Cite as: Irannezhad, M.: ship hull response in cylBumplnterIbFoam tutorial. In Proceedings of CFD with
OpenSource Software, 2016, Edited by Nilsson. H.,
http://www.tfd.chalmers.se/ hani/kurser/0S_CFD_2016

CFD wiTH OPENSOURCE SOFTWARE

A COURSE AT CHALMERS UNIVERSITY OF TECHNOLOGY
TAUGHT BY HAKAN NILSSON

ship hull response in
cylBumplInterIbFoam tutorial

Developed for FOAM-extend-4.0
Requires: swak4Foam Library
bison with version of 2.4.1 or older

OpenFOAM
Author: Peer reviewed by:
Mohsen IRANNEZHAD Varun Venkatesh
Chalmers University of HAKAN NILSSON

Technology
imohsen@student.chalmers.se

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone
through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no
responsibility for the contents.

January 20, 2017

Contents

[1 Immersed Boundary Method|
I1.1 Boundary Conditions in IBM|
I1.1.1 Continuous Forcing IBM|. 0000
I1.1.2 Discrete Forcing IBM|

[1.3.1 IB Cell Value Approximation|
[1.3.2 Pressure Equation| o0
[1.4 IBM class implementation in FOAM-extend] i

[I.5 High Reynolds Number Flows| vttt e

2.4 Constant Velocity Case| e
2.5 Wave Propagated Case|l.
2.5.1 swak4Foam Library| o

[2.50.2 groovyBC|
P53 funkySetFields]

B R I D ol
[3.1 Constant Velocity Case|

3.2 Wave Propagated Case|.

NeBiNeliNolNo JBEN > ller B e BN o) |

Learning outcomes

The main requirements of a tutorial is that it should teach the four points: How to use it, The
theory of it, How it is implemented, and How to modify it. Therefore the list of learning outcomes
is organized with those headers.

The reader will learn:

How to use it:

e How to use the Immersed Boundary Method in order to simulate the flow around the ship hull
in FOAM-extend-4.0

The theory of it:
e The theory of Immersed Boundary Method and its applications

e Different IBMs and their pros and cons

How it is implemented:

e How to setup an IBM test case in FOAM-extend-4.0, in this case a ship hull responding to
inlet flow

e IBM implementation in FOAM-extend-4.0 for both laminar and turbulent flows

How to modify it:
e How to propagate waves at the inlet of the computational domain in FOAM-extend-4.0

e How to refine the mesh around the immersed body for high Reynolds number flow simulations

Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

e Run standard document tutorials like damBreak tutorial
e The least square curve fitting method and the least square weighting method

e The basic principles of ship hydrodynamics

Introduction

The fluid flow around an immersed body, e.g. a ship hull, and the body response to the forces exerted
by the flow , e.g. sea-keeping responses, can be studied using Computational Fluid Dynamics (CFD).
The most obvious practise is to adapt a body-fitted computational grid to the hull in which the hull
geometry is sharply represented by the grid points, see Figure [In this method, the boundary
points are located on the geometry and application of the boundary conditions is straight-forward.

Figure 1: Boundary fitted mesh, mesh is conformal to the boundary

However, in many practical applications the geometry of the immersed body is very complicated
and adapting a conformal good quality mesh to it is very difficult and time consuming if even pos-
sible. Moreover, the immersed body might move or its shape might deform during time, which
implies that the body fitted mesh needs to be re-calculated at each time step. These will add even
more complexity to the meshing process and increase the cost of such simulations. There are several
methods to address these problems, such as general grid interface, over-set mesh, mesh morphing,
Immersed Boundary Method (IBM), etc., which are used for different purposes and are suitable for
different problems. The present work describes and uses the IBM method for sea-keeping simulations.

Chapter 1

Immersed Boundary Method

IBM is a method which was originally proposed and developed in the 70s by Peskin [I] in order to
analyze biomedical flows. Today, IBM is used for several Fluid-Solid Interaction (FSI) problems and
is a suitable solution for analyzing the sea-keeping responses of the ship hulls.

There are two meshes involved in a CFD simulation involving IBM. The so called background
mesh is a well-defined and usually simple Cartesian mesh which contains the whole computational
domain and ignores the existence of the immersed body. The immersed body is then represented
by a second mesh, usually a surface mesh adapted to its exterior. This surface mesh is water tight,
meaning that there are no holes in it hence completely separating the body interior from the fluid.

The inclusion of the surface mesh into the background mesh divides the background mesh cells
into three distinctive cell types, see Figure live cells (or fluid cells) are the ones which are com-
pletely in the fluid domain, dead cells (or solid cells) are completely inside the body and Immersed
Boundary cells (IB cells) are intersecting the surface mesh and hence the immersed body. The nodes
on the surface mesh are called the IB nodes.

|
o o o} o o o o Fluid cells
v Solid cells
(o] O Q o]
m B cells
o |IB points
S N o o o
b b b O (o]
N N N 9] (o]

Figure 1.1: Cell types in IBM. Adapted from ”Immersed Boundary Method in FOAM” by H. Jasak, 2015
[2]. Reproduced with permission of [2]

The governing equations of the flow are solved in the live cells of the Eulerian field of the back-
ground mesh and the position and shape of the surface are tracked by a Lagrangian representation
of the body. In this way, a motion of the body is easily addressed by re-positioning of the body in
the background mesh, and possible deformations of the body surface are addressed by re-doing the
surface mesh. This is far easier than the re-meshing needed for a boundary fitted method. After
each surface re-meshing and/or re-positioning of the body the cell types should be re-evaluated.

1.1. BOUNDARY CONDITIONS IN IBM CHAPTER 1. IMMERSED BOUNDARY METHOD

1.1 Boundary Conditions in IBM

One major problem in IBM is that the fluid equations are solved on the background mesh but there
are no background mesh nodes on the immersed boundary to directly apply the boundary conditions
to them. The method of the boundary condition implementation distinguishes different IBMs from
each other. Different IBM methods are briefly explained here and was discussed in more detail detail
by R. V. Meulen [3].

1.1.1 Continuous Forcing IBM

The original IBM suggested in the 70s was of the Continuous Forcing IBM type. In continuous
forcing IBM (CFIBM) the effects of the boundary are directly applied through force/source terms
in the governing equations, for instance f in the momentum equation prior to discretization.

ou

ot

This greatly simplifies the implementation of the boundary conditions and gives a continuous

force across the immersed body boundary. This method is proven very efficient when dealing with

bodies which deform easily by forces applied to them. However, in case of rigid bodies such as a

ship hull this method results in a stiff set of equations which are difficult to solve. Moreover, this
method has been reported to be numerically unstable and inaccurate.

+ puV.u=—-Vp+ pAu+ f (1.1)

1.1.2 Discrete Forcing IBM

Discrete Forcing IBMs (DFIBMs) apply the boundary conditions by modifying the already dis-
cretized set of equation. In contrast to CFIBMs, DFIBMs are scheme-dependant which gives more
control over accuracy and stability of the simulations. There are two major categories of DFIBMs:
Direct Forcing DFIBMs and Indirect Forcing DFIBMs.

Indirect Forcing DFIBM

In the Indirect Forcing category of DFIBMs, the boundary conditions are not directly included in the
discretized equations. Instead, they are added as discretized force/source terms. Unlike the source
terms in CFIBMs in which the force term has a mechanical /physical nature, the source term in these
methods are calculated from the desired boundary conditions. The force term is also continuous
across the boundary in this family of methods and the immersed body boundaries are not sharply
represented.

Direct Forcing DFIBM

In the Direct Forcing category of DFIBMs, the boundary conditions are directly implemented into
the discretized equations through the IB cells and the immersed body geometry is sharply repre-
sented. Therefore, the forces are not continuous across the boundary.

1.2 Dead-to-Live Cells

Another major problem with IBM occurs when the deformation or movement of the boundary re-
sults in dead cells becoming live in the next time step. Addressing this problem in CFIBMs and
indirect forcing DFIBMs is easier due to the continuous nature of the applied forces/sources across
the geometry. One way to solve this problem in direct forcing DFIBMs is by simply assuming that

1.3. IBM IN FOAM-EXTEND CHAPTER 1. IMMERSED BOUNDARY METHOD

this cell has the conditions of the closet live cell for the first time step after it comes to life.

IBMs comparison

The pros and cons of the above mentioned IBMs can be summarized as below:

e CFIBMs

— Pros

* Easy to implement
x Good when bodies deform or move easily with force
*x Good when the mechanical force is well defined
x Good in handling dead to live cells
— Cons
* Accuracy and stability issues
x Stiff equations when the body is rigid
* Bad at high Reynolds numbers due to lack of sharp representation of the body surface

e Indirect Forcing DFIBMs

— Pros

* Good for rigid bodies
* Good in handling dead to live cells
* Discretization scheme-dependent, hence more control over accuracy and stability

— Cons

x More difficult to implement
* Bad at high Reynolds numbers due to lack of sharp representation of the body surface

e Direct Forcing DFIBMs

— Pros

x Good for rigid bodies

* Discretization scheme-dependent, hence more control over accuracy and stability
*x Good at high Reynolds number flows

x Sharpness of the boundary is preserved

— Cons

* More difficult to implement
* Bad at handling dead to live cells

1.3 IBM in FOAM-extend

The IBM implemented in FOAM-extend is of the Indirect Forcing DFIBM category and is described
by J. Favier et al. [4] and H. Jasak [2]. The idea is to skip solving the fluid governing equations in
the IB cells and instead approximating the values in the IB cells use boundary values and values in
neighboring live cells. This can be seen as moving the boundary from the actual body geometry to
the IB cell centers surrounding the body surface. The governing equation are solved as usual after
this process. The approximation process is the same for all equations except for the pressure and
are described in the following.

1.3. IBM IN FOAM-EXTEND CHAPTER 1. IMMERSED BOUNDARY METHOD

1.3.1 1B Cell Value Approximation

Approximating the values in the IB cell centers for all equations in FOAM-extend, except the pres-
sure equation, is based on the assumption that all quantities follow a quadratic behaviour near the
boundary. This assumption, together with a least square weighting function, is used to approximate
the values in the IB cell centers for both Dirichlet and Neumann boundary conditions.

Dirichlet Boundary Conditions

In case of a Dirichlet boundary condition, such as no-slip condition on the walls, the value in the IB
cell center is approximated by

op = dir+Co(zp—2i)+C1(yp —yip) + Co(xp — i) (yp —yir) + Ca(xp —2i)* + Ca(yp —yin)? (1.2)

The unknown coeflicients in the equation above are found through least square curve fitting to
the neighboring stencil cells, see Figure |1.2

o} o o Fluid cells

K = Solid cells
\Q ° | ° | = Bcels
-

F

h \ NN o o IB points
\\Q‘ R \
SN \\\ Extended stencil
[b [N (@] (o]

Figure 1.2: IB cell center approximation in Dirichlet BC. Adapted from ”Immersed Boundary Method in
FOAM” by H. Jasak, 2015 [2]. Reproduced with permission of [2]

Neumann Boundary Conditions

In case of a Neumann boundary condition, such as adiabatic or specified heat flux walls, the value
in the IB cell is approximated through introduction of a local coordinate system, see Figure

e} o Fluid cells
. Solid cells

© ® B cells

5 o |B points

(0]

Figure 1.3: IB cell center approximation in Neumann BC. Adapted from ”Immersed Boundary Method in
FOAM” by H. Jasak, 2015 [2]. Reproduced with permission of [2]

1.4. IBM CLASS IMPLEMENTATION IN EOIV-FERTENIMMERSED BOUNDARY METHOD

The values in the IB cell is given by
op = Co + [N (V)] + Cryp + Cox'pyp + Csa'’p® + Cuyp” (1.3)

The coeflicients are found as in the Dirichlet boundary treatment.

Least Square Weighting functions

There are two different least square weighting functions available in FOAM-extend for the purpose
of finding the C coefficients discussed above and more details are given by H. Jasak [2].

1.3.2 Pressure Equation

The implementation of the pressure boundary condition is more complicated as the value of pressure
is neither known nor needed on the immersed body. The theoretical details of this implementation
are out of scope of this work and is described by J. Favier et al. [4].

1.4 1IBM class implementation in FOAM-extend

IBM is implemented in FOAM-extend through three classes:
e immersedBoundaryPolyPatch
— takes care of basic mesh support functions for IBM meshes

e immmersedBoundaryFvPatch

supports basic and derived Fv properties of IBM

calculates the background mesh and surface mesh intersection points
— recognizes live and dead cells, normals and distances
— calculates the interpolation matrices used in imposition of boundary conditions

— contains information concerning parallel communications framework and layout.

e immersedBoundaryFvPatchField

field support

calculates and evaluates the boundary conditions using the interpolation matrices
— evaluates patch fields for IB patches
— calculates and interpolates field data on mesh intersections

— takes care of any boundary updates due to movement or deformation

1.5 High Reynolds Number Flows

The assumption of quadratic behaviour of velocity near the body walls is not valid at high Reynolds
number flows and leads to inaccuracy. Wall functions are used in body fitted grid simulations to
address high Reynolds number flows. In high Reynolds number flows, the velocity profile near the
wall follows the log-law and can be analytically evaluated. Therefore, if the mesh is fine enough
and the first cell near the wall is located in the log layer, there is no need to solve the momentum
equations on these cells and wall functions will give us the velocity.

1.5. HIGH REYNOLDS NUMBER FLOWSCHAPTER 1. IMMERSED BOUNDARY METHOD

Implementation of the immersed wall functions in the IBM method in FOAM-extend is however
not straight-forward as it cannot be applied to the IB cells. Instead, for each IB cell a sampling
point is introduced at a distance equal to 1.5 times the grid resolution at the IB cell in the normal
direction to the body. This guaranties that this cell lies in a live cell. The flow properties in this
sampling point are then calculated using the neighboring live cells and this sampling point is used
to evaluate the adequacy of mesh resolution for resolving the log layer.

In case this sampling point does not lie in the log layer the usual quadratic approximations are
used, otherwise the wall functions are applied to the IB cells. It is worth to mention that only the
the tangential velocity is calculated using the wall functions and the normal velocity component is
always approximated quadratically.

The main drawback of immersed body wall functions, apart from implementation complexity, is
that the mesh resolution should be finer than the boundary fitted approach to be able to resolve
high Reynolds number flows. The refinelmmersedBoundaryMesh utility can be used to refine the
background mesh only close to the immersed body hence reducing the total number of cells when
higher Reynolds number flows are simulated.

10

Chapter 2

Test Case

2.1 Introduction

The goal of this part of the project is to simulate the flow around a ship hull using the Immersed
Boundary Method in FOAM-extend. In order to achieve this, it is decided to use one similar available
case and modify it according to the desired purpose. The closest case is the cylBumpInterIbFoam
tutorial available in $FOAM_TUTORIALS in foam-extend-4.0. This tutorial is modified and a new
tutorial has been made which simulates the flow around a ship hull in two different inlet conditions
that can be applied to any ship hull.

cylBumpInterIbFoam tutorial

The cylBumpInterIbFoam tutorial is available in FOAM-extend-4.0 tutorials in the $FOAM_TUTORIALS/
immersedBoundary which is a case concerning the interaction of two fluids and a rigid body. The
solver interIbFoam is used in this tutorial which uses the Volume Of Fluid (VOF) approach to sim-
ulate the fluid-fluid interaction. The original cylBumpInterIbFoam tutorial is called ”Dam Break
Over a Bump”, see Figure [2.1] The bump here is a half cylinder at the bottom of the domain, the
water and air are represented by red and blue respectively.

Figure 2.1: Original cylBumplnterIbFoam tutorial fluid field, T=0 (Left) and T=t (Right)

New Tutorial Idea

In order to simulate the flow around a ship hull, the idea is to use the ship hull as a bump and
place it in a 3D tank of water and implement the related boundary conditions to the new case using

11

2.2. WORKFLOW CHAPTER 2. TEST CASE

the cylBumpInterIbFoam tutorial implementation. So the cylinder obstacle is replaced by the hull
geometry, available in OpenFOAM as DTC-scaled, and it is placed in a tank with a specific water
level depth, see Figure 2.2] Different boundary conditions are then applied to the inlet. In all the
cases there is an inlet, an outlet, a bottom, an atmosphere and two sides which are representing the
boundaries of the computational domain in 3D.

Figure 2.2: DTC-hull in a partly filled water tank (half domain)

The ship hull geometry, DTC-scaled.stl.gz, is available in OpenFOAM: $FOAM_TUTORIALS /resources/geometry

2.2 Workflow

The simulation procedure is presented in a more general way here while the details of each step are
explained in the following sections. It should be noted that some general steps are already available
in the cylBumpInterIbFoam tutorial and only the modifications are explained here. Two different
inlet velocities are presented which results in two cases which are referred as Constant Velocity and
Wave Propagating Wave cases. The necessary steps are summarized as below:

e Copy the cylBumpInterIbFoam tutorial to the run directory

e Replace the ibCylinder geometry in the constant/triSurface/ directory with the hull ge-
ometry

e Define a new volume mesh using the blockMeshDict dictionary in constant/polyMesh/
e Create polyMesh/boundary using blockMesh utility
e Include the immersedBoundaryPolyPatch into the polyMesh/boundary

e Refine the volume mesh around the immersed boundary using the ref ineImmersedBoundaryMesh
utility and copy the new boundary and patches to the constant/polyMesh directory (optional,
used for high Reynolds flow simulations)

e Modify properties constant/g

e Modify the solution control in system/fvSolution dictionary

12

2.3. CASE SETUP CHAPTER 2. TEST CASE

Constant Velocity Case

e Modify system/setFieldsDict dictionary to specify the water field

e Modify the time step size in the system/controlDict dictionary

e Modify the boundary fields of alphal, pressure and velocity by adding the new immersedBoundaryFvPatchField
e Modify the ./Allrun and ./Allclean scripts and run the case with ./Allrun

e Post process the case using paraview

Wave Propagating Case

e Download, install and utilize the swak4Foam library

e Include the new library to the system/controlDict dictionary

e Implement boundary conditions for alphal, pressure and velocity with the groovyBC library
e Make a funkySetFieldsDict dictionary in order to use the funkySetFields utility

e Modify the ./Allrun and ./Allclean scripts and run the case with ./Allrun

e Post process the case using paraview

2.3 Case Setup

Two different case setups are implemented in the new tutorial and the results are presented. The
geometry is the same in both cases, which is the DTC-scaled.stl in the constant/trisurface
directory of the tutorial. Another potential geometry could be the wigley hull; however, as this
geometry is not watertight, it is not used in this project. The solver requires a ”.ftr” format file
for the immersed geometry which can be created using the surfaceConvert utility in OpenFOAM
terminal window from its ”.stl” format.

e Copy the cylBumpInterIbFoam tutorial to the run directory

£40NR

mkdir -p $FOAM_RUN

run

cp -r $FOAM_TUTORIALS/immersedBoundary/cylBumpInterIbFoam .
cd cylBumpInterIbFoam/constant/triSurface

rm ibCylinder.ftr ibCylinder.stl

e Replace the ibCylinder geometry in the constant/triSurface/ directory with the hull ge-
ometry

Then open a new terminal window and continue with OpenFOAM terminal:

0OF4x

cp $FOAM_TUTORIALS/resources/geometry/DTC-scaled.stl.gz $FOAM_RUN
run

gunzip DTC-scaled.stl.gz

surfaceConvert DTC-scaled.stl DTC-scaled.ftr

mv DTC-scaled.stl hull.stl

mv DTC-scaled.ftr hull.ftr

13

2.3. CASE SETUP CHAPTER 2. TEST CASE

Table 2.1: The DT C-scaled hull dimensions

Length Width Height
6.28m 0.859m 0.572m

Then copy the ”.st]” and the ”.ftr” format files to the cylBumpInterIbFoam/constant/triSurface
directory in the FOAM-extend run-directory. The hull dimensions are presented in Table

2.3.1 Mesh Generation

In order to simulate the case, the computational domain is meshed with the following utilities. The
blockMesh utility creates the polyMesh with a Cartesian grid (background mesh in IBM) and the
refineImmersedBoundaryMesh utility is used for refining the mesh around the immersed boundary
(for High Reynolds number flows).

blockMesh Utility

The computational domain which is presented by the blockMeshDict is modified according to the
following. The blockMesh utility would then create a polyMesh in which the domain is divided into
two blocks. One block with finer mesh containing the inlet and the hull to study the ship response and
the wave pattern around the ship, and a second block which includes the outlet to the first block in
order to study the propagating wave pattern behind the ship (More details are given inside the code).

e Define a new volume mesh using the blockMeshDict dictionary in constant/polyMesh/

f40NR
run
cd cylBumpInterIbFoam

Open the constant/polyMesh/blockMeshDict file and change it to the following.

FoamFile
{
version 2.0;
format ascii;
class dictionary;
object blockMeshDict;
}

J/ % k k % %k %k)k % %k % k) % *k % %k % *k % %k *k k % *k * X % *k * *x % %k *k % % *x *x x //

convertToMeters 1;

vertices

(
(-16 -9 -6) // the domain generated according to the size of the hull.
(-5 -9 -6) // vertices are places in a way to include enough distance
(-5 9 -6) // from the inlet and to the sides and bottom to apply proper
(-16 9 -6) // boundary conditions in O_org files.
(-16 -9 6)
(-5 -9 6)

14

2.3. CASE SETUP

CHAPTER 2. TEST CASE

(-5 9 6)
(-16 9 6)
(10 -9 -6)
(10 9 -6)
(10 -9 6)
(10 9 6)
);
blocks // the
(// div
hex (0123456
hex (1 8 9 2 5 10
);
/7 4~
// /1
// /|
// R
// (I
/7 R
// |/
// |/
// R
/7 5 ———-—---
// /1
// /|
// 10 —=====--—-
// (.
// | 1 -
// |/
// |/
// 8 ——---———--
edges
(
);
boundary
(
inlet
{
type patch;
faces
(
(9 11 10 8)
);
}
outlet
{
type patch;
faces
(

Domain is divided into two blocks which contain same number of
isions in y and z directions and different in x direction.

7) (50 50 40) simpleGrading (1 1 1)

11 6) (80 50 40) simpleGrading (1 1 1)

-7
/1
/| -
6 | |
[I
-3 |-~ >y
|/ /
I/ /
2 X
-- 6
/| <-- this block contains the inlet and hull while the upper block
/| contains the outlet. Hence, the generated mesh in this block
11 | is finer than the other one.
(.
- 2
|/
I/
9

15

2.3. CASE SETUP CHAPTER 2. TEST CASE

(0 47 3)
)5
¥
atmosphere
{
type patch;
faces
(
(456T7)
(5 10 11 6)
)3
X
bottom
{
type patch;
faces
(
(0321
(1298)
);
¥
sides
{
type patch;
faces
(
(8 10 5 1)
(1 540
(3 762
(2 6 11 9)
)3
}
)3
mergePatchPairs
(
)3

It should be noted that after running the blockMesh utility the following boundary file is created

in the constant/polyMesh directory

e Create polyMesh/boundary using blockMesh utility

blockMesh

Then open the constant/polyMesh/boundary file and look at its contents.

J/ % % % %k % % % %k % % % % * % %k %k %k %k X Kk Kk k % % * % %k %k %k %k X X Xk kx *x x x //

16

2.3. CASE SETUP CHAPTER 2. TEST CASE

5 // without immersed boundary geometry

(

inlet

{
type patch;
nFaces 2000;
startFace 766300; // this number will be used in the following

}

outlet

{
type patch;
nFaces 2000;
startFace 768300;

}

atmosphere

{
type patch;
nFaces 6500;
startFace 770300;

}

bottom

{
type patch;
nFaces 6500;
startFace 776800;

}

sides

{
type patch;
nFaces 10400;
startFace 783300;

}

)

The generated boundary file has all the boundary conditions for the domain except the immersed
geometry. The next step is to add the immersedBoundaryPolyPatch boundary to the created bound-
ary file and make a new boundary file. There is an extra directory in this tutorial named save which
contains a boundary file and a blockMeshDict file. The blockMeshDict file will be explained further
in the report but for now just copy the new created blockMeshDict there and replace it with the
old one from the cylBumpInterIbFoam tutorial.

e Include the immersedBoundaryPolyPatch into the polyMesh/boundary

As it is discussed in the section 1.4, the immersedBoundaryPolyPatch takes care of basic mesh
support functions for IBM meshes. The member functions of the ”immersedBoundaryPolyPatch.H”
is given by

// Member Functions

// Access

17

2.3. CASE SETUP CHAPTER 2. TEST CASE

//- Return immersed boundary surface mesh
const triSurfaceMesh& ibMesh() const
{

return ibMesh_;

}

//- Return true if solving for flow inside the immersed boundary
bool internalFlow() const
{

return internalFlow_;

}

//- Return triSurface search object
const triSurfaceSearch& triSurfSearch() const;

The next step is to add immersedBoundaryPolyPatch to the created boundary file and make a
new boundary file and replace it with the one from the original cylBumpInterIbFoam tutorial in the
save directory. This is because of the fact that the new blocMeshDict creates a new total number
of cells which changes the startFace of the immersed boundary.

The startFace for the geometry (hull) should be modified to the startFace in the new boundary
according to the new total number of cells, while its nFaces in this method is always considered as
zero irrespective of the geometry. Thereafter, the other boundaries would be attached to the hull
boundary. The boundary file for the above blockMeshDict should be changed to the following in
the save directory:

rm save/boundary
cp constant/polyMesh/boundary save/

Open the save/boundary file and add the hull as type immersedBoundary with zero faces and
the same startFace as the first boundary startFace (inlet in this example). Then since a boundary
was added, change the number of boundaries to six.

J/ % %k %k %k % % % k % % % % * %k %k %k % % X Kk Xk k % % * % %k % %k %X %X X Xk kX *x x x //

6 // Notice this number, includes the hull

(
hull // change the name to the .stl file name
{
type immersedBoundary;
nFaces 0; // Always considered as O for the immersed boundary geometry.
startFace 766300 // <-- copy the created startFace in boundary here!
internalFlow no; // There is no internal flow in the immersed body.
X
inlet // copy other parts of the boundary file here...
{
type patch; // |
nFaces 2000; // |
startFace 766300; // |
Iy // \

18

2.3. CASE SETUP CHAPTER 2. TEST CASE

outlet

{
type patch;
nFaces 2000;
startFace 768300;

}

atmosphere

{
type patch;
nFaces 6500;
startFace 770300;

}

bottom

{
type patch;
nFaces 6500;
startFace 776800;

}

sides

{
type patch;
nFaces 10400;
startFace 783300;

}

e Refine the volume mesh around the immersed boundary using the refineImmersedBoundaryMesh
utility and copy the new boundary and patches to the constant/polyMesh directory (optional,
used for high Reynolds flow simulations)

refinelmmersedBoundaryMesh Utility

In order to reduce the near-wall y+ for simulating high-Reynolds number flows, the background
mesh next to the immersed boundary can be refined. This is one of the techniques that can be used
to implement wall functions into the simulation without exra refinement in unnecessary regions.
For refining the background mesh around the immersed surface the refineImmersedBoundaryMesh
utility could be used. There are three different levels of mesh refinement available through this
utility. The one level mesh refinement is called ibCells, the two level mesh refinement is called
ibCellCells and the three level mesh refinement is called ibCellCellFaces. Figures 2.3 and [2:4]
show the results of mesh refinement around the immersed boundary in the free surface for one and
three levels refinement. They show that the one level refinement did not give a good mesh at the
boundary while the three level refinement results in a nice Cartesian mesh near the boundary.

19

2.3. CASE SETUP CHAPTER 2. TEST CASE

[L]
LSS

l

|
SSSNSNNNEEEREEN

N N N ““ \

A A

Figure 2.3: One-level Immersed Mesh Refinement (ibCells)

7
Eread T

77
AT
A A AT

AL
Ll 7 7T AT T T T T
7 "W L,

717
Z ‘hﬁﬂ;’ ”A .
e A4l

Figure 2.4: Three-level Immersed Mesh Refinement (ibCellCellFaces)

In order to use one of the available options of mesh refinements the ref ineImmersedBoundaryMesh
should be run after the blockMesh utility with a flag showing the level of refinement. It uses the

20

2.3. CASE SETUP CHAPTER 2. TEST CASE

copied boundary file from the save directory and forms a new directory 0/polyMesh in the tuto-
rial folder which contains a new boundary file and neighbour, owner, points, and other produced
packages. These files should be copied to the constant/polyMesh directory just after the mesh
refinement process. Then the created directory O should be removed and another empty 0 should
be built. These steps are available in the ./Allrun script and will be described again.

2.3.2 Properties

The constant/g file should be modified in order to introduce a gravity of 9.81 in the -Z direction
for the discussed coordinate system. The coordinate system in the new tutorial is not the same used
in the cylBumpInterIbFoam. Open the constant/g file and modify it as follows.

e Modify properties constant/g

dimensions [01-200 0 0];
value (00 -9.81); //gravity
J/ k% %k %k %k % % % *k % % % % >k >k %k % % % % *k k k % % * * %k % % % % X Xk kX % x x //

2.3.3 Solver

The solver which is used for this tutorial is interIbFoam. It is a solver for 2 incompressible, isother-
mal immiscible fluids using the VOF approach with immersed boundary support. The momentum
and other fluid properties are of the "mixture” and a single momentum equation is solved.

Volume Of Fluid (VOF)

In computational fluid dynamics, the volume of fluid method is a free-surface (fluid-fluid interface)
modelling technique. In this method the phase fraction of each fluid is calculated in each cell to
track and locate the cells in which the two fluids are interacting. Then the located cells are creating
the free surface between the two fluids. It takes care of fluid shape in a local domain and recon-
structs the interface from volume fraction of one fluid, maintaining sharp interfaces. The numerical
calculation procedure of this method is out of the scope of this project, however the method is used
in the interIbFoam solver to model the fluid-fluid interface.

turbulence modelling

In the interIbFoam solver the turbulence modelling is generic, i.e. laminar, RAS or LES may be
selected. However, all the efforts made in this work to introduce turbulence in the flow failed and this
tutorial will only concern the simulation of the laminar flow. It could be as a future work to change
the conditions to turbulent and resolve the problems. One such problem might be the insufficient
mesh resolution near the immersed body despite all the refinements presented above. As mentioned
earlier, the mesh resolution requirements for use of wall functions are much stricter for IBM which
might be the major source of lack of turbulence. Therefore, constant/turbulenceProperties re-
mains as laminar while the turbulent modelling simulation files are attached to the end of this report.
Open the constant/turbulenceProperties file and check the following.

J/ k% %k %k %k % % % %k % % % >k >k >k %k % % % % *k *k * % % * * % % % % % *k kx *x % x x //

simulationType laminar;

21

2.3. CASE SETUP CHAPTER 2. TEST CASE

[/ RFRA AR AR A A KKK AR K KKK R KoK KKKk KoK KKKk KKK KRR KKKk KKKk Kk Rk kR ok / /
e Modify the solution control in system/fvSolution dictionary

The next step is to modify the system/fvSolution file. The only modification is to remove the
reference points of the pressure as the sampling point from cylBumpInterIbFoam is located inside
the hull. However, by removing the reference points the PIMPLE algorithm uses an arbitrary point,
i.e first cell of the domain, as the reference point. Open the system/fvSolution file and check the
following.

J/ % %k %k %k %k % % %k % k % % * %k % %k %k % % Xk Xk Kk X % % * * %k %k %k %X X X kx x x x [/

solvers
{
pcorr
{
solver CG;

preconditioner Cholesky;

minIter 0;
maxIter 1000;
tolerance 1e-08;
relTol 0.01;

}

pd

{
solver CG;
preconditioner Cholesky;
minIter 0;
maxIter 1000;
tolerance 1e-08;
relTol 0.01;

}

pdFinal

{
solver CG;
preconditioner Cholesky;
minIter 0;
maxIter 1000;
tolerance 1e-08;
relTol 0.0;

}

U

{
solver BiCGStab;

preconditioner ILUO;

minIter 0;

22

2.3. CASE SETUP

CHAPTER 2. TEST CASE

maxIter 100;
tolerance 1e-08;
relTol 0;
}
alphal
{
solver BiCGStab;
preconditioner ILUO;
minIter 0;
maxIter 100;
tolerance 1e-08;
relTol 0;
}
}
PISO
{
cAlpha 1;
}
PIMPLE
{
nOuterCorrectors 2;
nCorrectors 4;
nNonOrthogonalCorrectors O;
limitMagU 20;
}
relaxationFactors
{
equations
{
U 0.9;
}
fields
{
pd 0.8;
}
}

In the interIbFoam solver, four header files are included which are related to the immersed
boundary method. In the following you can find the interIbFoam.C file contents.

\ K m x/
#include "fvCFD.H"
#include "interfaceProperties.H"

#include
#include

"twoPhaseMixture.H"
"turbulenceModel .H"

23

2.3. CASE SETUP CHAPTER 2. TEST CASE

#include "immersedBoundaryFvPatch.H"
#include "immersedBoundaryAdjustPhi.H"

J/ % % % %k % % %k *k % % % % * % %k %k %k % X Kk Xk k % % * % %k %k %k %k X X Xk kX *x x x //
int main(int argc, char *argv[])

include "setRootCase.H"

include "createTime.H"

include "createMesh.H"

include "readGravitationalAcceleration.H"
include "readPIMPLEControls.H"

include "immersedBoundaryInitContinuityErrs.H"
include "createFields.H"

include "readTimeControls.H"

include "correctPhi.H"

include "CourantNo.H"

include "setInitialDeltaT.H"

H o H O HHH R HFH A

[/ % % % %k % % %k *k % % % % * % %k %k % %X X Kk Kk k % % * * %k % %k %k X kX X kX *x x x //
Info<< "\nStarting time loop\n" << endl;

while (runTime.run())

{
include "readPIMPLEControls.H"
include "readTimeControls.H"
include "immersedBoundaryCourantNo.H"
include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
// Pressure-velocity corrector
int oCorr = 0;
do
{
twoPhaseProperties.correct();
include "alphaEqn.H"
include "UEqn.H"
// --- PISO loop
for (int corr = 0; corr < nCorr; corr++)
{
include "pEqn.H"
}
include "immersedBoundaryContinuityErrs.H"
include "limitU.H"

24

2.3.

CASE SETUP CHAPTER 2.

TEST CASE

// Recalculate the mass fluxes
rhoPhi = phix*fvc::interpolate(rho);

p = pd + cellIbMask*rho*gh;
if (pd.needReference())

p += dimensionedScalar
(

p-dimensions(),
pRefValue - getRefCellValue(p, pdRefCell)

)
}

turbulence->correct();
} while (++oCorr < nOuterCorr);

runTime.write() ;

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " g"
<< nl << endl;

3

Info<< "End\n" << endl;

return O;

The included headers are the ”immersedBoundaryFvPatch.H”, the ”immersedBoundary Adjust-
Phi.H”, the ”immersedBoundaryInitContinuityErrs.H” and the ”immersedBoundaryCourantNo.H”.
The ”immersedBoundaryFvPatch.H” has the following contents and it is already discussed in sec-
tions 1.3 and 1.4. It should be noted that the returned values at the last part of this code will be
used for discussed calculation procedure in section 1.3.

class immersedBoundaryFvPatch

public fvPatch
// Private data

//- Reference to processor patch
const immersedBoundaryPolyPatch& ibPolyPatch_;

//- Finite volume mesh reference
const fvMesh& mesh_;

// Member Functions

25

2.3. CASE SETUP CHAPTER 2. TEST CASE

// Immersed boundary data access

//- Get fluid cells indicator, marking only live fluid cells
const volScalarField& gamma() const;

//- Return list of fluid cells next to immersed boundary (IB cells)
const labellList& ibCells() const;

//- Return list of faces for which one neighbour is an IB cell

// and another neighbour is a live fluid cell (IB faces)

const labellist& ibFaces() const;

//- Return IB points
const vectorField& ibPoints() const;

//- Return IB cell extended stencil
const labellListList& ibCellCells() const;

//- Return dead cells
const labellList& deadCells() const;

//- Return extended dead cells
const labellList& deadCellsExt() const;

//- Return dead faces
const labellList& deadFaces() const;

//- Return live cells
const labellList& liveCells() const;

//- Return immersed boundary cell sizes
const scalarField& ibCellSizes() const;

//- Get inverse Dirichlet interpolation matrix
const PtrList<scalarRectangularMatrix>&
invDirichletMatrices() const;

//- Get inverse Neumann interpolation matrix

const PtrList<scalarRectangularMatrix>&
invNeumannMatrices() const;

The ”immersedBoundarylnitContinuityErrs.H” is for declaration and initialisation of cumula-

26

2.3. CASE SETUP CHAPTER 2. TEST CASE

tive continuity error. The ”immersedBoundaryCourantNo.H” calculates and outputs the mean and
maximum Courant numbers in a IB-sensitive manner.

scalar CoNum = 0.0;
scalar meanCoNum = 0.0;
scalar velMag = 0.0;

if (mesh.nInternalFaces())

{
surfaceScalarField magPhi = mag(faceIbMask*phi) ;

surfaceScalarField SfUfbyDelta =
mesh.surfaceInterpolation: :deltaCoeffs()*magPhi;

CoNum = max(SfUfbyDelta/mesh.magSf())
.value () *runTime.deltaT() .value();

meanCoNum = (sum(SfUfbyDelta)/sum(mesh.magSf()))
.value () *runTime.deltaT() .value();

velMag = max(magPhi/mesh.magSf()).value();

The ”immersedBoundary AdjustPhi.H” adjust the immersed boundary fluxes to obey continuity.
If the mesh is moving, adjustment needs to be calculated on relative fluxes. The ”immersedBound-
aryAdjustPhi.C” is given by

if (mesh.moving())
{

fvc::makeRelative(phi, U);
}

forAll (phi.boundaryField(), patchI)

{
const fvPatchVectorField& Up = U.boundaryField() [patchI];

if (isA<immersedBoundaryFvPatchVectorField>(Up))
{
if (Up.fixesValue())
{
// Found immersed boundary path which fixes value.
// Correction is necessary

If the fixesValue set to "yes” is each variable, then in each iteration the fluxes of that variable
are adjusted by calling the ”immersedBoundaryAdjustPhi.C”. So the values on the boundary are
fixed.

The system/fvSchemes file remains untouched since the aim in this tutorial is to use the avail-
able solver and solution procedure for the new case. Till now the implementations were same for
both test cases. The next step is the introduction of different boundary conditions at the inlet which
requires different case setup work flows.

27

2.4. CONSTANT VELOCITY CASE CHAPTER 2. TEST CASE

2.4 Constant Velocity Case

The first case is to introduce a uniform velocity at the inlet facing the hull while the ship is fixed in
the domain. This condition represents a condition where the ship is moving with a constant speed
in the calm water. It should be noted that the air above the water surface is also is influenced by
introducing the uniform inlet. However, uniform inlet for air has negligible effects on the results. In
the system directory the system/setFieldsDict should change to the following which means that
the ship with the height of 0.572m experience a ship water depth of 0.2m in the initial condition.
Open the system/setFieldsDict file and change as follows.

e Modify system/setFieldsDict dictionary to specify the water field

J/ % %k % %k % % %k *k % % % % * % %k %k %k %X X Kk Kk k % % * % %k %k %k %k %X X kX kX *x x x //

defaultFieldValues
(
volScalarFieldValue alphal 0
)3
regions
(
boxToCell
{
box (-100 -100 -100) (100 100 0.2); //water depth
fieldValues
(
volScalarFieldValue alphal 1
)3
}
)5

Due to the very fine mesh the deltaT is considered as low as possible to prevent divergence of
the simulation. However, for each simulation there are some limitations that constraints the user.
Time is one of them which can be interpreted as cost. The finer the mesh the smaller the time
steps and the simulation time would be longer though results become more accurate. In this tutorial
the system/controlDict is modified to the following to have reasonable results with an efficient
simulation for the aim of this project. However, for more accurate results finer mesh and/or smaller
time steps can be investigated. Open the system/controlDict file and modify it as follows.

e Modify the time step size in the system/controlDict dictionary

[/ % % % %k % % % k % % % % * % %k %k %k %k X Kk Kk k % % * * %k %k %k %k X kX Xk kx *x x x //

libs
(
"liblduSolvers.so"
)
application interIbFoam;
startFrom startTime;

28

2.4. CONSTANT VELOCITY CASE CHAPTER 2. TEST CASE

startTime 0;

stopAt endTime;

endTime 10;

deltaT 0.001; //could be smaller to get more accurate results
writeControl adjustableRunTime;

writeInterval 0.05; //0.05;

// writeControl timeStep;
// writelnterval 1;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression compressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo 0.5; //could be smaller

// libs ("libimmersedBoundary.so");

Now it’s time to specify the boundary conditions. The following modifications have been done
for alphal, U and pd files. The description of the settings for the immersed boundary is mentioned
in the code for the alphal and it applies also for U and pd.

e Modify the boundary fields of alphal, pressure and velocity by adding the new immersedBoundaryFvPatchField

J/ % k k % %k k k % %k %k k % *k % %k % *k % *k *k k % *k * X % *k * *x % %k *k % % *x *x x //
dimensions [0 0 0 0 O O 0];

internalField uniform O;

boundaryField
{
hull
{
type immersedBoundary; //The type should be considered as immersed boundary
refValue uniform O; //The reference value is considered as zero.

refGradient uniform O;

29

2.4. CONSTANT VELOCITY CASE CHAPTER 2. TEST CASE
fixesValue no; // If this set to "yes" for moving mesh, then in each
//iteration the fluxes of this variable are adjusted by calling
//the the "immersedBoundaryAdjustPhi.C" to fix the values on the boundary.

setDeadCellValue yes; //Should the dead cells have a value or not?
deadCellValue 0; //The value of the dead cells if they suppose to get values.
value uniform O;

X

inlet

{
type fixedValue; //the value of alpha at inlet is assumed as zero
value $internalField;

}

outlet

{
type zeroGradient;

by

atmosphere

{
type inletOutlet; //to put a boundary condition for open atmosphere
inletValue uniform O;
value uniform O;

}

bottom

{
type zeroGradient;

}

sides

{
type zeroGradient;

}

}

[/ Rskokokskok sk sk ok sk ok sk s ok sk ok ok ok sk ok 3k ok ok ok sk ok ok sk ok ok sk ok ok sk ok ok ok ok sk ok ok sk ook sk ok ok ok sk ok sk ok ok skok sk kokk -/ /

gedit O_org/U

dimensions [01-10000];

internalField uniform (-2 0 0);

boundaryField
{

hull

{

type immersedBoundary;
refValue uniform (0 0 0);
refGradient uniform (0 0 0);

30

2.4. CONSTANT VELOCITY CASE CHAPTER 2. TEST CASE

fixesValue yes;

setDeadCellValue yes;

deadCellValue (0 0 0);
}
inlet
{
type fixedValue;
value uniform (-2 0 0); //speed of 2m/s towards the ship according to the coordinate system
}
outlet
{
type zeroGradient;
¥
atmosphere
{
type pressurelnletOutletVelocity;
value uniform (0 0 0);
¥
bottom
{
type fixedValue;
value uniform (0 0 0);
}
sides
{
type zeroGradient;
}

[/ FrER Rk Rk kR kR koK ok kK ok ok ok sk koo kK ok sk ok ks ko ok kK kKRR ko ok kKR KRRk /
gedit O_org/pd

dimensions [1 -1 -2 0 0 0 0];

internalField uniform O;

boundaryField
{

hull

{

type immersedBoundary;
refValue uniform O;
refGradient uniform O;
fixesValue no;

setDeadCellValue yes;
deadCellValue 0;

value uniform O;
}
inlet

{

31

2.4. CONSTANT VELOCITY CASE CHAPTER 2. TEST CASE

type zeroGradient;

Iy
outlet
{
type zeroGradient;
X
atmosphere
{
type totalPressure;
pO uniform O;
U U;
phi phi;
rho rho;
psi none;
gamma 1;
value uniform O;
X
bottom
{
type zeroGradient;
3
sides
{
type zeroGradient;
by

The last step is to run the case by running the following ./Allrun script. It can be seen that
the procedure of running is a bit more tricky in this tutorial. It means that the ./Allrun script
would change according to the usage of immersed boundary mesh refinement.

e Modify the ./Allrun and ./Allclean scripts and run the case with ./Allrun

#!/bin/sh
Source tutorial run functions
. $WM_PROJECT_DIR/bin/tools/RunFunctions

Get application name
application="interIbFoam"

mkdir constant/polyMesh #<--- Uncomment in case of using refineImmersedBoundaryMesh utility
it is used in case of running for the second or third,... time due
to the remove command in the following...

cp -f save/blockMeshDict constant/polyMesh #<--- Uncomment in case of using

refineImmersedBoundaryMesh utility

runApplication blockMesh
\cp -f save/boundary constant/polyMesh/ #<--- As it can be seen the saved boundary
file here replaced with the new one

32

2.5. WAVE PROPAGATED CASE CHAPTER 2. TEST CASE

runApplication refineImmersedBoundaryMesh -ibCellCellFaces #(-ibCells, -ibCellCells also could be
used dependind on the level of refinement)

#°--- Uncomment in case of using refineImmersedBoundaryMesh utility
#\rm -rf constant/polyMesh #<--- Uncomment in case of using refineImmersedBoundaryMesh utility
#\mv O/polyMesh constant/polyMesh/#<--- Uncomment in case of using refineImmersedBoundaryMesh utility
#\rm -rf O #<-—— Uncomment in case of using refineImmersedBoundaryMesh utility

\mkdir O
\cp O_org/* 0/

runApplication setFields

runApplication $application

In case of cleaning the case the ./Allclean file is made as:

#!/bin/sh

Source tutorial clean functions
. $WM_PROJECT_DIR/bin/tools/CleanFunctions

\rm -f constant/polyMesh/boundary

cleanCase
\rm -rf 0

Finally, running the case by typing the following command in terminal window.

./Allrun
e Post process the case using paraview
paraFoam -nativeReader

The results will be shortly discussed in the post-processing section 3.1. It should be noted that
till now the constant velocity case is implemented. The next step is implementation of the wave
propagated case.

2.5 Wave Propagated Case

Notice: In order to implement the wave propagated case, the initial steps should be done again,
since the initial steps are common between both cases! Hence, please start by chapter 2.3 and skip
the chapter 2.4 and continue with chapter 2.5 for the wave propagated case setup.

In this case set-up the major difference is the introduction of a wave at the inlet. This repre-
sents a moving ship towards waves. Most of the case setup steps are similar as before while the
inlet boundary condition should change. In order to generate a wave at boundary there are some
utilities available in OpenFOAM, e.g. waves2Foam, groovyBC etc. However, not all of them are
applicable to every case and condition. For instance, the waves2Foam utility is not applicable to
FOAM-extend-4.0. Hence, for wave generation at the inlet, the swak4Foam library is used in which
the functionality of two utilities groovyBC and funkySetFields are combined.

33

2.5. WAVE PROPAGATED CASE CHAPTER 2. TEST CASE

2.5.1 swak4Foam Library

The swak4Foam library offers the user the possibility of introducing different expressions for bound-
aries, containing the fields and evaluates them without programming. It means that for the case
under study the boundary at the inlet can be modified with introducing wave expressions to simulate
the wave in it. First, the installation procedure will be explained, then the required preparation will
be discussed and finally the groovyBC and funkySetFields utilities will be explained.

e Download, install and utilize the swak4Foam library

Installation Procedure

In order to install the swak4Foam library in FOAM-extend-4.0, its development version can be
downloaded according to the following commands. In case of any problem during downloading or
for downloading other versions of it please check www.openfoamwiki.net website [5].

Open a new terminal window and download the swak4Foam from the main Mercurial develop-
ment repository, using the hg command. Then checkout the right branch.

£40NR

run

hg clone http://hg.code.sf.net/p/openfoam-extend/swak4Foam swak4Foam
cd swak4Foam && hg update develop

Then install the swak4Foam according to the following. The first ./Allwmake command takes
around 40 mins while the second one is for getting a summary of the installation and i runs much
quicker. More detail is given in the www.openfoamwiki.net website[6].

./maintainanceScripts/compileRequirements.sh
./Allwmake > log.make 2>&1
./Allwmake > log.make 2>&1

Then you can check the version by typing the command funkySetFields. This results in an
error message, but just after the usual OpenFOAM-banner the version of swak4Foam and the release
date would be published.

funkySetFields

ControlDict Preparation

Please add these lines to the case system directory and inside the controlDict near the top.

e Include the new library to the system/controlDict dictionary

libs (
"liblduSolvers.so"
//"1ib0penF0AM. so"
"libsimpleSwakFunctionObjects.so"
"libswakFunctionObjects.so"

"libgroovyBC.so"

)

34

2.5.

WAVE PROPAGATED CASE CHAPTER 2. TEST CASE

Contents

The swak4Foam library consist of the following libraries and utilities given in www.openfoamwiki.net
website [7]. For more information take a look at README file of the installed swak4Foam library.

Libraries

swak4FoamParsers: to access the OpenFOAM data-structures

groovyBC: A boundary condition that allows arbitrary expressions in the field-file
swakFunctionObjects: for manipulating and creating fields with expressions
simpleSwakFunctionObjects: Evaluate expressions and output the results
swakSourceFields: used as source-term or coefficient in some solver
swakTopoSources: topoSources for cellSet and faceSet

pythonIntegration: allows inclusion of Python code directly into an OpenFOAM Simulation
run.

Utilities

funkySetFields: Utility that allows creation and manipulation of files with expressions

funkySetBoundaryField: Sets any field on a boundary to a non-uniform value based on an
expression

replayTransientBC: Utility to quickly test whether a groovyBC gives the expected results
play y to q y g ybeL g p

In order to propagate a wave at the inlet the groovyBC library and the funkySetFields utility are
introduced to the case.

2.5.2 groovyBC

This library allows the user to introduce a mixed-BC with values, gradients and valueFractions as
expressions instead of fields. The prerequisite of using groovyBC is installed bison with version of
2.4.1 or older! Check your bison version with ”bison -V” command. The addition of this library

is already done in the ”controlDict Preparation” paragraph of section 2.5.1. The parameters are
defined as bellow:

valueExpression: String with the value to be used if a Dirichlet-condition is needed. Defaults
to zero

value: is used if no "valueExpression” is given. value is also used for the first timestep/it-
eration if "valueExpression” is specified. If "valueExpression” is specified without setting
"value”, 0 is taken for the first timestep/iteration. (might cause a Floating Point Exception)

gradientExpression: String with the gradient to be used if a Neumann condition is needed.
Defaults to zero

fractionExpression Determines whether the face is Dirichlet (1) or Neumann (0). Defaults
to 1

variables: List with temporary variables separated by a semicolon. May make the writing of
expressions shorter. Defaults to empty. Names defined here ”"shadow” fields of the same name

35

2.5. WAVE PROPAGATED CASE CHAPTER 2. TEST CASE

e timelines List with sub-dictionaries that specify interpolation tables over time. See the
original timeVaryingUniform-condition. Currently only scalars are allowed. The parameter
name specifies the name under which this may be accessed. The name ”shadows” fields of the
same name

The expression syntax including the C+4 operators, pseudo-variables and pseudo-functions are
from a source file for bison. The basic ones can be found here[8]. An available example of the
groovyBC usage is called ”groovyWaveTank which is a 2D case for generating ”2nd-order Stokes
waves” in a tank designed for ”interFoam” solver in OpenFOAM. The test case is available in
www.openfoamwiki.net website [9]. As an illustration one screenshot of the case is presented, see

Figure

Figure 2.5: groovyWaveTank User Case

2nd-order stokes waves

The same wave is used in the case setup and due to that the O_org/alphal is modified to the
following.

e Implement boundary conditions of alphal, pressure and velocity with the groovyBC library

J/ k% %k %k k % % % *k % % % % >k >k %k % % % X *k *k k % % * >k %k %k %k % % *k X kX % x x //
dimensions [0 0 0 0 O O 0];

internalField uniform O;

boundaryField
{

hull

{

type immersedBoundary;
refValue uniform O;
refGradient wuniform O;
fixesValue no;

36

2.5. WAVE PROPAGATED CASE CHAPTER 2. TEST CASE

setDeadCellValue yes;
deadCellValue 0;

value uniform O;

}
inlet
{
type groovyBC;
valueExpression "(pos().z<=A*cos(-w¥xtime())+0.5*kxA*xA*cos(2*(~wxtime()))) 7 1 : 0";
//The wave formula is implemented here with wave length of 5 and amplitude of 0.3
variables "1=5;A=0.3;G=vector(0,0,-9.81) ;k=2*pi/l;w=sqrt (k*mag(G));";
timelines O3
}
outlet
{
type zeroGradient;
by
atmosphere
{
type inletOutlet;
inletValue uniform O;
value uniform O;
}
bottom
{
type zeroGradient;
}
sides
{
type zeroGradient;
}

[/ Rskokokskok sk sk ok sk ok sk s ok sk ok ok ok sk ok 3k ok ok ok sk ok ok sk ok ok sk ok ok sk ok ok ok ok sk ok ok sk ook sk ok ok ok sk ok sk ok ok skok sk kokk -/ /

Open the 0_org/pd file and modify as follows.

J/ % k Kk k k k k k k k k k k k k k *k *k *k *k *k *k >k *k * *k *x *k *k *k *x * * * *x *x *x //
dimensions [1 -1 -2 0 0 0 0];

internalField uniform O;
boundaryField

{
hull

37

2.5. WAVE PROPAGATED CASE

CHAPTER 2. TEST CASE

{
type immersedBoundary;
refValue uniform O;
refGradient uniform O;
fixesValue no;
setDeadCellValue yes;
deadCellValue 0;
value uniform O;

}

inlet

{
type buoyantPressure;
value uniform O;

}

outlet

{
type buoyantPressure;
value uniform O;

}

atmosphere

{
type totalPressure;
pO uniform 0;
U U;
phi phi;
rho rho;
psi none;
gamma 1;
value uniform O;

}

bottom

{
type buoyantPressure;
value uniform O;

}

sides

{
type buoyantPressure;
value uniform O;

}

Open the 0_org/U file and modify it as follows.

J/ % % %k %k %k % % %k % % % % %)k %k % %k % % X Xk Kk % % % * % %k % %k % X X Xk x x x [/

dimensions [01-10000];

internalField wuniform (0 0 0);

38

2.5. WAVE PROPAGATED CASE CHAPTER 2. TEST CASE

boundaryField
{

hull

{

type immersedBoundary;
refValue uniform (0 0 0);
refGradient wuniform (0 0 0);
fixesValue yes;

setDeadCellValue yes;

deadCellValue (0 0 0);
}
inlet
{
type groovyBC; //2nd order stokes wave with length of 5 and amplitude of 0.3
valueExpression "(pos().z<=A*cos(-w¥time())+0.5xk*AxA*cos (2*(~wxtime()))) ?\
vector (Axwxexp(kxpos().z)*cos(-wxtime()), 0,\
Axwxexp (k*pos() .z)*sin(-w*time())) : vector(0,0,0)";
variables "1=5;A=0.3;G=vector(0,0,-9.81) ;k=2*pi/1;w=sqrt (k*mag(G));";
timelines O3
}
outlet
{
type zeroGradient;
}
atmosphere
{
type pressurelnletOutletVelocity;
value uniform (0 0 0);
}
{
type slip;
value uniform (0 0 0);
}
sides
{
type zeroGradient;
}

2.5.3 funkySetFields

The funkySetFields utility sets the value of a scalar or a vector field depending on an expression and
gives the possibility to set the value of fields on selected patches. It is similar to the setFields utility.

In the dictionary funkySetFieldsDict a list of dictionaries named expressions is read and one
dictionary is evaluated after another. More information can be found in www.openfoamwiki.net
website [10]. In each dictionary there can be the following entries:

e field: the target field

39

2.5. WAVE PROPAGATED CASE CHAPTER 2. TEST CASE

e expression: the expression to write to the field

e condition: select a subset of the cells (this is optional)
e keepPatches: see command line options (optional)

e create: see command line options (optional)

e valuePatches: see command line options (optional)

e dimension: see command line options (optional)

In the case of wave generation in the ongoing tutorial the file system/funkySetFieldsDict
should be added to the system directory.

e Make a funkySetFieldsDict dictionary in order to use the funkySetFields utility

Open a new file and name it funkySetFieldsDict in the system directory and add the following
in that file.

J/ k% %k %k %k % % % *k % % % % >k >k %k % % % X *k k k % % >k * % % % % % X Xk kX % x x //

expressions

(
setWave
{

field alphal; //field to initialise

expression "1";

condition "(-100<=pos().z) && (pos().z<=0.2) && (-100<=pos().y) &&\
(pos () .y<=100) && (-100<=pos().x) && (pos().x<=100)";

//keepPatches true; //keep the boundary conditions that were set before

}

)3

The last step is to modify the ./Allrun script. Remember to have mesh refinement around the
immersed boundary (hull) the related modifications discussed in the constant velocity case should
be attached to the following one.

e Modify the ./Allrun and ./Allclean scripts and run the case with ./Allrun
gedit Allrun

#!/bin/sh
Source tutorial run functions
. $WM_PROJECT_DIR/bin/tools/RunFunctions

Get application name
application="interIbFoam"

mkdir constant/polyMesh #<--- Uncomment in case of using refineImmersedBoundaryMesh utility
it is used in case of running for the second or third,... time due
to the remove command in the following...

cp -f save/blockMeshDict constant/polyMesh #<--- Uncomment in case of using

40

2.5. WAVE PROPAGATED CASE CHAPTER 2. TEST CASE

refineImmersedBoundaryMesh utility

runApplication blockMesh
\cp -f save/boundary constant/polyMesh/ #<--- As it can be seen the saved boundary
file here replaced with the new one

runApplication refineImmersedBoundaryMesh -ibCellCellFaces #(-ibCells, -ibCellCells also could be
used depends on the level of refinement)

#7-—— Uncomment in case of using refineImmersedBoundaryMesh utility
#\rm -rf constant/polyMesh #<--- Uncomment in case of using refineImmersedBoundaryMesh utility
#\mv 0/polyMesh constant/polyMesh/#<--- Uncomment in case of using refineImmersedBoundaryMesh utility
#\rm -rf O #<--- Uncomment in case of using refineImmersedBoundaryMesh utility

\mkdir 0
\cp O_org/* 0/

runApplication funkySetFields -time O #it should be specified

runApplication $application

Run the case by

./Allrun

During the simulations if you get an error regarding the ”1ibOpenFOAM.so”, please comment
this in the controlDict added new lines.

Same as constant velocity the next steps is completed and the results are presented in the section
3.2.

e Post process the case using paraview

paraFoam -nativeReader

41

Chapter 3

Results and Discussion

The results are post processed in paraview. Figure[3.1]shows the fluid domain at the initial condition.
The iso-surface of alphal=0.5 will show the free surface. It is necessary to use the -nativeReader
flag for the paraFoam command in foam-extend.

clphal

Figure 3.1: Free surface in initial condition

3.1 Constant Velocity Case

The inlet velocity of 2 m/s was applied at the inlet. Figures and show the generated waves in
all of the domain after 90 and 120 time steps. Figure [3.4] shows half of the ship hull and illustrates
the flow around the hull. For a ship with constant speed the pressure would be higher in fore and
aft part of the ship and just after front part, the shoulder would experience a low pressure condition.

42

3.1. CONSTANT VELOCITY CASE CHAPTER 3. RESULTS AND DISCUSSION

Figure [3.5]is captured from the lower position to show how big are the waves in different parts. For
both cases if the mesh becomes finer the accuracy of the results would be higher.

Figure 3.2: Time step 90

43

3.1. CONSTANT VELOCITY CASE CHAPTER 3. RESULTS AND DISCUSSION

Figure 3.3: Time step 120

44

3.1. CONSTANT VELOCITY CASE CHAPTER 3. RESULTS AND DISCUSSION

Figure 3.4: Flow around the half ship

Figure 3.5: water surface from a lower view

45

3.2. WAVE PROPAGATED CASE CHAPTER 3. RESULTS AND DISCUSSION

3.2 Wave Propagated Case

The propagated wave of 2nd-order stokes with 1=5 and A=0.3 at the inlet can be seen in Figures
to Figure shows how the wave hits the fixed body in a general way. Figure is captured
when the wave peak reaches the hull. Figure 3.8 shows the conditions when the wave trough reaches
the front part of the ship. The wave pattern behind the ship is small for the introduced condition.

Figure 3.6: General wave introduced water surface condition

46

3.2. WAVE PROPAGATED CASE CHAPTER 3. RESULTS AND DISCUSSION

Figure 3.7: wave peak reaches the front part

Figure 3.8: wave trough reaches the front part

47

3.3. FUTURE WORK CHAPTER 3. RESULTS AND DISCUSSION

3.3 Future Work

In order to further expand the presented project the following future works are suggested.

e As it was mentioned before, due to some practical difficulties, the tutorial is concerned with
laminar flow simulation. One of the possible sources of the problem with turbulent flow sim-
ulation is the coarse mesh. The mesh refinement was applied and the error was not solved.
Therefore, it can be as a future work to resolve the problem with turbulent flow simulation
by further refining the mesh to see if this is the only source of problem. The applied files are
attached as an appendix to the project.

e The ship is assumed as fixed during the simulation while it can be treated as a moving bound-
ary. The interDyMFoam solver available in pitchingPlate tutorial can be used to simulate
such conditions.

e The swak4Foam library contains a utility called ”forceSectional” which can be used to sum
up the forces on the body for further post processing.

e Finally, the new boundary conditions can be applied in the groovyBC and different conditions
can be studied due to 6DOF of the hull in reality.

48

Study questions

1. Why IBM over boundary fitted grids?
2. How do you generate mesh in IBM?

3. What is the purpose of mesh refinement near the immersed body?

49

Bibliography

[1] C.S. Peskin. Numerical analysis of blood flow in the heart. J. Comput Phys., 25:220-252, 1977.
[2] http://www.tfd.chalmers.se/~ hani/kurser/OS_CFD_2015/HrvojeJasak /Immersed Boundary.pdf.

[3] Reinout vander Meulen. The immersed boundary method for the (2d) incompressible navier-
stokes equations. Master’s thesis, Delft University, 2006.

[4] J. Favier M. Meldi P. Meliga E. Serre E. Constant, C. Li. Implementation of a discrete immersed
boundary method in openfoam. Computers anf Fluids, 2016.

[5] http://openfoamwiki.net/index.php/Installation/swak4Foam/Downloading.

[6] http://openfoamwiki.net/index.php/Installation/swak4Foam /Installing_On/Ubuntu.
[7] http://openfoamwiki.net/index.php/Contrib/swak4Foam.

[8] https://openfoamwiki.net/index.php/Contrib_groovyBC.

[9] https://openfoamwiki.net/index.php/Contrib_groovyBC.

[10] http://openfoamwiki.net/index.php/Contrib_funkySetFields.

50

Appendices

o1

The implementation of the turbulent modelling has been done with the following basic setups.
Here are the modified ones and other files remain unchanged from the tutorial implementations.

O_org
--- alphal
--—epsilon

Allrun
constant
g
—--— polyMesh
--- blockMeshDict
--- RASProperties
—--— transportProperties
--- triSurface
--- hull.ftr
-—— hull.stl
—--- turbulenceProperties

--— blockMeshDict
—--— boundary

system

--- controlDict

—--— decomposeParDict
—--- fvSchemes

--- fvSolution

-—— mapFieldsDict
--- setFieldsDict

\

| |

A\ / F ield | foam-extend: Open Source CFD |

\\ / 0 peration | Version: 4.0 |
\\ / A nd | Web: http://www.foam-extend.org

\\/ M anipulation | |

/

version 2.0;
format ascii;
class volScalarField;
object alphal;
¥

J/ % k k % %k %k k %k %k %k k) % *k % % * k % * *k % % *k %k X % *k * % % % *k % % *x *x x //

dimensions [0 0 0 0 O O 0];
internalField uniform O;

boundaryField

52

hull

type immersedBoundary;
refValue uniform O;
refGradient wuniform O;
fixesValue no;

setDeadCellValue yes;
deadCellValue 0;

value uniform O;

¥
inlet
{
type zeroGradient;
Iy
outlet
{
type zeroGradient;
I
atmosphere
{
type inletOutlet;
inletValue uniform O;
value uniform O;
X
bottom
{
type zeroGradient;
¥
sides
{
type zeroGradient;
3

[k *— C++ — ko *\
| ========= | |
[\\ / F ield | foam-extend: Open Source CFD
[\\ / 0 peration | Version: 4.0
[\\ / A nd | Web: http://www.foam-extend.org
| \\/ M anipulation | [
K */
FoamFile
{

version 2.0;

53

format ascii;

class volScalarField;
location "o";

object epsilon;

}

J/ k% %k %k %k % % % *k % % % % >k % %k % % % X Xk Xk k % % * % %k % % % % X Xk kX % x x //

dimensions [02-30000];
internalField uniform 14.855;
boundaryField
{
hull
{
type immersedBoundaryEpsilonWallFunction;
patchType immersedBoundary;
refValue uniform 1e-10;
refGradient uniform O;
fixesValue false;
setDeadCellValue yes;
deadCellValue 1le-10;
Cmu 0.09;
kappa 0.41;
E 9.8;
value uniform 14.855;
}
atmosphere
{
type zeroGradient;
}
inlet
{
type fixedValue;
value uniform 14.855;
}
outlet
{
type inletOutlet;
inletValue uniform 14.855;
value uniform 14.855;
}
bottom
{
type zeroGradient;
}
sides
{
type zeroGradient;
}

o4

|

\\ / F ield |
0 peration | Version:

|

|

foam-extend: Open Source CFD

I
| I
[\\ / I
| \\ / A nd W http://www.foam-extend.org
| \\/ M anipulation [
K oo */
FoamFile
{

version 2.0;

format ascii;

class volScalarField;

location "o";

object k;
}

//************************************

immersedBoundaryWallFunction;

dimensions [02-20000];
internalField uniform 0.375;
boundaryField
{
hull
{
type
patchType immersedBoundary;
refValue uniform 1e-10;
refGradient uniform O;
fixesValue false;
setDeadCellValue yes;
deadCellValue 1e-10;
value uniform 0.375;
}
atmosphere
{
type zeroGradient;
}
inlet
{
type fixedValue;
value uniform 0.375;
}
outlet
{
type inletQOutlet;
inletValue uniform 0.375;
value uniform 0.375;
}
bottom
{
type zeroGradient;

95

*x //

sides
{

type zeroGradient;
by

[/ Rskokokskok sk sk ok sk ok sk sk ok sk ok ok ok sk sk ok ok sk ok ks ok ok sk s ok k sk ok ok sk ok k ok ok ok sk sk ok ok sk ok sk ok ok sk ok sk kokskokkkokk -/ /

e k= CHt —km—mmm *\
| ========= | |
[\\ / F ield | foam-extend: Open Source CFD
[\\ / 0 peration | Version: 4.0
[\\ / A nd | Web: http://www.foam-extend.org |
| \\/ M anipulation | [
K *x/
FoamFile
{

version 2.0;

format ascii;

class volScalarField;

location "o";

object nut;
}

[/ % x % %k k ok k k k k k k k *k k * k *k *k *k *k *x * *k *k *k *k *x * * * * *x *x *x *x *x //
dimensions [02-1000 0];

internalField uniform O;

boundaryField
{
hull
{
type immersedBoundaryWallFunction;
patchType immersedBoundary;
refValue uniform O;
refGradient uniform O;
fixesValue false;

setDeadCellValue false;
deadCellValue 0;

value uniform O;
}
atmosphere
{
type calculated;
value uniform O;
}
inlet
{
type calculated;
value uniform O;
}
outlet

56

type calculated;
value uniform O;
by
bottom
{
type calculated;
value uniform O;
X
sides
{
type zeroGradient;
3

[k *— C++ —h—mmmmm *\
| s======== | |
[\\ / F ield | foam-extend: Open Source CFD
[\\ / 0 peration | Version: 4.0
[\\ / A nd | Web: http://www.foam-extend.org
| \\/ M anipulation | |
K oo */
FoamFile
{

version 2.0;

format ascii;

class volScalarField;

object pd;
}

J/ k% % % %k % % % *k % % % % * % %k %k % % X Kk Kk k % % * % *k % %k % %X X Xk kX % x x //
dimensions [1 -1 -2 0 0 0 0];

internalField uniform O;

boundaryField
{

hull

{

type immersedBoundary;
refValue uniform O;
refGradient wuniform O;
fixesValue no;

setDeadCellValue yes;
deadCellValue 0;

value uniform O;

3

inlet

{

type zeroGradient;

o7

}

outlet
{
type zeroGradient;
3
atmosphere
{
type totalPressure;
pO uniform 0;
U U;
phi phi;
rho rho;
psi none;
gamma 1;
value uniform O;
3
bottom
{
type zeroGradient;
X
sides
{
type zeroGradient;
¥

[k *— C++ —h—mmmmm *\
| ========= | |
[\\ / F ield | foam-extend: Open Source CFD
[\\ / 0 peration | Version: 4.0
[\\ / A nd | Web http://www.foam-extend.org
| \\/ M anipulation | |
Ko */
FoamFile
{

version 2.0;

format ascii;

class volVectorField;

object U;
}

//************************************

dimensions [01 -1

00 0 0];

internalField uniform (-2 0 0);

boundaryField
{

hull

{

type immersedBoundaryVelocityWallFunction;
patchType immersedBoundary;

o8

*x //

refValue uniform (0 0 0);
refGradient uniform (0 O 0);
fixesValue yes;

setDeadCellValue yes;
deadCellValue (0 0 0);

value uniform (0 0 0);

}
inlet
{
type fixedValue;
value uniform (-2 0 0);
}
outlet
{
type zeroGradient;
by
atmosphere
{
type pressurelnletOutletVelocity;
value uniform (0 0 0);
¥
bottom
{
type fixedValue;
value uniform (0 0 0);
¥
sides
{
type zeroGradient;
}

Web: http://www.foam-extend.org

|

[\\ / F ield | foam-extend: Open Source CFD
I \\ / 0 peration | Version: 4.0
NN/ A nd | |
| \\/ M anipulation | [
A e o x/
FoamFile
{

version 2.0;

format ascii;

class dictionary;

object turbulenceProperties;
}

//************************************

simulationType RASModel;

99

*x //

// 3k 3k 3k 5k >k 5k >k 5k >k 3k 5k 3k 5k 5k 5k >k 3k >k 3k 5k >k 5k %k 3k >k 3k 5k 3k 5k >k 5k >k 5k 5k 5k 5k 5k 5k >k 5k >k 3k 5k 5k 5k >k 5k >k 3k 5k %k 5k 5k 5k >k 5k >k %k 5k >k 5k %k 5k %k %k >k %k 5k %k >k % %k % //

Y e e k= Ctt —hmmm e *\
| ========= | I
[\\ / F ield | foam-extend: Open Source CFD
[\\ / 0 peration | Version: 4.0
| \\ / A nd | Web: http://www.foam-extend.org |
| \\/ M anipulation | [
K m *x/
FoamFile
{

version 2.0;

format ascii;

class dictionary;

object RASProperties;
}
J/ K% ok Kk ok Kk ok ok ok ok ok ok k ok k ok k ok k k k k k k k k *k k *k k *k *x *k *x *k *x *x *x //
RASModel kEpsilon;
turbulence on;
printCoeffs on;

// >k >k >k >k 5k 3K 3K 3k 5k 5k 5k 3k 3k 5k 5k %k %k >k >k 3k 3k 3k 3k 3k 3k 3k 3k %k >k %k %k >k >k 5k 5K 5k 5k 3k %k %k 5k >k >k %k %k K >k 5K 5k 5k 5k %k %k >k >k >k %k %k %K >k 5K >k >k >k %k %k >k >k >k >k k k% //

60

	Immersed Boundary Method
	Boundary Conditions in IBM
	Continuous Forcing IBM
	Discrete Forcing IBM

	Dead-to-Live Cells
	IBM in FOAM-extend
	IB Cell Value Approximation
	Pressure Equation

	IBM class implementation in FOAM-extend
	High Reynolds Number Flows

	Test Case
	Introduction
	Workflow
	Case Setup
	Mesh Generation
	Properties
	Solver

	Constant Velocity Case
	Wave Propagated Case
	swak4Foam Library
	groovyBC
	funkySetFields

	Results and Discussion
	Constant Velocity Case
	Wave Propagated Case
	Future Work

	Appendices

