CFD wiTH OPENSOURCE SOFTWARE

A COURSE AT CHALMERS UNIVERSITY OF TECHNOLOGY
TAUGHT BY HAKAN NILSSON

Project work:

A simpleFoam tutorial

Developed for OpenFOAM-1.7.x

Peer reviewed by:
SAM FREDRIKSSON
HAKAN NILSSON

Author:
Hamidreza ABEDI

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files.

November 10, 2011

Chapter 1

Tutorial simpleFoam

1.1 Introduction

This tutorial explains how to implement a case comprising incompressible flow around a 2D-airfoil
in order to compute the lift and drag coefficients during transition from laminar to turbulent flow.
In that case, we define a modified turbulence model which be capable to distinct between lam-
inar and turbulent zones. The transition location has been specified as a section cutting the
2D airfoil in an arbitrary distance from the airfoil nose. The grid is provided by a FORTRAN
code generating a blockMeshDict file for a 2D airfoil section and is imported to the OpenFOAM
(http://www-roc.inria.fr/MACS /spip.php?rubrique69). The proposed turbulence model is Spalart-
Allmaras model. The simpleFoam solver (which is steady-state solver for incompressible, turbulent
flow) is used for both laminar and turbulent zones. You can find it in

$WM_PROJECT_DIR/applications/solvers/incompressible/simpleFoam

Since we are interested to evaluate the transition condition, we divide our domain into two zones
(laminar and turbulent) and use four different approaches to define turbulence model. Their details
will be mentioned later.

1.2 Geometry

The geometry consists of a 2D airfoil created by a FORTRAN code. The airfoil coordinates are
specified in an input file called Air foil.data. The mesh parameters can be selected in the input.data
file. For running the FORTRAN code, you need to open a terminal and go to the directory of it,
then type make to compile and finally type ./Airfoil. The blockMeshDict file is generated and
we can use it on OpenFoam to produce our geometry. All relevant parameters are shown in figure
(1.1).

1.3. PRE-PROCESSING CHAPTER 1. TUTORIAL SIMPLEFOAM

Y_up
b R S
né n7 nlo
et R Al
g4 g5 g8
%nl igl
g9 £ nd %
1o£ nE%
%n2 £ g2 9
Lw
%rﬂ i 1/g2
/
$n3 £ g3 —H ——-
gll
nl2
Y _down
X_Back X_Front

NOTES:

Nose: relates to the foil orientation in the point file, which should be called airfoil.data

Airfoil.data is an ASCII file, with: number of points, two columns X,Y

If leeward side and windward side of the airfoil are described separately (INPUT FORMAT=3), on the top of the Airfoil.data
two numbers are written: n. point describing leeward side and n. pts for windward side

Figure 1.1: Geometry parameters.

1.3 Pre-processing

In this section, we describe the required setting up for four different cases which will be described
later.

1.3.1 Getting Started
Copy the simpleFoam tutorial to the run directory.

cp -r $FOAM_TUTORIALS/incompressible/simpleFoam/airFoil2D $FOAM_RUN

cd $FOAM_RUN

The airfoil2D directory consists of different directories such as 0, constant, system where the
required settings are done. Since we use different airfoil compared to the OpenFOAM tutorial,
we need to remove all files in the /constant/polyMesh and put the blocMeshDict file generated
by FORTRAN code on it. Running the BlockMesh command (when we are in the case directory)
creates the geometry.

1.3.2 Mesh Generation

After running the FORTRAN code which creates the blockMeshDict file, we must modify the
blockMeshDict file since we would like to divide the computational domain into the two parts
(laminar and turbulent), . The only changes we need to make on the blockMeshDict is to add
the word laminar and turbulent to the blocks part as below. In the blockMeshDict file, vertices
section, the order of the mesh points has been specified. Referring to the figure (1.1), the laminar
and turbulent blocks are obvious.

1.3. PRE-PROCESSING

CHAPTER 1.

TUTORIAL SIMPLEFOAM

blocks

hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex

)

A AN A A" A A A A A A A A A AAA A AAAAAAA

20
21
22
25
26
18
10

OO~ N WD

12
13
14
23
17
16

~ 00 ©

23

29
30
31
32
33
27
19
11
10

[o0]

13
21
22
25
26
26
18
16
15
14

28
29
30
31
32
26
18
10

~ @

12
20
21
22
25
24
17
15
14
13

54
55
56
59
60
52
44
38
37
36
35
34
40
46
47
48
57
51
50
43
42
41

55
56
59
60
61
53
45
39
38
37
36
35
41
a7
48
57
58
52
44
44
43
42

63
64
65
66
67
61
53
45
44
43
42
41
47
55
56
59
60
60
52
50
49
48

62)
63)
64)
65)
66)
60)
52)
44)
43)
42)
41)
40)
46)
54)
55)
56)
59)
58)
51)
49)
48)
47)

turbulent (60 30 1) simpleGrading (
turbulent (25 30 1) simpleGrading (
turbulent (30 30 1) simpleGrading (

30
30
30
40

laminar
laminar
laminar
laminar

(30
(50
(50
(50
(560 30
(25 30

laminar
laminar

turbulent
turbulent
turbulent
turbulent
turbulent
turbulent
turbulent

(25
(25
(60
(60
(60
(25
(30

i)
i)
D
1)
1
i)
30
30
30
35
35
35
35

simpleGrading
simpleGrading
simpleGrading
simpleGrading
simpleGrading
simpleGrading

(o.
(15.
(15.
(15.
(15.
(

1
iy
1)
1)
1)
1
D)

simpleGrading
simpleGrading
simpleGrading
simpleGrading
simpleGrading
simpleGrading
simpleGrading

laminar (30 35 1) simpleGrading (
laminar (35 30 1) simpleGrading (10.
laminar (35 40 1) simpleGrading (10.
laminar (25 35 1) simpleGrading (O.
turbulent (25 35 1) simpleGrading (
turbulent (25 35 1) simpleGrading (

0
(
(
(
(
(
(
(
0.

0.05 25.00
0.30 25.00
4.00 25.00
20
00
00

1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)

25.00
25.00
.00
.40
.03
.03
3.00 0.03
0.30 0.03
0.05 0.03
0.05 0.10
0
0
4

o
o
O O O Ww

.05 10.00

.30 10.00

.00 10.00
20 10.00
00 3.00
00 0.40
20 0.10
3.00 0.10
0.30 0.10

Now, we can run blockMesh to generate the mesh. Since we have determined the laminar and tur-
bulent zones at the blocks part of the blockMeshDict file as above, the mesh will have two different
zones as figure (1.2). When we run blockMesh, it creates additional files in the polyMesh directory

Figure 1.2: The laminar (black) and turbulent (white) zones.

as cellZones comprising laminar and turbulent cell labels as well as an additional directory inside
the polymesh directory named sets comprising laminar and turbulent files defining cell numbers.

TUTORIAL SIMPLEFOAM

CHAPTER 1.

1.3. PRE-PROCESSING

Figure 1.3: Generated mesh by blockMeshDict.

Figure 1.4: Zoom of the generated mesh by blockMeshDict.

1.3. PRE-PROCESSING CHAPTER 1. TUTORIAL SIMPLEFOAM

1.3.3 Boundary and initial conditions

Since our case is different to the standard OpenFOAM tutorial for airfoil2D, the boundary and initial
conditions are changed as below. After running the blockMeshDict, the generated mesh consists of
five parts which are inlet, outlet, top, bottom and wing. The free stream velocity and angle of
attack are set to 75[m/s] and 5 degree, respectively. The pressure field is considered as relative
freestream pressure, equal to zero. Since our turbulence model is SpalartAllmaras model and the
solver is simpleFoam, we also need to define 4 and 7 as initial conditions, similar to the value of the
OpenFOAM tutorial. The freestream BC has the type inlet/outlet meaning that it looks locally (for
every face of the patch) at the mass flow rate. If the flow is going outside the boundary will be locally
zero gradient, if it is going inside the boundary will be locally fixedValue. The freestreampressure
BC is a zeroGradient BC but it fixes the flux on the boundary.

Velocity
dimensions [01-10000];

internalField wuniform (-74.71 6.53 0);

boundaryField
{
inlet
{
type freestream;
freestreamValue uniform (-74.71 6.53 0);
}
outlet
{
type freestream;
freestreamValue uniform (-74.71 6.53 0);
}
top
{
type freestream;
freestreamValue uniform (-74.71 6.53 0);
}
bottom
{
type freestream;
freestreamValue uniform (-74.71 6.53 0);
}
wing
{
type fixedValue;
value uniform (0 0 0);
}
defaultFaces
{
type empty;
}

1.3. PRE-PROCESSING CHAPTER 1. TUTORIAL SIMPLEFOAM

Pressure

dimensions [02-20000];

internalField uniform O;

boundaryField
{
inlet
{
type freestreamPressure;
b
outlet
{
type freestreamPressure;
X
top
{
type freestreamPressure;
X
bottom
{
type freestreamPressure;
b
wing
{
type zeroGradient;
X
defaultFaces
{
type empty;
3
}
nut
dimensions [02-10000];

internalField uniform 0.14;

boundaryField
{
inlet
{
type freestream;

freestreamValue uniform 0.14;

1.3. PRE-PROCESSING

CHAPTER 1.

TUTORIAL SIMPLEFOAM

outlet
{
type
freestreamValue
}
bottom
{
type
freestreamValue
}
top
{
type
freestreamValue
}
wing
{
type
value
}
defaultFaces
{
type
}
}
nuTilda
dimensions [0 2 -1
internalField uniform
boundaryField
{
inlet
{
type
freestreamValue
}
outlet
{
type
freestreamValue
}
bottom
{
type
freestreamValue

freestream;
uniform 0.14;

freestream;
uniform 0.14;

freestream;
uniform 0.14;

nutSpalartAllmarasWallFunction;
uniform O;

empty;

0 00 0];

0.14;

freestream;
uniform 0.14;

freestream;
uniform 0.14;

freestream;
uniform 0.14;

1.3. PRE-PROCESSING CHAPTER 1. TUTORIAL SIMPLEFOAM

}
top
{
type freestream;
freestreamValue uniform 0.14;
}
wing
{
type nutSpalartAllmarasWallFunction;
value uniform O;
3
defaultFaces
{
type empty;
}

1.3.4 Constant

In the constant directory, we need to modify RASProperties relevant to our turbulence model. So,
the original RASProperties

RASModel SpalartAllmaras;
turbulence on;
printCoeffs on;

must be changed based on the RASModel. Since we are going to define four different turbulence model,
then the RASModel must be different for each case. Below is one example of the RASProperties file:

RASModel mySpalartAllmaras;
turbulence on;
printCoeffs on;

1.3.5 System

To define the laminar and turbulent zones, we use two different approaches. The first approach is
to use the color function (alphal=0/1) and the other one is to use cellZone class which will be
explained later. For the first approach, we need to copy the below command

cp -r $WM_PROJECT_DIR/tutorials/multiphase/interFoam/laminar/damBreak/system/setFieldsDict .
to the system directory of our case.

1.3.6 setFieldsDict

SetFieldsDict dictionary, located in the system directory, is a utility file which specifies a non-
uniform initial condition. The original setFieldsDict file reads as

defaultFieldValues

(
volScalarFieldValue alphal O

1.3. PRE-PROCESSING CHAPTER 1. TUTORIAL SIMPLEFOAM

)

regions
(
boxToCell
{
box (0 0 -1) (0.1461 0.292 1);
fieldValues
(
volScalarFieldValue alphal 1

)

)3
We change the original setFieldsDict as below:

defaultFieldValues

(
volScalarFieldValue alphal 1

)

regions
(

zoneToCell

{

name laminar;

fieldValues
(
volScalarFieldValue alphal O

)

);
We define volScalarFieldValue alphal equal to 1 for the whole domain by

defaultFieldValues

(
volScalarFieldValue alphal 1

);
then we modify it its value to zero for the laminar zone by

regions
(

zoneToCell
{

name laminar;

fieldValues

(
volScalarFieldValue alphal 0

)
)

Please note that we only need the setFieldsDict file in the system directory for the case based on
the color function.

1.3. PRE-PROCESSING CHAPTER 1. TUTORIAL SIMPLEFOAM

1.3.7 ControlDict

The controlDict dictionary sets input parameters essential for the creation of the database. In the
controlDict file, we need to modify some parameters related to our solution. Below, you can see
the controlDict file. The "lib (”libmyIncompressibleRASModels.s0”);” term is described later.

application simpleFoam;
startFrom latestTime;
startTime 0;

stopAt endTime;
endTime 2000;
deltaT 0.5;
writeControl timeStep;

writeInterval 400;
purgeWrite 0;

writeFormat ascii;
writePrecision 6;
writeCompression uncompressed;
timeFormat general;
timePrecision 6;

runTimeModifiable yes;
libs ("libmyIncompressibleRASModels.so");

functions
{
forces
{
type forceCoeffs;

functionObjectLibs ("libforces.so");
outputControl timeStep;
outputInterval 1;

patches
(
wing
);
pName P;
UName U;
rhoName rhoInf;
log true;
rhoInf 1;
CofR (000);

10

1.4. MODIFIED TURBULENCE MODEL CHAPTER 1. TUTORIAL SIMPLEFOAM

liftDir (0.087 0.996 0);
dragDir (-0.996 0.087 0);
pitchAxis (00 1);

magUInf 75.00;

1Ref 1;

Aref 1;

1.4 Modified Turbulence Model

As mentioned before, we are interested to investigate the flow transition from laminar to turbulence
on the airfoil. We can do it in four different ways.

1. Using color function (alphal=0/1) for defining the laminar and turbulent zone and setting
vy = 0 (turbulent viscosity) for laminar zone.(mySpalartAllmaras case)

2. Using cellZone class to distinct the laminar and turbulent zone and setting v, = 0 (turbulent
viscosity) for laminar zone.(myZoneSpalart Allmaras)

3. Using color function (alphal=0/1) for defining the laminar and turbulent zone and setting the
P% =0 (production term in ¥ equation) for laminar zone.(myAlphaPdcSpalart Allmaras)

4. Using cellZone class to distinct the laminar and turbulent zone and setting the P¥ = 0
(production term in & equation) for laminar zone.(myPdcSpalartAllmaras)

The turbulence model which is used in this tutorial is Spalart-Allmaras one-equation model with
fos term. It is defined as (http://turbmodels.larc.nasa.gov/spalart.html)

oD o o1 e C 7\
87: +Uj§yj = Cp[1— fro] ST+ ;{V' [(v+ D)V + Coo|V|*} — |:Cw1fw - I:;fw} <Z> + fuAU?
(1.1)

with the following exceptions:

1 fv3 — (1_‘_va1)(1_fv2)7 Cor =5 (1.2)

3
X
(+2)
Cyp2

For implementation of our own turbulence model, we need to copy the source of the turbulence model
which we want to use. Here, we will create our own copy of the mySpalartAllmaras turbulence
model.

~ v
S = fu3Qd + wa, fo2 =

cd $WM_PROJECT_DIR

cp -r --parents src/turbulenceModels/incompressible/RAS/SpalartAllmaras $WM_PROJECT_USER_DIR
cd $WM_PROJECT_USER_DIR/src/turbulenceModels/incompressible/RAS/SpalartAllmaras

mv SpalartAllmaras mySpalartAllmaras

cd mySpalartAllmaras

Since we need to modify our turbulence model in four different ways, we need to create four fold-

ers in the mySpalartAllmaras folder. Those are mySpalartAllmaras, myZoneSpalartAllmaras,
myAlphaPdcSpalartAllmaras and myPdcSpalartAllmaras. We also need Make/files and Make/options.
Create a Make directory:

mkdir Make

Create Make/files and add:

11

1.4. MODIFIED TURBULENCE MODEL CHAPTER 1. TUTORIAL SIMPLEFOAM

mySpalartAllmaras/mySpalartAllmaras.C
myZoneSpalartAllmaras/myZoneSpalartAllmaras.C
myAlphaPdcSpalartAllmaras/myAlphaPdcSpalartAllmaras.C
myPdcSpalartAllmaras/myPdcSpalartAllmaras.C

LIB = $(FOAM_USER_LIBBIN)/libmyIncompressibleRASModels

Create /Make/options and add:

EXE_INC = \

-I$(LIB_SRC)/turbulenceModels \

-I$(LIB_SRC) /transportModels \
-I$(LIB_SRC)/finiteVolume/1nInclude \
-I$(LIB_SRC)/meshTools/1lnInclude \
-I$(LIB_SRC)/turbulenceModels/incompressible/RAS/1nInclude
LIB_LIBS =

(the last -I is needed since mySpalartAllmaras uses include-files in the original directory).
We need to modify the file names of our new turbulence models.
rename SpalartAllmaras mySpalartAllmaras *

In mySpalartAllmaras.C, mySpalartAllmaras.H, myZoneSpalartAllmaras.C and
myZoneSpalartAllmaras.H, myAlphaPdcSpalartAllmaras.C, myAlphaPdcSpalartAllmaras.H,
myPdcSpalartAllmaras.C and myPdcSpalartAllmaras.H, we must change all occurances of Spalar-
tAllmaras to mySpalartAllmaras, myZoneSpalartAllmaras, myAlphaPdcSpalartAllmaras and
myPdcSpalartAllmaras. So, we have four new classes name:

sed -i s/SpalartAllmaras/mySpalartAllmaras/g mySpalartAllmaras.C
sed -i s/SpalartAllmaras/mySpalartAllmaras/g mySpalartAllmaras.H

sed -i s/SpalartAllmaras/myZoneSpalartAllmaras/g myZoneSpalartAllmaras.C
sed -i s/SpalartAllmaras/myZoneSpalartAllmaras/g myZoneSpalartAllmaras.H

sed -i s/SpalartAllmaras/myAlphaPdcSpalartAllmaras/g myAlphaPdcSpalartAllmaras.C
sed -i s/SpalartAllmaras/myAlphaPdcSpalartAllmaras/g myAlphaPdcSpalartAllmaras.H

sed -i s/SpalartAllmaras/myPdcSpalartAllmaras/g myPdcSpalartAllmaras.C
sed -i s/SpalartAllmaras/myPdcSpalartAllmaras/g myPdcSpalartAllmaras.H

We can add the below line within the curly brackets of the constructor in mySpalartAllmaras.C to
ensure that our model is working.

Info << "Defining my own SpalartAllmaras model" << endl;
After the above changes, we must compile our new turbulence model:

wclean 1lib
wmake libso

which will build a dynamic library. Finally, we must include our new library by adding a line
to /system/controlDict:

libs ("libmyIncompressibleRASModels.so");

It is recommended to use wclean 1ib instead of wclean, since the wclean 1ib also cleans the
1nInclude file.

12

1.4. MODIFIED TURBULENCE MODEL CHAPTER 1. TUTORIAL SIMPLEFOAM

In our case, the turbulence model for the simpleFoam solver is SpalartAllmaras model. In

order to use it for our cases which have been divided into the laminar and turbulent parts, we need
to modify it. The idea which we applied for distinction of laminar and turbulent flow in our solution
is based on the turbulent viscosity definition and turbulent production term. The SpalartAllmaras
turbulence model is a one equation model solving a transport equation for a viscosity-like variable o.
In the first approach, Since vy = U f,,1 (where v, and f,,; denote turbulent viscosity and a coefficient,
respectively), we can say that for the laminar flow, 14 = 0 and for turbulent flow, it is not zero.
Therefore, we multiply alphal_.internalField() in the \nu_t equation in the Constructors part
of the mySpalartAllmaras.C. In the second approach, we only set the turbulent production term,
P* =0, in the ¥ equation for laminar zone.

In the $WM_PROJECT_USER_DIR/src/turbulenceModels/incompressible/RAS/mySpalartAllmaras
directory, we find four folders, mySpalartAllmaras, myZoneSpalartAllmaras, myAlphaPdcSpalartAllmaras
and myPdcSpalartAllmaras. The color function (alphal = 0/1) is used in the mySpalartAllmaras
and myAlphaPdcSpalartAllmaras directory to distinct the laminar and turbulent zone while in the
other approaches (myZoneSpalartAllmaras and myPdcSpalartAllmaras directory) cellZone con-
struction is used.

1.4.1 mySpalartAllmaras

In this directory, we have three files:

mySpalartAllmaras.C
mySpalartAllmaras.dep
mySpalartAllmaras.H

Since we use color function (alpha1=0 for laminar zone and alphal=1 for turbulent zone), we need to
define it. So, the alphal_must be added into the Constructors section of the mySpalartAllmaras.C.
So, we will have

nuTilda_
(
I0object
(
"nuTilda",
runTime_.timeName(),
mesh_,
I0object: :MUST_READ,
IOobject: :AUTO_WRITE
),
mesh_
),
alphal_
(
I0object
(
"alphal",
runTime_.timeName(),
mesh_,
IOobject: :MUST_READ,
IOobject: :AUTO_WRITE
),
mesh_
),

13

1.4. MODIFIED TURBULENCE MODEL CHAPTER 1. TUTORIAL SIMPLEFOAM

nut_
(
I0object
(
"nut",
runTime_.timeName(),
mesh_,
IO0object::MUST_READ,
IOobject: :AUTO_WRITE
),
mesh_
),

Please note that the orders of the nuTilda_, alphal_ and nut_ in the Constructors section of the
mySpalartAllmaras.C must be the same as their order in the mySpalartAllmaras.H file, otherwise
we will receive warning during compile of turbulence model. Also, we need to define alphal_ in the
mySpalartAllmaras.H file for declaration. Therefore, we modify the following items as

// Fields

volScalarField nuTilda_;
volScalarField alphal_;
volScalarField nut_;

wallDist d_;
and

// Member Functions

//- Return the turbulence viscosity
virtual tmp<volScalarField> nut() const

{
return nut_;
X
virtual tmp<volScalarField> alphal() const
{
return alphal_;
X

1.4.2 myZoneSpalartAllmaras
In this directory, we have three files:

myZoneSpalartAllmaras.C
myZoneSpalartAllmaras.dep
myZoneSpalartAllmaras.H

Here, we do not use color function (alpha = 0/1). So, we need to find a way in which the tur-

bulence model be capable to access the cell zones of the grid in order to use a suitable v; for

distinction between the laminar and turbulent zones. The following lines must be added into the

Member Functions section of the myZoneSpalartAllmaras.C after the definition of nutilda_.internalField(),
so we will have

nut_.internalField() = fvi*nuTilda_.internalField();

14

1.4. MODIFIED TURBULENCE MODEL CHAPTER 1. TUTORIAL SIMPLEFOAM

forAll (mesh_.cellZones(), i)

{
const cellZone& zone = mesh_.cellZones()[i];
if (zone.name()=="laminar")
{
const labellist& celllLabels = mesh_.cellZones() [i];
Info<< " Found matching zone " << zone.name()
<< " with " << celllabels.size() << " cells." << endl;
forAll(celllabels, i)
{
nut_.internalField() [cellLabels[i]]=0.0;
}
}
}

The above code can be applied in another way as below:

forAll (mesh_.cellZones(), i)
{

const cellZone& zone = mesh_.cellZones()[i];

if (zone.name()=="laminar")

{

Info<< " Found matching zone " << zone.name()
<< " with " << zone.size() << " cells." << endl;

forAll(zone, i)
{

nut_.internalField() [zone[i]]=0.0;
Info<<"We are in zone"<<zone.name()<<"and cell"<<i<<endl;
}

}

The possibility for doing this method is that the zone in the cel1Zone& zone = mesh_.cellZones() [i];
is an object of the class cel1Zone. Since the cellZone is a list, then it can call functions that belongs
to the list.

1.4.3 myAlphaPdcSpalartAllmaras
In this directory, we have three files:

myAlphaPdcSpalartAllmaras.C
myAlphaPdcSpalartAllmaras.dep
myAlphaPdcSpalartAllmaras.H

Here , again we use color function (alpha=0/1) to define the laminar and turbulent region. Our
turbulence model , SpalartAllmaras, solves the 7 equation. The production term in the 7 eqation

15

1.4. MODIFIED TURBULENCE MODEL CHAPTER 1. TUTORIAL SIMPLEFOAM

is defined as P* = Cy150. So, for laminar flow, we set the production term equal to zero. The
following codes show how we implement this method by using color function where alphal = 0 for
laminar region and alphal = 1 for turbulent region. Please note that in this model, we also need to
define alphal again in the same way as we did for mySpalartAllmaras model. In the
$WM_PROJECT_USER_DIR/src/turbulenceModels/incompressible/RAS/mySpalartAllmaras \
myAlphaPdcSpalartAllmaras directory, we modify the 7 eqation as below:

tmp<fvScalarMatrix> nuTildaEqgn

(
fvm: :ddt (nuTilda_)
+ fvm::div(phi_, nuTilda_)
- fvm::Sp(fvc::div(phi_), nuTilda_)
- fvm::laplacian(DnuTildaEff (), nuTilda_)
- Cb2_/sigmaNut_*magSqr (fvc::grad(nuTilda_))
alphal_xCbl_xStilda*nuTilda_
- fvm::Sp(Cwl_xfw(Stilda)*nuTilda_/sqr(d_), nuTilda_)
)3

1.4.4 myPdcSpalartAllmaras
In this directory, we have three files:

myPdcSpalartAllmaras.C
myPdcSpalartAllmaras.dep
myPdcSpalartAllmaras.H

In this method, instead of using color function, we use the cellZones class to distinct between the
laminar and turbulent zones. For the laminar flow, we set the production term in the v eqation
(P* = Cy157) equal to zero whereas it is not zero for turbulent region.The following lines must be
added into the Member Functions section of the myPdcSpalartAllmaras.C after the definition of
volScalarField Stilda, so we will have

forAll (mesh_.cellZones(), i)
{

const cellZone& zone = mesh_.cellZones() [i];

if (zone.name()=="laminar")

{

Info<< " Found matching zone " << zone.name ()
<< " with " << zone.size() << " cells." << endl;

tmp<fvScalarMatrix> nuTildaEqgn

(
fvm: :ddt (nuTilda_)

+ fvm::div(phi_, nuTilda_)

- fvm::Sp(fvc::div(phi_), nuTilda_)

- fvm::laplacian(DnuTildaEff (), nuTilda_)

- Cb2_/sigmaNut_#*magSqr(fvc::grad(nuTilda_))

- fvm::Sp(Cwl_*fw(Stilda)#*nuTilda_/sqr(d_), nuTilda_)
)3

nuTildaEqn() .relax();

16

1.5. LIFT AND DRAG FORCES COEFFICIENT CHAPTER 1. TUTORIAL SIMPLEFOAM

solve(nuTildaEqgn) ;
bound(nuTilda_, dimensionedScalar("0", nuTilda_.dimensions(), 0.0));
nuTilda_.correctBoundaryConditions() ;

nut_.internalField() = fvi*nuTilda_.internalField();

nut_.correctBoundaryConditions();

¥
else
{
tmp<fvScalarMatrix> nuTildaEqn
(
fvm: :ddt (nuTilda_)
+ fvm::div(phi_, nuTilda_)
- fvm::Sp(fvc::div(phi_), nuTilda_)
- fvm::laplacian(DnuTildaEff (), nuTilda_)
- Cb2_/sigmaNut_s*magSqr(fvc::grad(nuTilda_))
Cbl_*xStilda*nuTilda_
- fvm::Sp(Cwl_xfw(Stilda)#*nuTilda_/sqr(d_), nuTilda_)
)3

nuTildaEqn() .relax();

solve(nuTildaEqn) ;

bound (nuTilda_, dimensionedScalar("0", nuTilda_.dimensions(), 0.0));
nuTilda_.correctBoundaryConditions();

nut_.internalField() = fvi*nuTilda_.internalField();

nut_.correctBoundaryConditions();

1.5 Lift and Drag Forces Coefficient

In order to compute the lift and drag coefficients, we can use forceCoeffs functionObject. The
functionObjects are general libraries that can be attached run-time to any solver, without having
to re-compile the solver. The forceCoeffs functionObject is available on the sonicFoam solver.
We need to add the below part to the system/controlDict and modify the values relevant to our
case. In this function, the 1iftDir and dragDir are defined based on the angle of attack. The
magUInf denotes the magnitude of the freestream velocity. Please note that since the dimension of
the pressure in the compressible flow has been set different to the dimension of the pressure in the
incompressible flow, we need to define rhoName as rhoInf. Therefore, we have

functions
{
forces
{

17

1.6. POST-PROCESSING CHAPTER 1. TUTORIAL SIMPLEFOAM

type forceCoeffs;

functionObjectLibs ("libforces.so");

outputControl timeStep;

outputInterval 1;

patches

(

wing

)3

pName

UName
rhoName rhoInf;

log

rholnf

CofR

liftDir

dragDir

pitchAxis

magUInf

1Ref

Aref

(=]

o
H
c
®

’

0)

.087 0.996 0);
-0.996 0.087 0);
001);

5.00;

o O
o O

P =, NAAA A A

}

By adding the forceCoeffs functionObject into the system/controlDict, while running the
case, a new directory named forces is created in the case directory writing the Cy, and Cp in each
run time.

1.5.1 Running the code

Now, we can run our cases as below. We have four different cases,

my_airfoil_alphal_pdc
my_airfoil_alphal
my_airfoil_zone_pdc
my_airfoil_zone

Therefore, for running the first case, we can do as below and for other cases we can do the same.

cd $FOAM_RUN/my_airfoil_alphal
simpleFoam

1.6 Post-processing

When the case running is finished, we can see our results by using the paraView software as

cd $FOAM_RUN/my_airfoil_alphal
paraFoam

Here are the results of four different transient cases compared to the non-transient case.
1. mySpalartAllmaras

myZoneSpalartAllmaras

myAlphaPdcSpalart Allmaras

myPdcSpalart Allmaras

ook N

Standard case (no transition)

18

1.6. POST-PROCESSING CHAPTER 1. TUTORIAL SIMPLEFOAM

P
2867.035
2000

0
-2000
-4000

-5688.046

Figure 1.5: Case No.1, Pressure field around the airfoil

U Magnitud
124.4285
100

75

80

25

0

Figure 1.6: Case No.1, Velocity field around the airfoil

1.6. POST-PROCESSING CHAPTER 1. TUTORIAL SIMPLEFOAM

nut
i.47953 1

04
0.3

0.2
o

0

Figure 1.7: Case No.1, Turbulent viscosity field around the airfoil

P
2867.035
2000

0
2000
-4000

-5688.046

Figure 1.8: Case No.2, Pressure field around the airfoil

1.6. POST-PROCESSING CHAPTER 1. TUTORIAL SIMPLEFOAM

U Magnitude
124.4285

100

-50
E25
0

Figure 1.9: Case No.2, Velocity field around the airfoil

i.479531

Figure 1.10: Case No.2, Turbulent viscosity field around the airfoil

21

1.6. POST-PROCESSING CHAPTER 1. TUTORIAL SIMPLEFOAM

p
166.955
2000
0
-2000
-4000
-4376.58

Figure 1.11: Case No.3, Pressure field around the airfoil

U Magnitude
108.927
100

75
50
25

Figure 1.12: Case No.3, Velocity field around the airfoil

22

1.6. POST-PROCESSING CHAPTER 1. TUTORIAL SIMPLEFOAM

nut
?.141 103

0.12

0,08
0.04

8.69e-07

Figure 1.13: Case No.3, Turbulent viscosity field around the airfoil

167 47

izooo

- 70
2000

-4000
-4305.98

Figure 1.14: Case No.4, Pressure field around the airfoil

23

1.6. POST-PROCESSING CHAPTER 1. TUTORIAL SIMPLEFOAM

U Magnitude
108.7677
£100

_ 75
50

25
i
0

Figure 1.15: Case No.4, Velocity field around the airfoil

nut
?. 140587

0.12

0,08
-0.04

9.33e-07

Figure 1.16: Case No.4, Turbulent viscosity field around the airfoil

24

1.6. POST-PROCESSING CHAPTER 1. TUTORIAL SIMPLEFOAM

p
168.255
2000
0
-2000
-4000
-4366.17

Figure 1.17: Standard case, Pressure field around the airfoil

U Magnitude
108.8571
100

75
50
25

0

Figure 1.18: Standard case, Velocity field around the airfoil

25

1.6. POST-PROCESSING CHAPTER 1. TUTORIAL SIMPLEFOAM

nut
i.141777

0.12

0,08
0,04

8.81e-07

Figure 1.19: Standard case, Turbulent viscosity field around the airfoil

The computed lift and drag coeflicients for different cases are shown below:

|| Case | C | Cy ||
1 0.1117 | 0.0013
2 0.1117 | 0.0013
3 0.1005 | 0.0029
4 0.1005 | 0.0029
Standard | 0.1003 | 0.0030

Table 1.1: Lift and drag coefficient for all cases.

26

