
Cite as: Grimler, H.: An openFuelCell tutorial. In Proceedings of CFD with OpenSource Software, 2017,

Edited by Nilsson, H., http://dx.doi.org/10.17196/OS_CFD#YEAR_2017

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

An openFuelCell tutorial

Developed for OpenFOAM-v1706

Author:
Henrik Grimler
University of KTH Royal
Institute of Technology
hgrimler@kth.se

Peer reviewed by:
David Segersson

Mohammed Arabnejad

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone

through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

2017-12-22

http://dx.doi.org/10.17196/OS_CFD#YEAR_2017
mailto:hgrimler@kth.se

Contents

1 Prerequisites 3
1.1 Obtaining openFuelCell . 3
1.2 Patching openFuelCell to work with OpenFOAM-v1706 3

1.2.1 Necessary changes for openFuelCell to work with OpenFOAM-v1706 3

2 Introduction to fuel cells 5
2.1 Resistances and other losses . 5
2.2 Fuel cell modeling with OpenFOAM . 7

3 Tutorial openFuelCell 8
3.1 The OpenFuelCell project structure . 8

3.1.1 Walkthrough of the main code sofcFoam.C 8
3.1.2 Files in libSrc . 14

3.2 The different meshes . 15

4 Running openFuelCell 16
4.1 Results for quickTest . 18

4.1.1 Obtaining polarization curve . 18
4.1.2 How to use it . 22
4.1.3 The theory of it . 22
4.1.4 How it is implemented . 22
4.1.5 How to modify it . 22

1

Learning outcomes

The reader will learn:

How to use it

• How to run any of the example cases, in single or parallel run

The theory of it

• The basics behind a fuel cell system

How it is implemented

• How the openFuelCell code is constructed

How to modify it

• How to make the code work with OpenFOAM-5.x and OpenFOAM-v1706

2

Chapter 1

Prerequisites

1.1 Obtaining openFuelCell

The openFuelCell code is available through a git repo hosted at sourceforge.

To obtain the code which targets OpenFOAM-3.0.x, use

git clone -b V3 git://git.code.sf.net/p/openfuelcell/git openfuelcell

and to checkout the specific commit built on in this tutorial, use

cd openfuelcell

git checkout 9b94b74

1.2 Patching openFuelCell to work with OpenFOAM-v1706

The necessary changes are supplied in the file OF1706+_Grimler.patchwhich is attached to this pdf.

Checkout a new branch since the modified version will not work for OpenFOAM 3.0.x anymore. V5
can be a suitable name since the model will work both with OpenFOAM-v1706 and OpenFOAM-
5.0.x

git checkout -b V5

To apply the patch when standing in the repo, use

git apply OF1706+_Grimler.patch

The contents of the patch are summarized in the following section.

1.2.1 Necessary changes for openFuelCell to work with OpenFOAM-
v1706

In OpenFOAM-4.x, the way to access the internal fields of the mesh was changed. The changes
means that variable.internalField() needs to be replaced with variable.primitiveFieldRef(), and vari-
able.boundaryField() with variable.boundaryFieldRef(). More details about the changes and what
lead to them can be found in commit a4e2afa4b in the OpenFOAM-dev branch.

On 8 places, there are changes analogous to this patch as well:

3

https://github.com/OpenFOAM/OpenFOAM-dev/commit/a4e2afa4b39e2f33f7b66051844cccf0296be520

CHAPTER 1. PREREQUISITES

- OPstream toNeighbour(Pstream::blocking, neighbour);

+ OPstream toNeighbour(Pstream::commsTypes::blocking, neighbour);

These changes originate from commit 1e6c9a0a5 in the OpenFOAM-dev branch. From the limited
information leading up the commit, it seems this is done to make the code more robust. This
stackexchange question explains it better than I can: https://stackoverflow.com/questions/

18335861/why-is-enum-class-preferred-over-plain-enum.

Smaller changes to improve compatibility with OpenFOAM-v1706

Between OpenFOAM-2.x.x and OpenFOAM-3.0.0, the blockMeshDict file was moved from
constant/polyMesh/blockMeshDict to system/blockMeshDict. The code works without the change
but gives a warning.

4

https://github.com/OpenFOAM/OpenFOAM-dev/commit/1e6c9a0a541554c119035e671389b699432cea33
https://stackoverflow.com/questions/18335861/why-is-enum-class-preferred-over-plain-enum
https://stackoverflow.com/questions/18335861/why-is-enum-class-preferred-over-plain-enum

Chapter 2

Introduction to fuel cells

A fuel cell is a device capable of transforming chemical energy into electrical energy. The process is
highly efficient with an thermodynamic efficiency surpassing 80 %. If the waste heat is utilised, the
overall efficiency can become even higher.

There are many types of fuel cells, utilising different types of fuels. Some examples are proton-
exchange membrane fuel cell (PEMFC), direct methanol/ethanol fuel cell, solid oxide fuel cell
(SOFC) and molten carbonate fuel cell. This work focuses on PEMFC.

There are several types of PEMFCs as well, namely acidic (proton-exchange membrane fuel cell)
and alkaline (anion-exchange membrane fuel cell). Of these, the acidic one is furthest developed and
this work will therefore focus on this type. Both types can be further divided into low-temperature
(LT) (below 100 ◦C) and high-temperature (HT) (above 100 ◦C). The available openFuelCell code
is currently setup for the high temperature type.

A PEMFC utilises hydrogen as a fuel and oxygen as an oxidant. The reactant gases are fed to
different compartments separated by an electrolyte, in the form of a polymer membrane. The
compartments contain catalyst material, on electrodes, which are connected to an outer circuit
containing for example an electric engine.

The polymer membrane conducts hydrogen ions (protons) but is impermeable to the reactant gases.
This separation prevents the reactants from reacting as in a normal combustion, instead these two
half-cell reactions take place:

2 H2 4 H+ + 4 e– {1}

O2 + 4 e– + 4 H+ 2 H2O {2}

The electrons are transfered through the outer circuit, thereby creating a current that can be used.
To close the circuit, the protons ions are transfered through the membrane. The entire process is
depicted in figure Figure 2.1.

2.1 Resistances and other losses

In this system, there are resistances in the different subparts. The reactant gases have to diffuse from
the bulk of the gas phase, to the electrode surface. To complicate further, the electrodes are highly
porous, which means that the reactants have to diffuse into the narrow pores of the electrodes. This
diffusion can give rise to concentration gradients meaning that the active sites experience a lower
reactant concentration than the concentration in the bulk of the gas phase. The reaction rate drops
due to this.

5

CHAPTER 2. INTRODUCTION TO FUEL CELLS

H2 O2

H2O

H+

Anode

Membrane

Cathode

Figure 2.1: Schematic overview of the reactions and ion movement in an proton-exchange PEMFC
operating with co-current reactant gas flows.

E [V]

I [A]

Electrolyte losses

Activation overpotential

None-standard conditions

Mass transport limitations

Figure 2.2: Losses from different processes in a fuel cell system, marked in a polarization curve.

The membrane has a finite and none-constant proton conductivity as well. During operation, the
transport of protons in the membrane can limit the reaction rate at the active sites. Even as the
reactants reach the active sites, there is still a thermodynamical barrier to cross. A so called charge-
transfer resistance, or activation overpotential, give additional resistance as the electrons are forced
to move between the electrodes and the electrolyte species. The definition of an overpotential is the
difference between the actual potential and the potential at standard conditions and can be written
as

η = E − E◦ (2.1)

Where E◦ is the potential at standard conditions.

In a polarization curves, the different losses are usually marked as in Figure 2.2.

If the reactant gas pressures vary, this affects the potential the electrodes experience. The correlation
is called Nernst’s equation.

E = E◦ +
RT

nF
ln

(
a2H2

aO2

aH2O

)
(2.2)

where E◦ is the potential at standard conditions and ax is the activity of specie x.

In the activation region, the relation between the current and overpotential is described by the

6

CHAPTER 2. INTRODUCTION TO FUEL CELLS

Butler-Volmer equation

i = i0

(
exp

(
2βF

RT
η

)
− exp

(
−2(1− β)F

RT
η

))
(2.3)

Where i0 is the exchange current density, which describes the activity of the surface, β is a symmetry
parameter describing if the forward or backwards reaction is more favourable than the other one. F
is Faradays constant (96 485 A s mol−1), R is the gas constant and T the temperature.

i0 can be calculated from a Arrhenius expression

i0 = pαO2/H2
γT exp

(
−EA
RT

)
(2.4)

where px is the partial pressure of specie x, γ is a pre-exponent factor and EA is the activation energy
for the reaction. The values for γ and EA are specified in constant/electrolyte/activationParameters.
The default values are from Leonide et al. [1].

One more correlation between current density i and overpotential η is needed. openFuelCell uses a
lumped resistance model

i =
E − ηan + ηcath

R
(2.5)

where E is the potential calculated by Equation (2.2) and the resistance R is calculated from an
empirical correlation dependent on temperature. The correlation is described further in Section 3.1.1.

2.2 Fuel cell modeling with OpenFOAM

The openFuelCell code was originally created for modeling SOFCs, but has since then been mod-
ified to also target HT-PEMFC. The project was originally founded by Forschungszentrum Jülich,
National Research Council Canada, Queen’s University/Royal Military College Fuel Cell Research
Centre, and Wikki Ltd.

There are other open-source codes available for modeling fuel cells. One notable example is FAST-
FC which is also based on OpenFOAM (Extended). It has been developed for performance and
degradation modeling 1.

1https://www.fastsimulations.com/

7

Chapter 3

Tutorial openFuelCell

3.1 The OpenFuelCell project structure

The openFuelCell code is divided into a library and an executable. When standing in openfuelcel-
l/src, there are therefore two subfolders, libSrc and appSrc.

A brief introduction to files whose purpose is not obvious will now follow.

3.1.1 Walkthrough of the main code sofcFoam.C

The main code, which includes all other files, is sofcFoam.C. The name comes from the fact that
openFuelCell earlier was called sofcFoam. When the code was generalized to also deal with HT-
PEMFC, it was renamed (at some places).

The file starts off with the normal header, crediting the main authors.

/∗−−−∗\
========= |
\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
\\ / O pera t i on |
\\ / A nd |
\\/ M an ipu l a t i on |

−−−
License

This f i l e i s par t o f OpenFOAM.

OpenFOAM i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify i t
under the terms o f the GNU General Pub l i c License as pub l i s h ed by the
Free Sof tware Foundation ; e i t h e r ve r s i on 2 o f the License , or (at your
opt ion) any l a t e r ve r s i on .

OpenFOAM i s d i s t r i b u t e d in the hope t ha t i t w i l l be u s e fu l , but WITHOUT
ANY WARRANTY; wi thout even the imp l i ed warranty o f MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Pub l i c License
f o r more d e t a i l s .

You shou ld have r e c e i v ed a copy o f the GNU General Pub l i c License
a long wi th OpenFOAM; i f not , wr i t e to the Free Sof tware Foundation ,
Inc . , 51 Frank l in St , F i f t h Floor , Boston , MA 02110−1301 USA

8

CHAPTER 3. TUTORIAL OPENFUELCELL

App l i ca t i on
sofcFoam

Descr ip t i on
Steady s o l v e r f o r the i d e a l i s e d f u e l c e l l model under p r o j e c t work f o r
NRC Canada , Feb/2007−

Developed by
Hrvoje Jasak (h . jasak@wikk i . co . uk)
Steven Beale (s . bea le@fz−j u e l i c h . de)
Dong Hyup Jeon (DongHyup . Jeon@nrc−cnrc . gc . ca)
Helmut Roth (helmut . roth@nrc−cnrc . gc . ca)
Hae−won Choi (haewon1972@gmail . com)

\∗−−−∗/

First, necessary headers and functions are included.

#include <iostream>
#include <s t d i o . h>
#include <iomanip>

#include ”fvCFD .H”
#include ” atomicWeights .H”
#include ” phys i ca lConstants .H”
#include ” s p e c i e .H”
#include ” spec i e sTab l e .H”
#include ” s o f c S p e c i e .H”

#include ” patchToPatchInterpo lat ion .H”
#include ” con t inu i t yEr r s .H”
#include ” i n i t C o n t i n u i t y E r r s .H”
#include ” f ixedGradientFvPatchFie lds .H”
#include ”smearPatchToMesh .H”

#include ” d i f f u s i v i t y M o d e l s .H”
/∗ #inc lude ”porousZones .H” Dele ted SBB ∗/
#include ” porousZoneList .H”//Added SBB
#include ”polyToddYoung .H”
#include ” RiddersRoot .H”//added SBB (p r e v i o u s l y)
#include ” te s tFunct ion .H”//added SBB (p r e v i o u s l y)

// ∗ //

The

#include "fvCFD.H"

to

#include "sofcSpecie.H"

block defines the finite volume method, atomic weights, physical constants (Advogadros constant,
the gas constant, Faraday’s constant and ambient pressure) and defines the specie class. The code
uses a slightly modifed species class, which is described in ??.

9

CHAPTER 3. TUTORIAL OPENFUELCELL

The second code block,

#include "patchToPatchInterpolation.H"

to

#include "smearPatchToMesh.H"

maps the velocity boundary condition from the anode to the cathode (patchToPatchInterpolation.H),
calculates the continuity errors and then calculates the patch field values using the errors and cell
values.

#include "diffusivityModels.H"

defines four different diffusion coefficient models, these are defined in libSrc/diffusivityModels/

and the available models are FixedDiffusivity, Knudsen, binaryFSG and porousFSG.

Diffusivity models

In FixedDiffusivity, the diffusion coefficient for a species is constant (and the value given in the
dictionary used as is). In Knudsen diffusion, the diffusion coefficient is calculated as a function of
pore diameter, temperature and the molecular weight of the specie considered:

Dknudsen =
Dpore

2
97

√
T

Mw
(3.1)

Where Dpore is the pore diameter (specified in the constant/(air or fuel)/porousZones dictionary).

For the binaryFSG case the diffusion coefficient is calculated as a function of molecular weights,
temperature and diffusion volumes. Diffusion volumes are tabulated values specified in libSrc/diffu-
sivityModels/fsgDiffusionVolumes/fsgDiffusionVolumes.C.

DbinaryFSG =
10−7T 1.75

√
M−1w,A +M−1w,B

p
(
V

1/3
A + V

1/3
B

)2 (3.2)

porousFSG calculates the diffusion coefficient as a combination of the knudsen diffusion and the
binaryFSG diffusion:

DporousFSG =
ε

τ

1

D−1binaryFSG +D−1knudsen
(3.3)

where ε is the porosity and tau is the tortuosity of the porous material.

#include "porousZoneList.H"

takes porosity into account by manipulating the Navier-Stokes equations (by attenuation of the time
derivative and adding a sink term).

There are three models available,

• Fixed Coeffient (fixedCoeff)

• Power Law (powerLaw)

• Darcy Forchheimer (DarcyForchheimer)

These models have originated from $FOAM_SRC/finiteVolume/cfdTools/general/porosityModel/

but (except for renaming off porosityModel.* to porousZone.*) only porousZone.C, porousZone.H
and porousZoneI.H differs. More member functions have been added and a sanity check on ε added
(0 < ε < 1).

10

CHAPTER 3. TUTORIAL OPENFUELCELL

#include "polyToddYoung.H"

calculates heat capacities (and from the heat capacity, the specific enthalpy and entropy can be
calculated), viscosities and thermal conductivity from a polynomial of degree 6. The coefficients are
specified in constant/(air or fuel)/sofcSpeciesProperties.

k=6∑
k=0

ak · T k (3.4)

The correlation and coefficients that are present in the tutorial code are obtained from Todd and
Young [2].

int main (int argc , char ∗argv [])
{
include ” setRootCase .H”
include ” createTime .H”

// Complete c e l l components
include ” createMesh .H”
include ” r e a d C e l l P r o p e r t i e s .H”
include ” c r e a t e C e l l F i e l d s .H”

// In terconnec t0 components
include ” create InterconnectMesh .H”

// Air−r e l a t e d components
include ” createAirMesh .H”
include ” r eadAi rPrope r t i e s .H”
include ” c r e a t e A i r F i e l d s .H”
include ” c r e a t e A i r S p e c i e s .H”

// E l e c t r o l y t e components
include ” c r ea t eE l e c t ro ly t eMesh .H”
include ” r e a d E l e c t r o l y t e P r o p e r t i e s .H”
include ” readAct ivat ionParameters .H”//Added SBB
include ” c r e a t e E l e c t r o l y t e F i e l d s .H”

// Fuel−r e l a t e d components
include ” createFuelMesh .H”
include ” readFue lPrope r t i e s .H”
include ” c r e a t e F u e l F i e l d s .H”
include ” c r e a t e F u e l S p e c i e s .H”

include ” r e a d I n t e r c o n n e c t P r o p e r t i e s .H”

include ” readRxnPropert ies .H”

include ” setGloba lPatchIds .H”

// c a l c u l a t e e l e c t r o l y e t h i c kne s s , hE
include ” e l e c t r o l y t e T h i c k n e s s .H”

// Cathode & Anode i n t e r p o l a t i o n
include ” createPatchToPatchInterpo lat ion .H”

11

CHAPTER 3. TUTORIAL OPENFUELCELL

// Gas d i f f u s i v i t y models
include ” c r e a t e D i f f u s i v i t y M o d e l s .H”

include ” v a r I n i t .H” //Added Qing , 25.06.2014

// ∗ //

Then the main() function is entered and the various meshes, variables and fields are setup.

Info<< ”\ nStar t ing time loop \n” << endl ;

bool f i r s tT ime = true ;

for (runTime++; ! runTime . end () ; runTime++)
{

Info<< ”Time = ” << runTime . timeName () << nl << endl ;

inc lude ”mapFromCell .H” // map g l o b a l T to f l u i d r eg i ons

inc lude ” rhoAir .H”
inc lude ” rhoFuel .H”

inc lude ”muAir .H”
inc lude ”muFuel .H”

// Fo l lowing l i n e s added SBB
inc lude ”nuAir .H”
inc lude ”nuFuel .H”

// End l i n e s added SBB
inc lude ” kAir .H”
inc lude ” kFuel .H”

inc lude ” so lveFue l .H”
inc lude ” so l v eA i r .H”
inc lude ”ReynoldsNumber .H”

inc lude ” d i f f u s i v i t y A i r .H”
inc lude ” d i f f u s i v i t y F u e l .H”

inc lude ”YfuelEqn .H”
inc lude ”YairEqn .H”

inc lude ” s o l v e E l e c t r o c h e m i s t r y .H”

inc lude ”mapToCell .H”
inc lude ” so lveEnergy .H”

runTime . wr i t e () ;

i f (f i r s tT ime)
{

f i r s tT ime = fa l se ;
}

Info<< ”ExecutionTime = ”

12

CHAPTER 3. TUTORIAL OPENFUELCELL

<< runTime . elapsedCpuTime ()
<< ” s \n\n” << endl ;

}

Info<< ”End\n” << endl ;
return (0) ;

}

After that the actual loop begins.

#include "mapFromCell.H"

maps the temperature on the full cell mesh to the anode and cathode submeshes.

On these submeshes, the gas properties are updated and then the Navier-Stokes equations solved.
Next step is to update the diffusion coefficients. And after this the molecular fractions can be
updated using the Kirchoff-Ohm law.

#include "solveElectrochemistry.H"

then deals with the electrochemistry by calculating the local current density and potential. The
boundary conditions for the Navier-Stokes equations are then updated before the resulting heat
capacity and temperature fields are copied back into the full cell model. Lastly, the energy balance
is solved for and the loop restarts if the simulation is not finished.

Electrochemistry files

These files deal with the electrochemistry:

activationOverpotential.H

idensity.H

NernstEqn.H

ASRfunction.H

solveCurrent.H

They are included in solveElectrochemistry.H. solveElectrochemistry.H also contains code to
correct the molar fractions due to the consumption and production of the different species. This is
calculated using Faradays law

∆ṁ =
νMi

Fn
(3.5)

where ν is the half cell reaction coefficient of the species and n is the number of electrons involved
in the considered half cell reaction. ν is negative for a reactant and positive for a produced species.
F is Faradays constant, ∆ṁ the change in mass flux of the considered species and M the molecular
weight of the considered species.

activationOverpotential.H calculates the activation overpotential by solving the Butler-Volmer
equation (Equation (2.3)) using Ridders’ Method.

idensity.H smears the current distribution and potential.

NernstEqn.H (Equation (2.2)) corrects for the fact that the conditions in the system are not at
standard conditions, using Nernst equation. Activities and temperatures are corrected for.

ASRfunction.H calculates the electrolyte resistance as a function of temperature. For the HT-
PEMFC case, the default empirical correlation looks like:

R = 1.0 · 10−4(0.4025− 0.0007Tcath) (3.6)

With a unit of Ω m2.

solveCurrent.H solves for the stack current and potential.

13

CHAPTER 3. TUTORIAL OPENFUELCELL

Temperature files

electrochemicalHeating.H calculates the heat produced by the chemical reactions using thermo-
dynamical data.

The overall heat balance in the electrode subdomains looks like

− (H(H2O)−H(H2)− 0.5H(O2)) · i

(2F)
− E · i = Q · Lelectrolyte (3.7)

Where the H values depend on the local reaction. Q is the change in heat with unit kJ m−3 s−1,
E the local potential, i the local current density and Lelectrolyte is the thickness of the electrolyte
layer.

The overall energy balance is dealt with in energyBalance.H where all the heat fluxes from all the
reactants and products are summed.

Molecular fluxes and physical properties

The files

kAir.H

kFuel.H

muAir.H

muFuel.H

nuAir.H

nuFuel.H

rhoAir.H

rhoFuel.H

calculates weighted mean values for the physical properties k (thermal conductivity), µ (viscosity),
ν (dynamic viscosity) and ρ (density). The values are simply weighted using the molar fractions.

Diffusion coefficients are calculated from binary diffusion coefficients using the relation

Da =
1− xa∑

b 6=a(xb/Da,b)
(3.8)

These calculations happen in diffusivityAir.H and diffusivityFuel.H.

It is also wort noting that the file physicalConstants.H contain physical constants such as the gas
constant, Faradays constant, avogadros number, and more.

Molar fractions

The molar fractions are calculated by the files

appSrc/getXair.H

appSrc/getXfuel.H

appSrc/YairEqn.H

appSrc/YfuelEqn.H

3.1.2 Files in libSrc

Many of the files in libSrc are copies, with minor changes, of files in the OpenFOAM src directory.
Some files are unique to openFuelCell though.

14

CHAPTER 3. TUTORIAL OPENFUELCELL

libSrc/sofcSpecie/sofcSpecie.C

libSrc/sofcSpecie/sofcSpecie.H

libSrc/sofcSpecie/sofcSpecieI.H

These files contain the definitions properties needed to define the chemical species in the system.
The full definitions is:

inl ine s o f c S p e c i e
(

const word& name ,
const s c a l a r molWeight ,
const s c a l a r nElectrons ,
const l a b e l rSign ,
const s c a l a r hForm ,
const s c a l a r sForm

) ;

• name is the name of the species, for example H2

• molWeight is the molecular weight of the species

• nElectrons is the number of electrons released per mole species in the reaction

• rSign is the reaction sign, -1 if reactant, 0 if inert and +1 if product

• hForm is the specific enthalpy of formation for the species

• sForm is the specific entropy of formation for the species

The sofcSpecie files are based on the files in $FOAM_SRC/thermophysicalModels/specie/specie/,
with some added properties.

libSrc/polyToddYoung/polyToddYoung.C

libSrc/polyToddYoung/polyToddYoung.H

These files contain code to calculate physical parameters from 6 coefficients as a function of temper-
ature.

3.2 The different meshes

The openFuelCell code uses in total 5 meshes.

• cell, the full cuboid/shape including all regions

• air, the channels where the cathodic species flow

• electrolyte, the thin region in between the cathode and anode sides

• fuel, the channels where the anodic species flow

• interconnects, the current-collectors or bi-polar plates

The files responsible for the mesh generation are in appSrc/create<region>Mesh.H.

15

Chapter 4

Running openFuelCell

After the repository has been checked out with the instructions in Section 1.1, the openFuelCell
solver can be built and then tested.

To build the solver, setup OpenFOAM by sourcing an etc/bashrc file or run an appropriate alias.
After that, navigate to ./src/ (from the base of the repository) and run ./Allwmake. The produced
solver is named fuelCellFoam and ends up in $FOAM USER APPBIN.

OpenFuelCell comes with 5 example cases, coFlow, counterFlow, crossFlow, quickTest and quick-
TestStack that are found in ./run/ from the base of the git repository. The difference between the
cases is the geometry of the cell, as indicated in the names. QuickTestStack does calculations on a
stack consisting of three cells in series, the geometry can be seen in Figure 4.1

The quickTest is based on coFlow but simplified.

All the example cases include Makefiles which can help running the cases. It is possible to run the
cases both in single mode and in parallel mode. The command for “make all” looks like:

All: mesh parprep run reconstruct view

Which corresponds to the following steps

• The mesh is created from blockMeshDict by running blockMesh

• Then the mesh is decomposed so that the model can be run in parallel

• Then the actual solving is done by running fuelCellFoam

• After this the mesh can be reconstructed

• And finally the VTK files generated

Before the model can be run in parallel mode, the environmental variable NPROCS has to be set
to the number of cores to use in the run. This can be done with export PROCS=#, where # is the
number of processors to use.

To run the model in single mode do “make mesh”, “make srun” followed by “make view” to generate
the VTK files.

To instead run the model in parallel mode, it is enough to set the number of processors and then
run “make all”. Step by step this corresponds to running, “make mesh”, “make parprep”, “make
run”, “make reconstruct” and “make view”.

16

CHAPTER 4. RUNNING OPENFUELCELL

Figure 4.1: QuickTestStack geometry, air side. The air enters throw the two pipes on the top and
can then go down through the channels in the middle. From these channels, the gas can diffuse into
the cell and react. Surplus gas then exit in the gas channel in the bottom. The fuel side looks the
same but upsidedown (not shown in the image).

17

CHAPTER 4. RUNNING OPENFUELCELL

0 20 40 60 80 100 120

0.82

0.83

0.84

0.85

Iterations

S
ta

ck
p

o
te

n
ti

al

Figure 4.2: Convergence of stack potential for default, galvanostatic, model step.

4.1 Results for quickTest

In the quickTest case, the default setup case is a galvanostatic run where the cell current is set to
5000 A m−2 and the initial guess for the cell potential is 0.8 V.

Running the simulation outputs a cell potential that approaches a stable value as in Figure 4.2

After about 40 iterations, the system has stabilized.

Section 4.1 shows the cuboid geometry for the quickTest case. The reactants travel in co-current
flow and the molar concentrations decrease along the channels as the reaction occur.

4.1.1 Obtaining polarization curve

By varying the cell current (or cell potential in potentiostatic mode), and changing the initial guess
for the cell potential, a polarization curve can be obtained. This can be done in a shell script using
sed.

#!/usr/bin/bash

Run from quickTest folder (or another case)

Start by cleaning folder just in case

./Allclean

make mesh

make parprep

guess cell potentials corresponding to the cell currents below

guess_vol=(1.06 1.05 1.04 1.2 1.0 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6)

cur=(200 400 600 800 1000 2000 3000 4000 5000 6000 7000 8000 9000)

Remove previous results

rm polarization_curve.txt

for i in $(seq 0 15); do

sed and replace previous voltage and current with new guess

sed -i "/ V [1 2 -3 0 0 -1 0]/c\voltage V [1 2 -3 0 0 -1 0] \

${guess_vol[$i]};" constant/cellProperties

18

CHAPTER 4. RUNNING OPENFUELCELL

Figure 4.3: The geometry of the quickTest system. The top flow channels are the inlets of the fuel
channels while the bottom ones are the inlet of the air channels. The simulation shows the converged
solution at 5000 A m−2, corresponding to a potential of 0.831 V. As can be seen, the default molar
fraction of oxygen is 21 % and for hydrogen 96 %.

sed -i "/ ibar0 [0 -2 0 0 0 1 0]/c\ibar0 ibar0 [0 -2 0 0 0 10] \

${cur[$i]};" constant/cellProperties

run!

make run

cp results to save it

cp constant/cellProperties cellProperties.${cur[$i]}

cp log.prun log.prun.${cur[$i]}

print current and grep voltage and output to text file

echo ${cur[$i]} $(grep "stack Voltage" ./log.prun.${cur[$i]} | \

tail -n 1 | awk -F= ’{print $2}’) >> polarization_curve.txt

done

The script prints cell current and cell potential to a text file (polarization curve.txt).

19

CHAPTER 4. RUNNING OPENFUELCELL

0 2000 4000 6000 8000
0.6

0.7

0.8

0.9

1

1.1

Current density [A m−2]

C
el

l
p

ot
en

ti
al

[V
]

Figure 4.4: Polarization curve obtained by running openFuelCell at different cell currents and po-
tentials.

20

Bibliography

[1] Andre Leonide, Yannick Apel, and Ellen Ivers-Tiffee. Sofc modeling and parameter identification
by means of impedance spectroscopy. ECS Transactions, 19(20):81–109, 2009. doi: 10.1149/1.
3247567. URL http://ecst.ecsdl.org/content/19/20/81.abstract.

[2] B Todd and J B Young. Thermodynamic and transport properties of gases for use in solid
oxide fuel cell modelling. Journal of Power Sources, 110(1):186–200, 2002. ISSN 0378-7753.
doi: https://doi.org/10.1016/S0378-7753(02)00277-X. URL http://www.sciencedirect.com/

science/article/pii/S037877530200277X.

21

http://ecst.ecsdl.org/content/19/20/81.abstract
http://www.sciencedirect.com/science/article/pii/S037877530200277X
http://www.sciencedirect.com/science/article/pii/S037877530200277X

Study questions

4.1.2 How to use it

• How is the example cases run in parallel mode and how are they run in single mode?

4.1.3 The theory of it

• Which processes gives rise to a temperature change in the cell?

4.1.4 How it is implemented

• Which form are the specific heat capacities for the molecular species supplied in?

4.1.5 How to modify it

• Briefly describe the necessary changes to have the openFuelCell code working with OpenFOAM-
v1706

22

	Prerequisites
	Obtaining openFuelCell
	Patching openFuelCell to work with OpenFOAM-v1706
	Necessary changes for openFuelCell to work with OpenFOAM-v1706

	Introduction to fuel cells
	Resistances and other losses
	Fuel cell modeling with OpenFOAM

	Tutorial openFuelCell
	The OpenFuelCell project structure
	Walkthrough of the main code sofcFoam.C
	Files in libSrc

	The different meshes

	Running openFuelCell
	Results for quickTest
	Obtaining polarization curve
	How to use it
	The theory of it
	How it is implemented
	How to modify it

diff --git a/run/coFlow/constant/polyMesh/blockMeshDict b/run/coFlow/system/blockMeshDict
similarity index 100%
rename from run/coFlow/constant/polyMesh/blockMeshDict
rename to run/coFlow/system/blockMeshDict
diff --git a/run/counterFlow/constant/polyMesh/blockMeshDict b/run/counterFlow/system/blockMeshDict
similarity index 100%
rename from run/counterFlow/constant/polyMesh/blockMeshDict
rename to run/counterFlow/system/blockMeshDict
diff --git a/run/crossFlow/constant/polyMesh/blockMeshDict b/run/crossFlow/system/blockMeshDict
similarity index 100%
rename from run/crossFlow/constant/polyMesh/blockMeshDict
rename to run/crossFlow/system/blockMeshDict
diff --git a/run/quickTest/constant/polyMesh/blockMeshDict b/run/quickTest/system/blockMeshDict
similarity index 100%
rename from run/quickTest/constant/polyMesh/blockMeshDict
rename to run/quickTest/system/blockMeshDict
diff --git a/run/quickTestStack/constant/polyMesh/blockMeshDict b/run/quickTestStack/system/blockMeshDict
similarity index 100%
rename from run/quickTestStack/constant/polyMesh/blockMeshDict
rename to run/quickTestStack/system/blockMeshDict
diff --git a/src/appSrc/Make/options b/src/appSrc/Make/options
index eb78c5f..3eae2b3 100755
--- a/src/appSrc/Make/options
+++ b/src/appSrc/Make/options
@@ -2,7 +2,7 @@ EXE_INC = -g \
 -I../libSrc/lnInclude \
 -I$(LIB_SRC)/finiteVolume/lnInclude \
 -I$(LIB_SRC)/meshTools/lnInclude \
- -I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
+ -I$(LIB_SRC)/thermophysicalModels/specie/lnInclude

 EXE_LIBS = \
 -L$(FOAM_USER_LIBBIN) \
diff --git a/src/appSrc/activationOverpotential.H b/src/appSrc/activationOverpotential.H
index e43375a..454be4d 100644
--- a/src/appSrc/activationOverpotential.H
+++ b/src/appSrc/activationOverpotential.H
@@ -130,17 +130,17 @@

 // Save data for output

- scalarField& etaAIn = etaA.internalField();
+ scalarField& etaAIn = etaA.primitiveFieldRef();
 smearPatchToMesh smearetaA(electrolyteMesh, electrolyteAnodeName);
 etaAIn = smearetaA.smear(etaAnode);
 etaA.correctBoundaryConditions();
- etaA.boundaryField()[electrolyteAnodeID] == etaAnode;
+ etaA.boundaryFieldRef()[electrolyteAnodeID] == etaAnode;

- scalarField& etaCIn = etaC.internalField();
+ scalarField& etaCIn = etaC.primitiveFieldRef();
 smearPatchToMesh smearetaC(electrolyteMesh, electrolyteAnodeName);
 etaCIn = smearetaC.smear(etaCathode);
 etaC.correctBoundaryConditions();
- etaC.boundaryField()[electrolyteCathodeID] == etaCathode;
+ etaC.boundaryFieldRef()[electrolyteCathodeID] == etaCathode;

diff --git a/src/appSrc/diffusivityAir.H b/src/appSrc/diffusivityAir.H
index 0e83413..6ab4ec6 100644
--- a/src/appSrc/diffusivityAir.H
+++ b/src/appSrc/diffusivityAir.H
@@ -20,7 +20,7 @@ forAll(airSpecies, a)
 airDiff = 0; //diffusivity field passed to/from model

 //diffSpAir[a] is diffusivity field for specie a, to be used in YEqn
- scalarField& diffSpAirIn = diffSpAir[a].internalField();
+ scalarField& diffSpAirIn = diffSpAir[a].primitiveFieldRef();
 diffSpAirIn = 0;

 if(airSpecies[a].name() != airInertSpecie)
diff --git a/src/appSrc/diffusivityFuel.H b/src/appSrc/diffusivityFuel.H
index 20712f1..f4e170e 100644
--- a/src/appSrc/diffusivityFuel.H
+++ b/src/appSrc/diffusivityFuel.H
@@ -20,7 +20,7 @@ forAll(fuelSpecies, a)
 fuelDiff = 0; //diffusivity field passed to/from model

 //diffSpFuel[a] is diffusivity field for specie a, to be used in YEqn
- scalarField& diffSpFuelIn = diffSpFuel[a].internalField();
+ scalarField& diffSpFuelIn = diffSpFuel[a].primitiveFieldRef();
 diffSpFuelIn = 0;

 if(fuelSpecies[a].name() != fuelInertSpecie)
diff --git a/src/appSrc/electrochemicalHeating.H b/src/appSrc/electrochemicalHeating.H
index 07cc64f..6a14390 100755
--- a/src/appSrc/electrochemicalHeating.H
+++ b/src/appSrc/electrochemicalHeating.H
@@ -3,7 +3,7 @@
 Info << nl << "Calculating electrochemical heating" << endl;

 // iEA applied in cell volumes (not patch)
- scalarField iEA = idensity.internalField();
+ scalarField iEA = idensity.primitiveFieldRef();

 //scalar Tr = 298.15; //reference Temperature [K] for enthalpy calculations
@@ -120,7 +120,7 @@
 // - iEA*V.value()/hE.value();
 //

- scalarField& electrochemicalHeatingIn = electrochemicalHeating.internalField();
+ scalarField& electrochemicalHeatingIn = electrochemicalHeating.primitiveFieldRef();
 electrochemicalHeatingIn =
 (
 -hFormSum*volMolRate - hSource - iEA*voltage/hE.value()
@@ -128,7 +128,7 @@
 electrochemicalHeating.correctBoundaryConditions();

 Info << "min,mean,max(electrochemicalHeating): "
- << gMin(electrochemicalHeating.internalField()) << " "
- << gAverage(electrochemicalHeating.internalField()) << " "
- << gMax(electrochemicalHeating.internalField()) << endl;
+ << gMin(electrochemicalHeating.primitiveFieldRef()) << " "
+ << gAverage(electrochemicalHeating.primitiveFieldRef()) << " "
+ << gMax(electrochemicalHeating.primitiveFieldRef()) << endl;

diff --git a/src/appSrc/idensity.H b/src/appSrc/idensity.H
index 7bb1e5b..82b4c8b 100644
--- a/src/appSrc/idensity.H
+++ b/src/appSrc/idensity.H
@@ -1,13 +1,13 @@
 // Current density

- scalarField& idensityIn = idensity.internalField();
+ scalarField& idensityIn = idensity.primitiveFieldRef();
 smearPatchToMesh smearIdensity(electrolyteMesh, electrolyteAnodeName);
 idensityIn = smearIdensity.smear(i);
 idensity.correctBoundaryConditions();

 // Nernst Potential

- scalarField& NernstPotIn = NernstPot.internalField();
+ scalarField& NernstPotIn = NernstPot.primitiveFieldRef();
 smearPatchToMesh smearNernstPot(electrolyteMesh, electrolyteAnodeName);
 NernstPotIn = smearNernstPot.smear(Nernst);
 NernstPot.correctBoundaryConditions();
diff --git a/src/appSrc/kAir.H b/src/appSrc/kAir.H
index d89dbb3..a6b6922 100644
--- a/src/appSrc/kAir.H
+++ b/src/appSrc/kAir.H
@@ -1,7 +1,7 @@
 // obtain k(air mixture) from k(species components)

 {
- scalarField& kAIn = kAir.internalField();
+ scalarField& kAIn = kAir.primitiveFieldRef();
 kAIn = 0;

 // initially using a simple linear combination weighted by mass fraction
diff --git a/src/appSrc/kFuel.H b/src/appSrc/kFuel.H
index 0ded78f..a102afb 100644
--- a/src/appSrc/kFuel.H
+++ b/src/appSrc/kFuel.H
@@ -1,7 +1,7 @@
 // obtain k(fuel mixture) from k(species components)

 {
- scalarField& kFIn = kFuel.internalField();
+ scalarField& kFIn = kFuel.primitiveFieldRef();
 kFIn = 0;

 // initially using a simple linear combination weighted by mass fraction
diff --git a/src/appSrc/mapAirToCell.H b/src/appSrc/mapAirToCell.H
index a0ec54b..67c0baa 100755
--- a/src/appSrc/mapAirToCell.H
+++ b/src/appSrc/mapAirToCell.H
@@ -5,18 +5,18 @@
 // mass based heat capacity cp
 // cp [J/kg-K] = Cp/M where Cp = [J/mol-K], M = [kg/mol]

- scalarField& cp = cpAir.internalField();
+ scalarField& cp = cpAir.primitiveFieldRef();
 cp = 0;

 forAll(airSpecies, i)
 {
 scalar rMWi = 1.0/(airSpecies[i].MW()*1e-3); // 1/[kg/mol]
- scalarField cpi = molarCpAir[i].polyVal(Tair.internalField())*rMWi;
- cp += Yair[i].internalField()*cpi;
+ scalarField cpi = molarCpAir[i].polyVal(Tair.primitiveFieldRef())*rMWi;
+ cp += Yair[i].primitiveFieldRef()*cpi;
 }
 cpAir.correctBoundaryConditions();

- scalarField rhoCpF = cp*rhoAir.internalField();
+ scalarField rhoCpF = cp*rhoAir.primitiveFieldRef();

 Info << nl;
 Info<< "min mean max rhoCpF(air) = " << gMin(rhoCpF) << " "
@@ -27,7 +27,7 @@

 //scalarField kIn(airMesh.nCells(), kA.value());
- scalarField& kIn = kAir.internalField();
+ scalarField& kIn = kAir.primitiveFieldRef();

 forAll(cathodeZones, iz)
 {
@@ -69,12 +69,12 @@
 //

 scalarField rhoCpPhiF =
- //CpAir.value()*phiAir.internalField();
- linearInterpolate(cpAir)*phiAir.internalField();
+ //CpAir.value()*phiAir.primitiveFieldRef();
+ linearInterpolate(cpAir)*phiAir.primitiveFieldRef();

 phiCellIn.rmap
 (
- phiAir.internalField()*airInternalFaceMask,
+ phiAir.primitiveFieldRef()*airInternalFaceMask,
 airInternalFaceMap
);

@@ -131,14 +131,14 @@
 curFpm -= mesh.boundary()
 [airPatchesMap[patchI]].patch().start();

- phiCell.boundaryField()[airPatchesMap[patchI]].
+ phiCell.boundaryFieldRef()[airPatchesMap[patchI]].
 scalarField::rmap
 (
 phiAir.boundaryField()[patchI]*curMask,
 curFpm
);

- rhoCpPhiCell.boundaryField()[airPatchesMap[patchI]].
+ rhoCpPhiCell.boundaryFieldRef()[airPatchesMap[patchI]].
 scalarField::rmap
 (
 (
diff --git a/src/appSrc/mapFuelToCell.H b/src/appSrc/mapFuelToCell.H
index 74be52d..1427384 100755
--- a/src/appSrc/mapFuelToCell.H
+++ b/src/appSrc/mapFuelToCell.H
@@ -5,7 +5,7 @@
 // mass based heat capacity cp
 // cp [J/kg-K] = Cp/M where Cp = [J/mol-K], M = [kg/mol]

- scalarField& cp = cpFuel.internalField();
+ scalarField& cp = cpFuel.primitiveFieldRef();
 cp = 0;

 forAll(fuelSpecies, i)
@@ -17,13 +17,13 @@
 scalar rMWi = 1.0/(fuelSpecies[i].MW()*1e-3); // 1/[kg/mol]
 scalarField cpi =
 (
- molarCpFuel[i].polyVal(Tfuel.internalField())*rMWi
+ molarCpFuel[i].polyVal(Tfuel.primitiveFieldRef())*rMWi
);
- cp += Yfuel[i].internalField()*cpi;
+ cp += Yfuel[i].primitiveFieldRef()*cpi;
 }
 cpFuel.correctBoundaryConditions();

- scalarField rhoCpF = cp*rhoFuel.internalField();
+ scalarField rhoCpF = cp*rhoFuel.primitiveFieldRef();

 Info<< "min mean max rhoCpF(fuel) = " << gMin(rhoCpF) << " "
 << gAverage(rhoCpF) << " " << gMax(rhoCpF) << nl;
@@ -34,7 +34,7 @@

 //scalarField kIn(fuelMesh.nCells(), kF.value());
- scalarField& kIn = kFuel.internalField();
+ scalarField& kIn = kFuel.primitiveFieldRef();

 forAll(anodeZones, iz)
 {
@@ -76,12 +76,12 @@
 //

 scalarField rhoCpPhiF =
- //CpFuel.value()*phiFuel.internalField();
- linearInterpolate(cpFuel)*phiFuel.internalField();
+ //CpFuel.value()*phiFuel.primitiveFieldRef();
+ linearInterpolate(cpFuel)*phiFuel.primitiveFieldRef();

 phiCellIn.rmap
 (
- phiFuel.internalField()*fuelInternalFaceMask,
+ phiFuel.primitiveFieldRef()*fuelInternalFaceMask,
 fuelInternalFaceMap
);

@@ -138,14 +138,14 @@
 curFpm -= mesh.boundary()
 [fuelPatchesMap[patchI]].patch().start();

- phiCell.boundaryField()[fuelPatchesMap[patchI]].
+ phiCell.boundaryFieldRef()[fuelPatchesMap[patchI]].
 scalarField::rmap
 (
 phiFuel.boundaryField()[patchI]*curMask,
 curFpm
);

- rhoCpPhiCell.boundaryField()[fuelPatchesMap[patchI]].
+ rhoCpPhiCell.boundaryFieldRef()[fuelPatchesMap[patchI]].
 scalarField::rmap
 (
 (
diff --git a/src/appSrc/mapToCell.H b/src/appSrc/mapToCell.H
index 0e5881b..969871d 100755
--- a/src/appSrc/mapToCell.H
+++ b/src/appSrc/mapToCell.H
@@ -2,19 +2,19 @@
 // Map to cell. In practice, fields for rho, Cp and k will come from
 // components (air, fuel, electrolyte) but currently they are constant

- scalarField& rhoCpCellIn = rhoCpCell.internalField();
+ scalarField& rhoCpCellIn = rhoCpCell.primitiveFieldRef();
 rhoCpCellIn = 0.0;

- scalarField& kCellIn = kCell.internalField();
+ scalarField& kCellIn = kCell.primitiveFieldRef();
 kCellIn = 0.0;

- scalarField& TsourceCellIn = TsourceCell.internalField();
+ scalarField& TsourceCellIn = TsourceCell.primitiveFieldRef();
 TsourceCellIn = 0.0;

- scalarField& phiCellIn = phiCell.internalField();
+ scalarField& phiCellIn = phiCell.primitiveFieldRef();
 phiCellIn = 0.0;

- scalarField& rhoCpPhiCellIn = rhoCpPhiCell.internalField();
+ scalarField& rhoCpPhiCellIn = rhoCpPhiCell.primitiveFieldRef();
 rhoCpPhiCellIn = 0.0;

 # include "mapAirToCell.H"
diff --git a/src/appSrc/muAir.H b/src/appSrc/muAir.H
index f682a5a..35b2340 100644
--- a/src/appSrc/muAir.H
+++ b/src/appSrc/muAir.H
@@ -1,7 +1,7 @@
 // obtain mu(air mixture) from mu(species components)

 {
- scalarField& mu = muAir.internalField();
+ scalarField& mu = muAir.primitiveFieldRef();
 mu = 0;

 // initially using a simple linear combination weighted by mass fraction
diff --git a/src/appSrc/muFuel.H b/src/appSrc/muFuel.H
index 50f0562..d9ac631 100644
--- a/src/appSrc/muFuel.H
+++ b/src/appSrc/muFuel.H
@@ -1,7 +1,7 @@
 // obtain mu(fuel mixture) from mu(species components)

 {
- scalarField& mu = muFuel.internalField();
+ scalarField& mu = muFuel.primitiveFieldRef();
 mu = 0;

 // initially using a simple linear combination weighted by mass fraction
diff --git a/src/appSrc/nuAir.H b/src/appSrc/nuAir.H
index 472d6e2..733dcea 100644
--- a/src/appSrc/nuAir.H
+++ b/src/appSrc/nuAir.H
@@ -1,6 +1,6 @@
 // obtain nu(air mixture) from mu(air mixture) and rho(air mixture)
 {
- scalarField& nu = nuAir.internalField();
+ scalarField& nu = nuAir.primitiveFieldRef();
 nu = 0;
 nu = muAir/rhoAir;
 nuAir.correctBoundaryConditions();
diff --git a/src/appSrc/nuFuel.H b/src/appSrc/nuFuel.H
index 78612cb..0e8eb64 100644
--- a/src/appSrc/nuFuel.H
+++ b/src/appSrc/nuFuel.H
@@ -1,6 +1,6 @@
 // obtain nu(fuel mixture) from mu(fuel mixture) and rhoFuel(fuel mixture)
 {
- scalarField& nu = nuFuel.internalField();
+ scalarField& nu = nuFuel.primitiveFieldRef();
 nu = 0;
 nu = muFuel/rhoFuel;
 nuFuel.correctBoundaryConditions();
diff --git a/src/appSrc/rhoAir.H b/src/appSrc/rhoAir.H
index ef05def..562ab4f 100644
--- a/src/appSrc/rhoAir.H
+++ b/src/appSrc/rhoAir.H
@@ -13,7 +13,7 @@
 {
 // sumAirYIonMI was calculated in getXair.H

- scalarField& rho = rhoAir.internalField();
+ scalarField& rho = rhoAir.primitiveFieldRef();
 rho = pAir/(RR*Tair)/sumAirYIonMI;
 rhoAir.correctBoundaryConditions();

diff --git a/src/appSrc/rhoFuel.H b/src/appSrc/rhoFuel.H
index 80f6879..2ffbc28 100644
--- a/src/appSrc/rhoFuel.H
+++ b/src/appSrc/rhoFuel.H
@@ -13,7 +13,7 @@
 {
 // sumFuelYIonMI was calculated in getXfuel.H

- scalarField& rho = rhoFuel.internalField();
+ scalarField& rho = rhoFuel.primitiveFieldRef();
 rho = pFuel/(RR*Tfuel)/sumFuelYIonMI;
 rhoFuel.correctBoundaryConditions();

diff --git a/src/appSrc/solveAir.H b/src/appSrc/solveAir.H
index 9de1e0e..7da2b67 100755
--- a/src/appSrc/solveAir.H
+++ b/src/appSrc/solveAir.H
@@ -24,7 +24,7 @@

 for (int corr = 0; corr < nCorr; corr++)
 {
- pAir.boundaryField().updateCoeffs();
+ pAir.boundaryFieldRef().updateCoeffs();
 rUAair = 1.0/UEqn.A();
 Uair = UEqn.H()/UEqn.A();
 Uair.correctBoundaryConditions();
diff --git a/src/appSrc/solveElectrochemistry.H b/src/appSrc/solveElectrochemistry.H
index 52c2943..cf91f89 100755
--- a/src/appSrc/solveElectrochemistry.H
+++ b/src/appSrc/solveElectrochemistry.H
@@ -51,11 +51,11 @@

 forAll(Yair, j)
 {
- sumAYjOnMj += Yair[j].boundaryField()[cathodeID]/airSpecies[j].MW();
+ sumAYjOnMj += Yair[j].boundaryFieldRef()[cathodeID]/airSpecies[j].MW();
 }

 PtrList<scalarField> xAir(airSpecies.size());
- const scalarField& pAirPatch = pAir.boundaryField()[cathodeID]; //added Qing 04.06.2014
+ const scalarField& pAirPatch = pAir.boundaryFieldRef()[cathodeID]; //added Qing 04.06.2014
 forAll(airSpecies, s)
 {
 if (airSpecies[s].rSign() != 0) //reactant or product (S.Keuler, corrected 30.01.2014)
@@ -63,13 +63,13 @@
 xAir.set
 (
 s,
- new scalarField(anodeT.size(), 0)
+ new scalarField(cathodeT.size(), 0)
);

 xAir[s] =
 cathodeToAnode.faceInterpolate
 (
- Yair[s].boundaryField()[cathodeID]/airSpecies[s].MW()
+ Yair[s].boundaryFieldRef()[cathodeID]/airSpecies[s].MW()
 /sumAYjOnMj
);

@@ -94,13 +94,14 @@

 forAll(Yfuel, j)
 {
- sumFYjOnMj += Yfuel[j].boundaryField()[anodeID]/fuelSpecies[j].MW();
+ sumFYjOnMj += Yfuel[j].boundaryFieldRef()[anodeID]/fuelSpecies[j].MW();
 }

 PtrList<scalarField> xFuel(fuelSpecies.size());
- const scalarField& pFuelPatch = pFuel.boundaryField()[anodeID]; //added hj 03-09-2013
+ const scalarField& pFuelPatch = pFuel.boundaryFieldRef()[anodeID]; //added hj 03-09-2013
 forAll(fuelSpecies,s)
 {
+
 if(fuelSpecies[s].rSign() != 0) //reactant or product
 {
 xFuel.set
@@ -110,10 +111,10 @@
);

 xFuel[s] =
- (
- Yfuel[s].boundaryField()[cathodeID]/fuelSpecies[s].MW()
- /sumFYjOnMj
-);
+ (
+ Yfuel[s].boundaryFieldRef()[anodeID]/fuelSpecies[s].MW()
+ /sumFYjOnMj
+);

 // ensure positivity
 xFuel[s] = Foam::max(xFuel[s], Foam::doubleScalarSMALL);
@@ -136,7 +137,7 @@
 // Takes voltage from cell center of cell adjacent to boundary face and applies it at the face
 forAll(electrolyteAnodePatch, facei)
 {
-	voltage.boundaryField()[electrolyteAnodeID][facei] = voltage[electrolyteAnodePatch.faceCells()[facei]];
+	voltage.boundaryFieldRef()[electrolyteAnodeID][facei] = voltage[electrolyteAnodePatch.faceCells()[facei]];
 }

@@ -234,8 +235,8 @@
 fixedGradientFvPatchScalarField& YsBC =
 refCast<fixedGradientFvPatchScalarField>
 (
- //Ys.boundaryField()[anodeID]
- Ys.boundaryField()[cathodeID]
+ //Ys.boundaryFieldRef()[anodeID]
+ Ys.boundaryFieldRef()[cathodeID]
);

 // gradient boundary condition
@@ -266,7 +267,7 @@

 // Set the interface velocity condition
- Uair.boundaryField()[cathodeID] ==
+ Uair.boundaryFieldRef()[cathodeID] ==
 (
 -anodeToCathode.faceInterpolate(mfluxSum)
 /rhoAir.boundaryField()[cathodeID]
@@ -327,7 +328,7 @@
 fixedGradientFvPatchScalarField& YsBC =
 refCast<fixedGradientFvPatchScalarField>
 (
- Ys.boundaryField()[anodeID]
+ Ys.boundaryFieldRef()[anodeID]
);

 // gradient boundary condition
@@ -352,7 +353,7 @@

 // Set the interface velocity condition
- Ufuel.boundaryField()[anodeID] ==
+ Ufuel.boundaryFieldRef()[anodeID] ==
 (
 -(mfluxSum)
 /rhoFuel.boundaryField()[anodeID]
diff --git a/src/appSrc/solveFuel.H b/src/appSrc/solveFuel.H
index ae77ece..ce5981b 100755
--- a/src/appSrc/solveFuel.H
+++ b/src/appSrc/solveFuel.H
@@ -28,7 +28,7 @@

 for (int corr = 0; corr < nCorr; corr++)
 {
- pFuel.boundaryField().updateCoeffs();
+ pFuel.boundaryFieldRef().updateCoeffs();
 rUAfuel = 1.0/UEqn.A();
 Ufuel = UEqn.H()/UEqn.A();
 Ufuel.correctBoundaryConditions();
diff --git a/src/libSrc/Make/options b/src/libSrc/Make/options
index 9a986c6..b81a978 100644
--- a/src/libSrc/Make/options
+++ b/src/libSrc/Make/options
@@ -4,12 +4,13 @@ endif

 EXE_INC = -g \
 -I$(LIB_SRC)/finiteVolume/lnInclude \
+ -I$(LIB_SRC)/meshTools/AABBTree \
 -I$(LIB_SRC)/meshTools/coordinateSystems \
 -I$(LIB_SRC)/meshTools/coordinateSystems/coordinateRotation \
 -I$(LIB_SRC)/meshTools/AMIInterpolation/patches/cyclic/cyclicAMILduInterfaceField \
 -I$(LIB_SRC)/meshTools/AMIInterpolation/patches/cyclicAMI/cyclicAMILduInterfaceField \
 -I$(LIB_SRC)/meshTools/AMIInterpolation/AMIInterpolation \
- -I$(LIB_SRC)/meshTools/searchableSurface \
+ -I$(LIB_SRC)/meshTools/searchableSurfaces/searchableSurface \
 -I$(LIB_SRC)/meshTools/AMIInterpolation/faceAreaIntersect \
 -I$(LIB_SRC)/meshTools/AMIInterpolation/AMIInterpolation/AMIMethod/AMIMethod \
 -I$(LIB_SRC)/meshTools/indexedOctree \
diff --git a/src/libSrc/MeshWave/FaceCellWave.C b/src/libSrc/MeshWave/FaceCellWave.C
index ba38cf3..e261e91 100644
--- a/src/libSrc/MeshWave/FaceCellWave.C
+++ b/src/libSrc/MeshWave/FaceCellWave.C
@@ -477,7 +477,7 @@ void Foam::FaceCellWave<Type>::sendPatchInfo
 const List<Type>& faceInfo
) const
 {
- OPstream toNeighbour(Pstream::blocking, neighbour);
+ OPstream toNeighbour(Pstream::commsTypes::blocking, neighbour);

 writeFaces(nFaces, faceLabels, faceInfo, toNeighbour);
 }
@@ -492,7 +492,7 @@ Foam::label Foam::FaceCellWave<Type>::receivePatchInfo
 List<Type>& faceInfo
) const
 {
- IPstream fromNeighbour(Pstream::blocking, neighbour);
+ IPstream fromNeighbour(Pstream::commsTypes::blocking, neighbour);

 label nFaces = 0;
 readFaces(nFaces, faceLabels, faceInfo, fromNeighbour);
diff --git a/src/libSrc/porosityModel/porosityModel/porousZone.C b/src/libSrc/porosityModel/porosityModel/porousZone.C
index 8f6b64a..383452b 100644
--- a/src/libSrc/porosityModel/porosityModel/porousZone.C
+++ b/src/libSrc/porosityModel/porosityModel/porousZone.C
@@ -179,7 +179,7 @@ Foam::tmp<Foam::vectorField> Foam::porousZone::porousZone::force

 if (!cellZoneIDs_.empty())
 {
- this->calcForce(U, rho, mu, tforce());
+ this->calcForce(U, rho, mu, tforce.ref());
 }

 return tforce;
diff --git a/src/libSrc/smearPatchToMesh/smearPatchToMeshTemplates.C b/src/libSrc/smearPatchToMesh/smearPatchToMeshTemplates.C
index 2aa3a8a..cd4b7a9 100755
--- a/src/libSrc/smearPatchToMesh/smearPatchToMeshTemplates.C
+++ b/src/libSrc/smearPatchToMesh/smearPatchToMeshTemplates.C
@@ -60,7 +60,7 @@ Foam::tmp<Foam::Field<Type> > Foam::smearPatchToMesh::smear

 // Create result
 tmp<Field<Type> > tresult(new Field<Type>(mesh_.nCells()));
- Field<Type>& result = tresult();
+ Field<Type>& result = tresult.ref();

 const labelList& addr = addressing();

