidimensional domain with 1x1x30 cells in the x, y and z direc-
tions respectively (Figure 4.1). The inlet and outlet boundaries are defined with cyclic boundary
conditions. The top and bottom of the channel are wall type boundaries while the back and front
(y-direction) are empty type boundaries.

Figure 4.1: Geometry of the sedFoam tutorial case.

The mesh is generated with blockMesh. The domain size in the x and y direction is defined in
such a way to make the shape of the cells cubic. The boundary conditions are defined in Table 4.3.

28

4.3. CASE CONFIGURATION CHAPTER 4. TUTORIAL SEDFOAM

Variable Bottom Top Inlet/Outlet
alpha a zeroGradient fixedValue (0) cyclic
k zeroGradient kqRWallFunction cyclic
epsilon zeroGradient epsilonWallFunction cyclic
nut zeroGradient nutWallFunction cyclic
pa zeroGradient slip cyclic
Theta zeroGradient zeroGradient cyclic
Ua zeroGradient zeroGradient cyclic
Ub zeroGradient zeroGradient cyclic
p rbgh fixedFluxPressure fixedValue (0) cyclic
muI zeroGradient zeroGradient cyclic

Table 4.3: Boundary conditions used in the tutorial

4.3 Case configuration

The phases properties are specified in constant/transportProperties. They are summarized in
Table 4.4.

Variable Sediment Water
ρ 1190 kg/m3 1000 kg/m3

ν N.A. 1e-6 m2/s
diameter 1e-3 m N.A

shape factor 0.5 N.A.
hidrance exponent 2.65 N.A.

νmax 0.1 m2/s 0.1 m2/s
αdmax 1e-6 N.A.

Table 4.4: Phases properties used in the tutorial

The properties of the Greimann Holly model are specified in constant/griemannHollyProperties.
They are specified as follows,

griemannHolly on;

turbulentViscosityb off;

e e [0 0 0 0 0 0 0] 0.8;

phi phi [0 0 0 0 0 0 0] 28.0;

for the νdT = 0 case, and

griemannHolly on;

turbulentViscosityb on;

e e [0 0 0 0 0 0 0] 0.8;

phi phi [0 0 0 0 0 0 0] 28.0;

for the νdT = νcT case. The properties of the Granular Rheology model are specified in the file
constant/granularRheologyProperties. They are specified as follows,

granularRheology on;

alphaMaxG alphaMaxG [0 0 0 0 0 0 0] 0.55;

mus mus [0 0 0 0 0 0 0] 0.52;

mu2 mu2 [0 0 0 0 0 0 0] 0.96;

I0 I0 [0 0 0 0 0 0 0] 0.6;

Bphi Bphi [0 0 0 0 0 0 0] 0.66;

n n [0 0 0 0 0 0 0] 2.5;

Dsmall Dsmall [0 0 -1 0 0 0 0] 1e-6;

29

4.4. RUNNING THE TUTORIAL CHAPTER 4. TUTORIAL SEDFOAM

relaxPa relaxPa [0 0 0 0 0 0 0] 0.005;

FrictionModel MuI;

PPressureModel MuI;

FluidViscosityModel BoyerEtAl;

4.4 Running the tutorial

The tutorial is provided with four scripts: Allrun, postProcess, plot and Allclean. The first
script (Allrun) creates the mesh, set the initial conditions and run the three cases. The second
one (postProcess) postProcess the results, extracting sediment concentration and velocity for both
phases. To do this it uses the function object singleGraph. The third script (plot) plots the results
using gnuplot, and the last script (Allclean) cleans the three cases.
The Allrun script executes the following commands,

#!/bin/sh

Create the mesh

blockMesh -case 1DSheetFlow_Original

blockMesh -case 1DSheetFlow_GriemannHolly

blockMesh -case 1DSheetFlow_GriemannHollyNut

create the intial time folder

cp -r 1DSheetFlow_Original/0_org 1DSheetFlow_Original/0

cp -r 1DSheetFlow_GriemannHolly/0_org 1DSheetFlow_GriemannHolly/0

cp -r 1DSheetFlow_GriemannHolly2/0_org 1DSheetFlow_GriemannHollyNut/0

Initialize the alpha field

funkySetFields -time 0 -case 1DSheetFlow_Original

funkySetFields -time 0 -case 1DSheetFlow_GriemannHolly

funkySetFields -time 0 -case 1DSheetFlow_GriemannHollyNut

Run sedFoam

mySedFoam -case 1DSheetFlow_Original > log.Original&

mySedFoam -case 1DSheetFlow_GriemannHolly > log.GriemannHolly&

mySedFoam -case 1DSheetFlow_GriemannHollyNut > log.GriemannHollyNut&

The postProcess script executes the following commands,

#!/bin/sh

Create the mesh

postProcess -func singleGraph -case 1DSheetFlow_Original

postProcess -func singleGraph -case 1DSheetFlow_GriemannHolly

postProcess -func singleGraph -case 1DSheetFlow_GriemannHollyNut

The plot script executes the following commands,

#!/usr/bin/gnuplot -persist

set term x11 0

set logscale x

set xrange [1e-7:1]

set format x "%1.0E"

set yrange [0:0.14]

set xlabel "Sediment fraction (alpha_a)"

set ylabel "y [m]"

plot "1DSheetFlow_Original/postProcessing/singleGraph/50/line_alpha_a.xy" u 2:1 title "Granular Rheology", "1DSheetFlow_GriemannHolly/postProcessing/singleGraph/50/line_alpha_a.xy" u 2:1 title "Griemann and Holly" with points , "1DSheetFlow_GriemannHollyNut/postProcessing/singleGraph/50/line_alpha_a.xy" u 2:1 title "Griemann and Holly Nut" with points

set term x11 1

unset logscale x

set xrange [0:1]

30

4.4. RUNNING THE TUTORIAL CHAPTER 4. TUTORIAL SEDFOAM

Figure 4.2: Sediment concentration for the Granular Rheology model and for the Greimann and
Holly model under two configurations.

set yrange [0:0.14]

set xlabel "Water velocity (Ua)"

set ylabel "y [m]"

plot "1DSheetFlow_Original/postProcessing/singleGraph/50/line_Ua_Ub.xy" u 2:1 title "Granular Rheology", "1DSheetFlow_GriemannHolly/postProcessing/singleGraph/50/line_Ua_Ub.xy" u 2:1 title "Griemann and Holly" with points , "1DSheetFlow_GriemannHollyNut/postProcessing/singleGraph/50/line_Ua_Ub.xy" u 2:1 title "Griemann and Holly Nut" with points

set term x11 2

set xrange [0:1]

set yrange [0:0.14]

set xlabel "Sediment velocity (Ub)"

set ylabel "y [m]"

plot "1DSheetFlow_Original/postProcessing/singleGraph/50/line_Ua_Ub.xy" u 5:1 title "Granular Rheology", "1DSheetFlow_GriemannHolly/postProcessing/singleGraph/50/line_Ua_Ub.xy" u 5:1 title "Griemann and Holly" with points , "1DSheetFlow_GriemannHollyNut/postProcessing/singleGraph/50/line_Ua_Ub.xy" u 5:1 title "Griemann and Holly Nut" with points

The Allclean script executes the following commands,

#!/bin/sh

Remove the mesh

foamCleanPolyMesh -case 1DSheetFlow_Original

foamCleanPolyMesh -case 1DSheetFlow_GriemannHolly

foamCleanPolyMesh -case 1DSheetFlow_GriemannHollyNut

Remove time folders

foamListTimes -rm -time 0: -withZero -case 1DSheetFlow_Original

foamListTimes -rm -time 0: -withZero -case 1DSheetFlow_GriemannHolly

foamListTimes -rm -time 0: -withZero -case 1DSheetFlow_GriemannHollyNut

Remove postProcessing folder

rm -r 1DSheetFlow_Original/postProcessing

31

4.4. RUNNING THE TUTORIAL CHAPTER 4. TUTORIAL SEDFOAM

Figure 4.3: Water velocity for the Granular Rheology model and for the Greimann and Holly model
under two configurations.

rm -r 1DSheetFlow_GriemannHolly/postProcessing

rm -r 1DSheetFlow_GriemannHollyNut/postProcessing

Remove logs

rm -rf gradPOSC.txt 1DSheetFlow_Original/log.*

rm -rf gradPOSC.txt 1DSheetFlow_GriemannHolly/log.*

rm -rf gradPOSC.txt 1DSheetFlow_GriemannHollyNut/log.*

The results of the simulations are presented in Figures 4.2, 4.3 and 4.4

32

4.4. RUNNING THE TUTORIAL CHAPTER 4. TUTORIAL SEDFOAM

Figure 4.4: Sediment velocity for the Granular Rheology model and for the Griemann and Holly
model under two configurations.

33

Study questions

1. How do you obtain the phase-intensive equation for the sediment phase?

2. What is the purpose of callFrictionStress.H file?

3. How do you select the submodels for the Kinetic Theory Model?

4. What would be the main steps to implement a new interparticle stress model?

34

Bibliography

[1] Chauchat, J., Cheng, Z., Nagel, T., and Cyrille Bonamy, a. T.-J. H. Sedfoam-2.0:
a 3d two-phase flow numerical model for sediment transport. Geoscientific Model Development
Discuss. 10 (2017).

[2] Crowe, C. T. Theory of Multicomponent Fluids. CRC Press, 2012.

[3] Drew, D. A., and Passman, S. L. Multiphase flows with droplets and particles, vol. 135.
Springer-Verlag New York, 1999.

[4] Garcia, M. H. Lecture notes: Sediment transport. Tech. rep., University of Illinois at Urbana-
Champaign, Ven Te Chow Hydrosystems Lab., June 2006.

[5] Greimann, B. P., and Jr., F. M. H. Two-phase flow analysis of concentration profiles.
Journal of Hydraulic Engineering 127 (2001).

[6] Jha, S. K., and Bombardelli, F. A. Toward two-phase flow modeling of nondilute sediment
transport in open channels. Journal of Geophysical Research 115 (Aug 2010).

[7] Weller, H. Derivation, modelling and solution of the conditionally averaged two-phase flow
equations. Tech. rep., OpenCFD, 02 2005.

35

