
CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 1

PISO in icoFoam

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 2

PISO in icoFoam

• The icoFoam directory ($FOAM_SOLVERS/incompressible/icoFoam) consists of the following:

createFields.H Make/ icoFoam.C

• The Make directory contains instructions for the wmake compilation command.

• icoFoam.C is the main file, and

createFields.H is an inclusion file, which is included in icoFoam.C.

We have a look at a part of the description in icoFoam.C:

Description

Transient solver for incompressible, laminar flow of Newtonian fluids.

The solver uses the PISO algorithm ...

We will here discuss the PISO algorithm in general and the way it is done in icoFoam, for

transient incompressible laminar flow of Newtonian fluids.

Also see PhD thesis by Tessa Uroic, for FOAM-extend (slightly different).

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 3

PISO in icoFoam: Governing equations

• The incompressible continuity and momentum equations are given by

∇ · u = 0

∂u

∂t
+∇ · (uu)−∇ · (ν∇u) = −∇p

The kinematic viscosity, ν is constant for Newtonian flow.

The kinematic pressure, p, is the static pressure divided by the constant density, ρ.

In icoFoam cases we don’t specify ρ, so we remember that we solve for kinematic pressure.

Only pressure gradient affects the momentum eqs., so level of pressure is not important.

The non-linear convection term is linearized and evaluated using Gauss’ theorem, as

Foam::div(phi, U), where the face flux field phi is taken from the previous time step/it-

eration.

• Unknowns are u and p, but there is no pressure equation.

The continuity equation imposes a scalar constraint on the momentum equation (since ∇·u

is a scalar).

We use the continuity and momentum equations to derive a pressure equation ...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 4

PISO in icoFoam: Discretization of the momentum equation

• Discretizing the linearized momentum equation, while keeping the pressure gradient in

its original form (in FOAM-extend the time term is here excluded, see Tessa Uroic’s PhD

thesis):

a1,1 a1,2 a1,3 . . . a1,n
a2,1 a2,2 a2,3 . . . a2,n
a3,1 a3,2 a3,3 . . . a3,n

...

an,1 an,2 an,3 . . . an,n

u1
u2
u3
...

un

=

r1
r2
r3
...

rn

+

(∂p/∂x)1
(∂p/∂x)2
(∂p/∂x)3

...

(∂p/∂x)n

Matrix decomposition

a1,1 0 0 . . . 0

0 a2,2 0 . . . 0

0 0 a3,3 . . . 0
...

0 0 0 . . . an,n

︸ ︷︷ ︸
Diagonal A

u1
u2
u3
...

un

+

0 a1,2 a1,3 . . . a1,n
a2,1 0 a2,3 . . . a2,n
a3,1 a3,2 0 . . . a3,n

...

an,1 an,2 an,3 . . . 0

︸ ︷︷ ︸
Off diagonal

u1
u2
u3
...

un

=

r1
r2
r3
...

rn

+

(∂p/∂x)1
(∂p/∂x)2
(∂p/∂x)3

...

(∂p/∂x)n

auPuP +
∑

N

auNuN = r−∇p

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 5

PISO in icoFoam: Derivation of the pressure equation

• Discretized linearized momentum equation, keeping the pressure gradient:

auPuP +
∑

N

auNuN = r−∇p

Here, r is a source term (may have contributions from the discretized time-term).

• Introduce the H(u) operator:

H(u) = r−
∑

N

auNuN

so that:

auPuP = H(u)−∇p

uP = (auP)
−1(H(u)−∇p)

• Substitute this in the incompressible continuity equation (∇ · u = 0) to get a pressure equa-

tion for incompressible flow:

∇ ·
[
(auP)

−1∇p
]
= ∇ ·

[
(auP)

−1
H(u)

]

The R.H.S. is the continuity error of the velocity field without the pressure gradient.

It is given by summing the fluxes through the faces, interpolated to the faces.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 6

PISO in icoFoam: Flowchart

Flow chart of the main steps in both SIMPLE and PISO (in each time step)

Solve momentum equation for u

a
u

P
uP +

∑

a
u

N
uN = r − ∇p

Calculate velocity without

pressure gradient (a
u

P
)−1

H(u)

Solve pressure equation

∇·

(

(a
u

P
)−1

∇p

)

= ∇·

(

(a
u

P
)−1

H(u)
)

Correct velocity explicitly

uP = (a
u

P
)−1(H(u) − ∇p)

Can we leave the current time step after the final correction and move on to the next time

step?

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 7

PISO in icoFoam: Flowchart

Flow chart of the main steps in PISO (omitting details)

Solve momentum equation for u

a
u

P
uP +

∑

a
u

N
uN = r − ∇p

Calculate velocity without

pressure gradient (a
u

P
)−1

H(u)

Solve pressure equation

∇·

(

(a
u

P
)−1

∇p

)

= ∇·

(

(a
u

P
)−1

H(u)
)

Correct velocity explicitly

uP = (a
u

P
)−1(H(u) − ∇p)

S
I
M

P
L

E

P
I
S

O

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 8

PISO in icoFoam: General algorithm (1/2)

(Issa, 1986; description from Versteeg and Malalasekera)

The original PISO algorithm consists of one predictor step and two corrector steps.

Here it is described with some details how it is done in OpenFOAM.

• Predictor step:

- Solve the discretized momentum equations using a guessed/intermediate pres-

sure field to get intermediate velocity fields.

Remember: The face flux field phi fulfils continuity, but is frozen at the old time step.

• Corrector step 1:

- The intermediate velocity fields will not fulfil continuity unless the guessed/intermedi-

ate pressure field used in the predictor step is correct. In OpenFOAM the pressure field

should fulfil the pressure equation, derived using both the momentum and continuity

equations. I.e.:, the first corrector step will:

Solve the pressure equation and correct the velocities, including a consistent

correction of the face flux field phi, which also represents the velocity field.

Note: In the original algorithm there is a pressure correction equation (rather than a

pressure equation), followed also by a pressure correction.

Continued ...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 9

PISO in icoFoam: General algorithm (2/2)

(Issa, 1986; description from Versteeg and Malalasekera)

... continued

• Corrector step 2:

- The first corrector step gives a new intermediate velocity field that satisfies continuity.

However, the pressure equation was solved using the intermediate velocity field that

did not fulfil continuity. The second corrector step should give the correct pressure field,

based on a conservative velocity field, i.e.:

Update and solve the discretized pressure equation again, using the original con-

tributions from the discretized momentum equations, but using the updated velocities.

Follow up with corrections of the velocity and face flux fields, as in the first corrector

step.

Note: The original PISO algorithm rather derives a second pressure correction equation,

and also corrects the pressure a second time.

In the non-iterative PISO algorithm the velocity and pressure fields are considered solved after

the two corrector steps (for sufficiently small time steps, i.e. tiny). In the iterative PISO algo-

rithm the entire predictor-corrector procedure is repeated until convergence. This is necessary

for large time steps (larger than tiny) or if the algorithm is used for steady-state.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 10

PISO in icoFoam: Time loop

We will now have a look at how the PISO algorithm is implemented in icoFoam.C, looking only

at the most important parts of the code. We will have a look at all of the code later.

A global perspective of the time loop, including only important parts, is given by (c.f. pisoFoam.C):

while (runTime.loop())

{

{

#include "UEqn.H"

while (piso.correct())

{

#include "pEqn.H"

}

}

}

Here UEqn.H corresponds to the momentum predictor, and pEqn.H corresponds to the corrector

step(s). The user can choose the number of corrector steps. In cavity/system/fvSolution:

PISO { nCorrectors 2; }

This corresponds to the two corrector steps discussed before.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 11

PISO in icoFoam: Momentum predictor
The momentum predictor step (UEqn.H) is implemented as:

(main difference in FOAM-extend is a ’consistent’ treatment of the time term, see Tessa Uroic’s

PhD thesis)

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

- fvm::laplacian(nu, U)

);

if (piso.momentumPredictor())

{

solve(UEqn == -fvc::grad(p));

}

Solve momentum equation for u

a
u

P
uP +

∑

a
u

N
uN = r − ∇p

Calculate velocity without

pressure gradient (a
u

P
)−1

H(u)

Solve pressure equation

∇·

(

(a
u

P
)−1

∇p

)

= ∇·

(

(a
u

P
)−1

H(u)
)

Correct velocity explicitly

uP = (a
u

P
)−1(H(u) − ∇p)

S
I
M

P
L

E

P
I
S

O

The convective term is linearized using face flux field phi, from previous time step.

The pressure gradient is excluded from fvVectorMatrix UEqn, since we later need to ask

UEqn for the H(u) operator without the pressure gradient.

The user can choose if the momentum predictor should be done. It is done by default, but a

switch can be added in cavity/system/fvSolution:

PISO { momentumPredictor true; //false; //on; //off; }

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 12

PISO in icoFoam: Corrector step(s) (1/4)
The first part of the corrector step (pEqn.H) is implemented as:

while (piso.correct())

{

volScalarField rAU(1.0/UEqn.A());

volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));

surfaceScalarField phiHbyA

(

"phiHbyA",

fvc::flux(HbyA)

+ fvc::interpolate(rAU)*fvc::ddtCorr(U, phi)

);

adjustPhi(phiHbyA, U, p);

// Update the pressure BCs to ensure flux consistency

constrainPressure(p, U, phiHbyA, rAU);

//// CONTENTS IN NEXT SLIDE ////

}

Solve momentum equation for u

a
u

P
uP +

∑

a
u

N
uN = r − ∇p

Calculate velocity without

pressure gradient (a
u

P
)−1

H(u)

Solve pressure equation

∇·

(

(a
u

P
)−1

∇p

)

= ∇·

(

(a
u

P
)−1

H(u)
)

Correct velocity explicitly

uP = (a
u

P
)−1(H(u) − ∇p)

S
I
M

P
L

E

P
I
S

O

- Calculate velocity field without pressure gradient, HbyA, as (auP)
−1
H(u) with corrected bc’s

(constrainHbyA). The UEqn discretization is used (UEqn.A() and UEqn.H()).

- Calculate face flux of HbyA (with a time correction term which is discussed later).

- Enforce global conservation of phiHbyA and coherent pressure bc’s.

- Continued ...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 13

PISO in icoFoam: Corrector step(s) (2/4)
The second part of the corrector step (pEqn.H) is implemented as:

while (piso.correct())

{

//// CONTENTS IN PREVIOUS SLIDE ////

while (piso.correctNonOrthogonal())

{

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

pEqn.setReference(pRefCell, pRefValue);

pEqn.solve(mesh.solver(p.select(piso.finalInnerIter())));

if (piso.finalNonOrthogonalIter())

{

phi = phiHbyA - pEqn.flux();

}

}

#include "continuityErrs.H"

U = HbyA - rAU*fvc::grad(p);

U.correctBoundaryConditions();

}

Solve momentum equation for u

a
u

P
uP +

∑

a
u

N
uN = r − ∇p

Calculate velocity without

pressure gradient (a
u

P
)−1

H(u)

Solve pressure equation

∇·

(

(a
u

P
)−1

∇p

)

= ∇·

(

(a
u

P
)−1

H(u)
)

Correct velocity explicitly

uP = (a
u

P
)−1(H(u) − ∇p)

S
I
M

P
L

E

P
I
S

O

- Use the discretized mom. eq. and intermediate velocity field to solve the pressure equation:

∇ ·
[
(auP)

−1∇p
]
= ∇ ·

[
(auP)

−1
H(u)

]

- Correct the face fluxes consistent with the discretized pressure equation.

- Correct the velocity field and make sure that the velocity bc’s are still as set in the case.

- Continued ...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 14

PISO in icoFoam: Corrector step(s) (3/4)
The second part of the corrector step (pEqn.H) is implemented as:

while (piso.correct())

{

//// CONTENTS IN PREVIOUS SLIDE ////

while (piso.correctNonOrthogonal())

{

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

pEqn.setReference(pRefCell, pRefValue);

pEqn.solve(mesh.solver(p.select(piso.finalInnerIter())));

if (piso.finalNonOrthogonalIter())

{

phi = phiHbyA - pEqn.flux();

}

}

#include "continuityErrs.H"

U = HbyA - rAU*fvc::grad(p);

U.correctBoundaryConditions();

}

Solve momentum equation for u

a
u

P
uP +

∑

a
u

N
uN = r − ∇p

Calculate velocity without

pressure gradient (a
u

P
)−1

H(u)

Solve pressure equation

∇·

(

(a
u

P
)−1

∇p

)

= ∇·

(

(a
u

P
)−1

H(u)
)

Correct velocity explicitly

uP = (a
u

P
)−1(H(u) − ∇p)

S
I
M

P
L

E

P
I
S

O

- The user can specify a number of non-orthogonal corrector steps in cavity/system/fvSolution:

PISO { nNonOrthogonalCorrectors 0; }

OpenFOAM has a few explicit implementations of discretization, such as for non-orthogonal

correction and higher-order schemes. Iterations are needed to take those fully into account.

- Continued ...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 15

PISO in icoFoam: Corrector step(s) (4/4)

The second part of the corrector step (pEqn.H) is implemented as:

while (piso.correct())

{

//// CONTENTS IN PREVIOUS SLIDE ////

while (piso.correctNonOrthogonal())

{

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

pEqn.setReference(pRefCell, pRefValue);

pEqn.solve(mesh.solver(p.select(piso.finalInnerIter())));

if (piso.finalNonOrthogonalIter())

{

phi = phiHbyA - pEqn.flux();

}

}

#include "continuityErrs.H"

U = HbyA - rAU*fvc::grad(p);

U.correctBoundaryConditions();

}

Solve momentum equation for u

a
u

P
uP +

∑

a
u

N
uN = r − ∇p

Calculate velocity without

pressure gradient (a
u

P
)−1

H(u)

Solve pressure equation

∇·

(

(a
u

P
)−1

∇p

)

= ∇·

(

(a
u

P
)−1

H(u)
)

Correct velocity explicitly

uP = (a
u

P
)−1(H(u) − ∇p)

S
I
M

P
L

E

P
I
S

O

- Why is phi not corrected outside the while loop, instead of at the final loop inside the loop?

Hint: Scope of variables.

- In the next slides the non-orthogonal correction loop and the consistent phi flux correction

(pEqn.flux()) are explained.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 16

PISO in icoFoam: Non-orthogonal correction loop

• The Laplacian term is discretized using the Gauss’ theorem, as
∫

V

∇ · (Γ∇φ) dV =
∑

f

Γf sf · (∇φ)f .

• The diffusion coefficient is always interpolated on the faces using the linear scheme.

Therefore, it is only a matter of calculating surface normal gradients, (∇φ)f .

• surface normal gradient can be decomposed into orthogonal

and non-orthogonal parts, as sf = ∆ + k:

sf · (∇φ)f = ∆ · (∇φ)f + k · (∇φ)f = |∆|
φN − φP

|d|
︸ ︷︷ ︸

orthogonal

+ k · (∇φ)f
︸ ︷︷ ︸

non−orthogonal

• The orthogonal and non-orthogonal parts are treated implicitly and explicitly.

• OpenFOAM laplacian schemes contain a non-orthogonal correction term for calculating

surface normal gradient schemes (unless the uncorrected scheme is employed).

• In each loop (while (piso.correctNonOrthogonal())) the explicit non-orthogonal cor-

rection term is updated. In other words, non-orthogonal correction loop only updates the left

hand side of pEqn, while in the full pressure corrector loop (while (piso.correct()))

both sides are updated.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 17

PISO in icoFoam: Consistent conservative face fluxes
(Acknowledgements to Professor Hrvoje Jasak, and see Tessa Uroic’s PhD thesis)

• Here we derive the consistent face flux calculated in OpenFOAM as:

phi = phiHbyA - pEqn.flux();

• We can discretize the continuity equation in a cell using Gauss theorem:

∇ · u (= 0) =
∑

f

sf · uf =
∑

f

F

where uf is interpolated velocity to the faces and F is the face flux, F = sf · uf . The face

fluxes of the cell must preserve continuity!

• Substituting our previous expression for the velocity (uP = (auP)
−1(H(u) −∇p)) and interpo-

lating to the faces yields

F =
(
(auP)

−1
H(u)

)

f
· sf −

(
(auP)

−1∇p
)

f
· sf

• The first term on the R.H.S. is the face flux of HbyA, i.e. the already calculated phiHbyA,

while the second term is computed by the flux() function.

• The second term on the R.H.S. appears during the discretization of the pressure Laplacian

(∇ ·
[
(auP)

−1∇p
]
), for each face:

(
(auP)

−1∇p
)

f
· sf =

(
(auP)

−1
)

f

|∆|

|d|
(pN − pP) +

(
(auP)

−1
)

f
k · (∇p)f

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 18

PISO in icoFoam: Consistent conservative face fluxes
(
(auP)

−1∇p
)

f
· sf =

(
(auP)

−1
)

f

|∆|

|d|
(pN − pP) +

(
(auP)

−1
)

f
k · (∇p)f

• |d| is the distance between the owner and neighbour cell centers, and aPN = (auP)
−1 |∆|

|d| is

the off-diagonal matrix coefficient in the pressure Laplacian. We thus have to ask the dis-

cretized pressure equation for the term, i.e. pEqn.flux(), to correct the face flux field.

• The flux() function, defined in the fvMatrix class, calculate the first term through

lduMatrix::faceH(psi_.primitiveField().component(cmpt))

• which calls the faceH function of lduMatrix class:

for (label face=0; face<l.size(); face++)

{

faceHpsi[face] =

Upper[face]*psi[u[face]]

- Lower[face]*psi[l[face]];

}

• The non-orthogonal correction term is also added through a pointer at the end of flux()
function which points to the selected scheme.

if (faceFluxCorrectionPtr_)

{

fieldFlux += *faceFluxCorrectionPtr_;

}

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 19

PISO in icoFoam: Rhie–Chow interpolation

(Versteeg & Malalasekera, Hrvoje Jasak, Tessa Uroic and Fabian Peng-Kärrholm)

• When using a colocated FVM formulation there may be unphysical pressure oscillations

if the source terms of the momentum and pressure equations are determined using linear

interpolation of the pressure (mom.eq.) and velocity (pres.eq.) to the faces.

• A remedy is to interpolate the velocity to the faces in a way that takes into account the

pressure gradient at the faces, for the use in the pressure equation source term.

• According to Rhie–Chow correction, the interpolated face velocity should be corrected as

uf = uf −
(
(auP)

(−1)
)

f

(
∇pf −∇pf

)

Here, overline denotes linear interpolation of the underlying cell values at both sides of the

face, and subscript f denotes face values. The correction is proportional to the difference

between the pressure gradient at the face and the interpolated pressure gradient at the

face.

• Although this correction is not explicitly implemented in OpenFOAM, here we show that the

OpenFOAM procedure for pressure correction algorithm satisfies this interpolation type.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 20

PISO in icoFoam: Rhie–Chow interpolation

• Now, let’s recall our previous discretization of the momentum equation, we have

auPuP +
∑

N

auNuN = r−∇p

r−
∑

N

auNuN

︸ ︷︷ ︸

H(u)

= auPuP +∇p

(auP)
(−1)

H(u) = uP + (auP)
(−1)∇p

• Applying the overline operator (linear interpolation on the faces) on both sides

(
(auP)

(−1)H(u)
)

f
= uf +

(
(auP)

(−1)
)

f
∇pf (1)

• Expanding The Rhie–Chow velocity correction

uf = uf −
(
(auP)

(−1)
)

f
∇pf +

(
(auP)

(−1)
)

f
∇pf =

(

uf +
(
(auP)

(−1)
)

f
∇pf

)

−
(
(auP)

(−1)
)

f
∇pf (2)

• The first term on the right hand side of Eq. 2 is similar to the right hand side of Eq. 1.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 21

PISO in icoFoam: Rhie–Chow interpolation

(Versteeg & Malalasekera, Hrvoje Jasak, Tessa Uroic and Fabian Peng-Kärrholm)

• Substituting Eq. 1 into Eq. 2 gives

uf =
(
(auP)

(−1)H(u)
)

f
−

(
(auP)

(−1)
)

f
∇pf

• Applying dot product with surface normal vector (·sf)

uf · sf =
(
(auP)

(−1)H(u)
)

f
· sf −

(
(auP)

(−1)
)

f
∇pf · sf

• This is exactly how the conservative fluxes are calculated, which is also equivalent to the

pressure (continuity) equation we derived before.

phi = phiHbyA - pEqn.flux();

• In other words, Rhie–Chow interpolation is inherently included in OpenFOAM formulation

by introducing H(u) operator and using its face interpolation.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 22

PISO in icoFoam: Rhie–Chow interpolation

(Versteeg & Malalasekera, Hrvoje Jasak, Tessa Uroic and Fabian Peng-Kärrholm)

• In the explicit source term fvc::div(phiHbyA) of the pressure equation, phiHbyA does

not include any effect of the pressure.

• rAU does not include any effect of pressure when solving the pressure equation and

finally correcting the velocity.

• The Laplacian term, fvm::laplacian(rAU, p), of the pressure equation uses the value

of the gradient of p on the cell faces. The gradient is calculated using neighbouring cells,

and not neighbouring faces.

• fvc::grad(p) (in mom.eq.) is calculated from the cell face values of the pressure.

• Can we turn off the Rhie–Chow interpolation in OpenFOAM?

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 23

Investigating the effect of Rhie–Chow interpolation

• Obviously we do not want to turn it off, but just as a practice to see its effects.

• Recall that Rhie–Chow correction states

uf = uf −
(
(auP)

(−1)
)

f

(
∇pf −∇pf

)

which in OpenFOAM is equivalent to

phi = phiHbyA - pEqn.flux();

• Thus calculating the face velocities just by interpolation will turn the correction off, uf = uf ,

i.e.,

phi = fvc::flux(U);

• The fluxes should be calculated after the explicit correction step of the velocity.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 24

Investigating the effect of Rhie–Chow interpolation

• Turning off Rhie–Chow correction

while (piso.correctNonOrthogonal())

{

...

pEqn.setReference(pRefCell, pRefValue);

pEqn.solve(mesh.solver(p.select(piso.finalInnerIter())));

// if (piso.finalNonOrthogonalIter())

// {

// phi = phiHbyA - pEqn.flux();

// }

}

U = HbyA - rAU*fvc::grad(p);

U.correctBoundaryConditions();

phi = fvc::flux(U);

#include "continuityErrs.H"

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 25

Investigating the effect of Rhie–Chow interpolation

• Running icoFoam on the pitzDaily case with and without Rhie–Chow correction

• The chequerboard oscillations are obviously seen when the correction is turned off.

• Cell value should be plotted as the point value interpolation removes the oscillations.

• Note that the continuity and momentum equations are satisfied for both cases.

Without Rhie–Chow correction

phi = fvc::flux(U);

With Rhie–Chow correction

phi = phiHbyA - pEqn.flux();

	PISO in icoFoam

