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Learning outcomes

The main requirement of a tutorial in the course is that it should teach the four points: How to use
it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• Basic knowledge of how the Immersed Boundary Method (IBM) is different from the body-
fitted mesh in the representation of particles in the flow domain, and

• How to run tutorials for three-dimensional simulation of flow around a stationary rigid sphere
in the rectangular channel using three solvers, namely porousPimpleIbFoam developed by
Vergassola [1], pimpleDyMIbFoam developed by Jasak [2] in foam-extend-5.0 [3], and sdfibm

solver developed by Zhang [4] in OpenFOAM v9.

The theory of it:

• General background of IBM in the context of particle transport,

• Basic concepts of continuous forcing approach in porousPimpleIbFoam solver,

• Basic concepts of discrete forcing approach in pimpleDyMIbFoam solver, and

• Basic concepts of discrete forcing approach in sdfibm solver.

How it is implemented:

• Implementation of continuous forcing approach in porousPimpleIbFoam solver, and discrete
forcing approach in pimpleDyMIbFoam solver and in sdfibm solver.

How to modify it:

• How to reimplement the discrete forcing approach of sdfibm of Zhang [4] into OpenFOAM-v2112
ESI version [5] using a typical incompressible flow solver pimpleFoam, and

• After modification, how to simulate a three-dimensional simulation of a stationary rigid sphere
in the laminar flow using the reimplemented solver, sdfIbmESI solver.
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Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• Basic knowledge of Object-Oriented approach in C++ programming language,

• Fundamental knowledge of Computational Fluid Dynamics (CFD), particularly of Finite Vol-
ume Method (FVM),

• Basic knowledge of using OpenFOAM and Linux operating system (recommended version: Ubuntu
20.04.6 LTS),

• Applied knowledge of compiling procedure to develop a solver in OpenFOAM-v2112 ESI version.
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Nomenclature

Acronyms
Re Reynolds number
OpenFOAM Open-source Field Operation And Manipulation
sdfIbmESI Reimplemented sdfibm solver for OpenFOAM-v2112 version
sdfibm OpenFOAM solver using IBM with sdf method
CFD Computational Fluid Dynamics
DEM Discrete Element Model
ESI Engineering System International company
FSI Fluid-Structure Interaction
FVM Finite Volume Method
IB Immersed Boundary
IBM Immersed Boundary Method
IBS Immersed Boundary Surface
KC Keulegan-Carpenter number
PIMPLE PISO-SIMPLE
PISO Pressure-Implicit with Splitting of Operators
PVF Porous Volume Fraction
RHS Right Hand Side
sdf Signed Distance Function
SIMPLE Semi-Implicit Method for Pressure-Linked Equations
STL Stereolithography
VARANS Volume-Averaged Reynolds-averaged Navier-Stokes
VOF Volume-of-Fluid

English symbols
ũ∗ Second predicted velocity vector considering solid particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
ũ First predicted velocity vector assuming no solid particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
F Distributed forcing term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s2

f Localized forcing term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s2

G External forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kg ·m/s2

g Gravitational acceleration vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s2

I Inertia tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg ·m2

N External moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg ·m2/s2

n Normal unit vector pointing outwards
r Position vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m
T Torque. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kg ·m2/s2

u Velocity vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m/s
V Velocity vector of the immersed boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m/s
v Velocity vector of particle’s centroid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m/s
X Lagrangian point
x Coordinate vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m
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Nomenclature Nomenclature

û Velocity vector calculated assuming no solid particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
Rn Real coordinate space of n dimensions
a Coefficient linear porous drag term
b Coefficient quadratic porous drag term
c Coefficient transient porous drag term
d Distance function
D50 Nominal diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m
m Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
n Porosity
p Pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kg/m/s2

S Surface area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

t Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
V Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

Greek symbols
α Volume fraction
β Coefficient for quadratic porous drag term
ω Angular velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/s
τ Stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m/s2

∆ Discretized increment
δ Dirac delta function
Γ Boundary of the domain
γ Volume-of-Fluid
µ Dynamic viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m/s
ν Kinematic viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2/s
Ω Bounded region of the domain
∂Ω Boundary of the domain Ω
ϕ Flux
ρ Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

ϕ̃ Flux resulted from interpolation of ũ onto mesh faces
φ Signed distance function
ξ Coefficient for linear porous drag term

Superscripts
n current time step
T transpose

Subscripts
I interface
cell computational cell
corr correction
f fluid phase
face face of the computational cell
p solid particle
subCell cut cell internal to the immersed boundary
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Chapter 1

Introduction

In this report, we present different implementations of immersed boundary method (IBM) from
three OpenFOAM solvers, namely porousPimpleIbFoam, pimpleDyMIbFoam and sdfibm solvers. The
first solver, porousPimpleIbFoam solver, was developed by Vergassola [1] using OpenFOAM-v2006

for the application of flow through a porous media. The second one, pimpleDyMIbFoam solver, was
implemented by Jasak [2] in foam-extend-5.0. The final solver, sdfibm, was developed by Zhang
[4] in OpenFOAM v9. These three solvers implemented IBM differently from each other in terms of
forcing technique. Using these three solvers, simulation of the flow around a solid sphere in the
rectangular channel was performed. Results from these simulations are also presented in the report.

The porousPimpleIbFoam solver used the continuous forcing technique while the latter two
solvers, pimpleDyMIbFoam and sdfibm, used the discrete forcing technique, in order to impose
required force on the immersed boundary surface. Of these two solvers, sdfibm solver imposed
volume-average discrete force [4]. Among the three solvers, the sdfibm solver is emphasized in this
report because of its simplicity in code implementation, explaining theoretical background of direct
forcing technique in IBM framework. Besides, code implementation of the direct forcing technique
in sdfibm solver is also explained in Section 2.4 of the report.

As a modification work of this project, IBM method of sdfibm solver [4] was reimplemented in
OpenFOAM-v2112 version. The motivation is to show the differences in compiling procedure between
two different OpenFOAM versions. Brief procedure for modifying the code and compiling the solver is
provided in the spirit of OpenFOAM-v2112. For this newly reimplemented solver, a benchmark test
case that is a two-dimensional simulation of flow around a cylinder was performed. This benchmark
test is available in the GitHub repository of Zhang [4] for sdfibm solver. Finally, the same simulation
of flow around a solid sphere was repeated again using the newly reimplemented solver, the so-called
sdfIbmESI solver.

As a note to the reader, since the whole process of reimplementing the solver is a long procedure,
only important steps are discussed in the report for the sake of brevity. However, the final codes
of this new solver sdfIbmESI and its tutorial case, which is a simulation of flow around a solid
sphere, are provided as the accompanying files in the course repository and GitHub repository
https://github.com/ChitYanToe/sdfIbmESI.git.
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Chapter 2

Background

2.1 Immersed Boundary Method

Under mesh-based framework of CFD simulations, fluid-structure interaction problems can be solved
using either (1) time-dependent body-conformal mesh or (2) time-independent structured grid. In
the former approach, the computational mesh is conformed to the geometry of the structure in the
flow domain. Therefore, if the geometry of the structure is changing during the simulation time,
the background computational mesh needs to be changed accordingly. This requires re-meshing
processes that is computationally complicated throughout the simulation history [6]. However, in
the latter method, there is only one structured background mesh. This background mesh occupies
not only the flow domain but also the solid or structure domain, therefore requiring no coordinate
transformation that is impractical otherwise for complex geometries. In the so-called “Immersed
Boundary Method (IBM)” termed by Peskin [7], momentum equation of Navier-Stokes equations is
modified as

∂u

∂t
+ u · ∇u = −∇p

ρ
+ ν∆u+ f (2.1)

by adding a forcing term f that arises due to the interaction force of the boundary onto the flow
domain [8]. In other words, f can be interpreted as the force acted by the particle on the fluid
according to Newton’s third law. This means that fluid recognizes the presence of the particle
correctly. Here, u denotes velocity vector, p denotes pressure, ρ is density of the fluid, and ν
kinematic viscosity of the fluid.

Fig. 2.1 shows a body-conformal mesh and a typical mesh commonly used in immersed boundary
method. In the body-conformal mesh, the solid body Ωb is excluded from the background curvilinear
mesh on which the fluid domain Ωf is discretized. On the boundary of solid body Γb, the required
boundary condition is simply defined without any complication that may encounter in case of IBM.
However, in IBM the solid body is immersed inside the fluid domain which is discretized by a simple
structured grid. Therefore, IBM does not require the complicated meshing process. Due to the
presence of the solid body, a forcing term f(x, t) needs to be added to the Navier-Stokes equation
Eq. (2.1). The difficulty lies in how accurately the forcing term should be estimated to obtain the
correct representation of the solid boundary. The forcing term generally appears when the fluid
velocity differs from the particle velocity.

Compared to the traditional body-conformal mesh approach, the main disadvantage of IBM is
the difficulty of satisfying the exact velocity boundary conditions and mass conservation at interface
cells [8]. Another drawback of IBM is that the local grid refinement of boundary mesh cannot be
done in preferential direction to resolve the turbulent flow problems, because IBM cannot distinguish
whether the grids in computational mesh are oriented normally or tangentially with respect to the
boundary surface. However, this is not the case in body-conformal mesh approach.

Different approaches of how to impose the forcing term f(x, t) onto the flow domain give rise
to a variety of immersed boundary methods. There are two main groups of IBM that are different

7



2.2. Continuous Forcing Approach Chapter 2. Background

Figure 2.1: (a) Body-conformal mesh in which the solid body is excluded from the background
curvilinear mesh, (b) the solid body immersed inside the fluid domain which is discretized using
structured grid. Illustration inspired from Mittal and Iaccarino [6].

in technique of imposing the forcing term, namely (1) continuous forcing approach, and (2) discrete
forcing approach. Review paper of Verzicco [8] is recommended for further details.

2.2 Continuous Forcing Approach

In the continuous forcing approach as applied by Peskin [7], the forcing term f(x, t) is added to
Eq. (2.1) before it is discretized numerically. The forcing term acts as the source term on the fluid
equation at the particular boundary points of the solid body as a localized forcing term. Therefore,
the forcing term in Eq. (2.1) can be written as

f(x, t) =
∑
k

F (Xk, t)δ(|x−Xk|) (2.2)

where δ is Dirac delta function, Xk is the kth Lagrangian point located at the boundary of the
solid body. Here, F denotes the force acted by the solid boundary onto the fluid. Generally, the
boundary node or Lagrangian point does not coincide with the node of the background structured
mesh. Therefore, the forcing term of one Lagrangian point distributes among its neighbouring nodes
via a smoother distribution function. Different smoother distribution functions can be applied for
the transfer of force between Eulerian background mesh and Lagrangian boundary points [6]. Again
it is also necessary to transfer back the forces from the background mesh to the Lagrangian points
in the next time step of computing its updated position.

Feedback forcing approach developed by Goldstein et al. [9] is a commonly used approach in the
framework of continuous forcing approach. In that particular approach, the required forcing term is
determined in the feedback-loop manner as the force adapting itself to the local flow field.

In fact, the continuous forcing approach encompasses the forcing term in the governing equations
at the continuous level, before discretization. Therefore, the forcing term can be incorporated in the
governing equation via a drag force term as explained by Vergassola [1].

2.2.1 porousPimpleIbFoam solver

The porousPimpleIbFoam solver developed by Vergassola [1] applies the Volume-Averaged Reynolds-
averaged Navier-Stokes (VARANS) equations

∇ ·
(u
n

)
= 0, (2.3)

(1 + c)
∂

∂t

ρu

n
+

u

n
· ∇

(ρu
n

)
= −∇p+ ρg +∇ ·

(
µ∇u

n

)
− a

u

n
− b

u

n

∥∥∥u
n

∥∥∥ , (2.4)

where

a =
ξ

ρ

(1− n)3

n2

µ

D2
50

(2.5)
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2.2. Continuous Forcing Approach Chapter 2. Background

b = β

(
1 +

7.5

KC

)
1− n

n2

1

D50
(2.6)

to simulate the flow through the porous media. Here, n denotes porosity of the medium, a denotes
coefficient for linear porous drag term, b denotes coefficient quadratic porous drag term, µ is the
dynamic viscosity, D50 is the nominal diameter of porous material, and KC is Keulegan-Carpenter
number. For complete permeability it has n = 1 whilst impermeable medium has n = 0. Coefficients
ξ, β and c require calibration from experimental data [1]. In this formulation, the forcing term is
the drag force term of the porous media, and the equations are solved throughout the whole domain
including the porous media.

To treat the porosity values at the immersed boundary (IB) cells conveniently, porosity n can
be rewritten using γ as

ncorr = γ + n(1− γ) (2.7)

where γ is Volume-of-Fluid (VOF)-like field defined as Porous Volume Fraction, PVF = VsubCell/Vcell.
While Vcell is the volume of the cell, VsubCell is defined by the volume of the cut cell internal to the
IB. Inside the immersed body γ = 0, therefore ncorr = n. At the interface, 0 < γ < 1 leads to
appropriate n values, Elsewhere γ = 1, ncorr = 1 i.e. perfect permeability. By doing so, the forcing
term acts on the computational cells accordingly, without any further modifications.

Directory structure of porousPimpleIbFoam is shown below. The solver was designed based on
the standard pimpleFoam solver of OpenFOAM-v2006. For more information on this solver, the report
of Vergassola [1] is referred, but not included in the accompanying files. The porousPimpleIbFoam.C
is the main file for the solver, which includes UEqn.H and pEqn.H files. To create the immersed
boundary mask, the createPorousIbMask.H file is necessary and included in createPorosity.H

file which creates the porosity field in the whole computational domain according to Eq. (2.7).

Directory of porousPimpleIbFoam solver

1 ./porousPimpleIbFoamProject/porousPimpleIbFoam

2 |-- Make

3 |-- UEqn.H

4 |-- correctPhi.H

5 |-- createFields.H

6 |-- createPorosity.H

7 |-- createPorousIbMask.H

8 |-- pEqn.H

9 `-- porousPimpleIbFoam.C

Implementation of momentum equation Eq. (2.4) in UEqn.H is described in Listing 2.1. As men-
tioned earlier, createPorousIbMask.H handles the creation of the immersed boundary by identifying
the cells as inside, outside and cut cells, and finally assigning the gamma values, γ. To do so,
a stereolithography (STL) geometry file of the immersed body needs to be provided to create the
immersed boundary inside the background mesh. It should be noted that since the derivative terms
in Eq. (2.4) or Listing 2.1 are divided by porosity value n, the solver works well only for porous
media, rather than an impermeable body. Otherwise, it can lead to extremely small time steps in
the computation.

Listing 2.1: Implementation of momentum equation in UEqn.H of porousPimpleIbFoam solver

11 tmp<fvVectorMatrix> tUEqn

12 (

13 (1.0+cPorField)/porosity*fvm::ddt(U)

14 + (1.0+cPorField)/porosity*MRF.DDt(U)

15 + 1.0/porosity*fvm::div(phi/porosityF, U)

16 - fvm::laplacian(nuEff/porosityF,U)

17 - 1.0/porosity*(fvc::grad(U) & fvc::grad(nuEff))

18 // Closure Terms

19 + aPorField*pow(1.0-porosity,3)/pow(porosity,3)*turbulence->nu()/pow(D50Field,2)*U

20 + bPorField*(1.0-porosity)/pow(porosity,3)/D50Field*mag(U)*U*

21 // Transient formulation

22 (1.0 + useTransMask * 7.5 / KCPorField)

23 ==
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2.3. Discrete Forcing Approach Chapter 2. Background

24 fvOptions(U)

25 );

26 fvVectorMatrix& UEqn = tUEqn.ref();

27

28 UEqn.relax();

29

30 fvOptions.constrain(UEqn);

31

32 if (pimple.momentumPredictor())

33 {

34 solve(UEqn == -fvc::grad(p));

35

36 fvOptions.correct(U);

37 }

2.3 Discrete Forcing Approach

In the discrete forcing approach, the forcing term is added to the discretized version of the governing
equations. After discretizing the equations, the entries in the matrix are changed according to the
location of the immersed boundary in the domain [6]. Due to its nature, discrete forcing approach
results in different versions, depending on the discretization method. Among indirect and direct
imposition methods under discrete forcing approach, we will emphasize direct imposition method
here because it was implemented in pimpleDyMIbFoam solver of foam-extend-5.0 [2] and sdfibm

solver of Zhang [4].

2.3.1 Direct Forcing Method

To explain the general procedure of the direct forcing method according to Fadlun et al. [10], we
reconsider Eq. (2.1) and discretize it numerically as

un+1 − un

∆t
= RHSn+1/2 + fn+1/2 (2.8)

where RHSn+1/2 includes convective and diffusive terms and the pressure gradient term while fn+1/2

is the forcing term that needs to be calculated. If we require that the fluid velocity on the immersed
boundary is equal to the velocity of the immersed boundary, such that un+1 = V n+1, the necessary
forcing term will be

fn+1/2 = −RHSn+1/2 +
V n+1 − un

∆t
. (2.9)

for some selected grid nodes and zero elsewhere [10, 11]. Due to discrepancy in positions between
background grid nodes and immersed boundary points, an appropriate interpolation is necessary to
calculate the forcing term Eq. (2.9) [10].

2.3.2 IBM implementation in foam-extend-5.0

In this subsection, a variant of direct forcing method introduced by Jasak [2], the so-called Immersed
Boundary Surface (IBS) method is discussed following the work of Döhler [12]. Differently from pre-
vious versions — foam-extend-3.2 and foam-extend-4.0, in this new version any cell intersected
by the boundary surface are assumed immersed boundary cells, regardless of the position of the
intersected cell’s center. These intersected cells are cut by the boundary surface using a linear cut
function and the resulting divided cells/faces are categorized as living cells/faces and dead cells/-
faces. The living cell is not combined with a neighbouring fluid cell but it will remain a separate
entity. Accordingly, the new cell center and face center of this separate cell need to be calculated
for calculation of the face flux. At the same time, all dead cells are removed from the discretization
matrix [2, 12].
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IBS method of foam-extend-5.0 is implemented in immersedBoundary directory shown below.
Inside the immersedBoundary sub-directory shown in Listing 2.2 under the immersedBoundary top
directory, detailed implementation of immersed boundary surface can be found. Döhler [12] discussed
and investigated the limitations of the IBS implementation in foam-extend-4.1 nextRelease.

Directory of immersedBoundary method in foam-extend-5.0

1 ./foam-extend-5.0/src/immersedBoundary

2 |-- CMakeLists.txt

3 |-- immersedBoundary

4 |-- immersedBoundaryDynamicMesh

5 `-- immersedBoundaryTurbulence

Listing 2.2: Sub-directory of immersedBoundary in foam-extend-5.0

1 immersedBoundary

2 |-- immersedBoundaryFvPatch

3 |-- immersedBoundaryFvPatchFields

4 |-- immersedBoundaryFvsPatchFields

5 |-- immersedBoundaryPointPatch

6 |-- immersedBoundaryPolyPatch

7 |-- immersedPoly

8 `-- lnInclude

2.3.2.1 pimpleDyMIbFoam solver

pimpleDyMIbFoam solver is an immersed boundary solver of foam-extend-5.0 using PIMPLE algo-
rithm for pressure-velocity coupling. Its directory is shown in Listing 2.3. This solver included the
header files immersedBoundaryPolyPatch.H and immersedBoundaryFvPatch.H to use their classes,
respectively. Detailed explanation of these two classes is given by the work of Döhler [12].

This solver also requires an STL file for the immersed boundary of the body and assigns it as a
boundary patch that is similar to the conventional boundary patch of the flow domain. Therefore,
dynamic motion of the immersed boundary can be controlled in the same manner as boundary
conditions of dynamic geometry.

Listing 2.3: Directory of pimpleDyMIbFoam solver in foam-extend-5.0

1 pimpleDyMIbFoam/

2 |-- Make

3 |-- UEqn.H

4 |-- correctMeshMotion.H

5 |-- correctPhi.H

6 |-- createControls.H

7 |-- createFields.H

8 |-- pEqn.H

9 |-- pimpleDyMIbFoam.C

10 `-- readControls.H

2.4 sdfibm solver

In this section, we will discuss another immersed boundary method solver that applied discrete
(direct) forcing method, namely sdfibm solver. The sdfibm solver was developed by Zhang [4] under
the framework of OpenFOAM v6 and OpenFOAM v9, variants of OpenFOAM foundation versions [13]. In
this project work, we will discuss the updated version of sdfibm solver accessed on commit bb83e36

(HEAD → master, origin/master, origin/HEAD). An interested reader should follow this folder path
to download from GitHub repository of sdfibm solver. That solver is required to be compiled with
CMake and g++ with C++17.
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2.4.1 Theory of sdfibm solver

Numerical algorithm of sdfibm solver was mainly based on work of Kajishima et al. [14]. The
forcing method of this approach is volume-average discrete forcing method to consider the presence
of the particles in the fluid. The governing equations for the fluid, namely continuity equation and
Navier-Stokes equation, read

∇ · uf = 0 (2.10)

and
∂uf

∂t
+ uf · ∇uf = − 1

ρf
∇p+ νf∇ ·

[
∇uf + (∇uf)

T
]
+ g (2.11)

respectively [14]. Here, the subscript f denotes the fluid phase, ν is kinematic viscosity and g is
the gravity vector. For incompressible fluids and single-phase flow applications, we can simplify
Eq. (2.11) to get

∂uf

∂t
+ uf · ∇uf = − 1

ρf
∇p+ νf∇2uf (2.12)

by incorporating the gravity term into pressure term [15].
Before considering to include the forcing term in the Eq. (2.12), equations of particle dynamics

will be stated as
d(mpvp)

dt
=

∫
Sp

τ · ndS +Gp (2.13)

for linear momentum and
d(Ipωp)

dt
=

∫
Sp

r × (τ · n)dS +Np (2.14)

for angular momentum [14]. Here, mp denotes mass of the particle, vp is the velocity of the particle’s
centroid, τ is stress tensor, n is unit normal vector pointing outwards at the surface, dS is differential
element of the surface area, Gp is external forces, Ip is inertia tensor of the particle, ωp is angular
velocity of the particle, r is position vector of the particle surface relative to the particle’s centroid,
and Np denotes external moments. Integration is performed on the surface of the particle, Sp.

Having determined the velocity of a particle’s centroid, vp, we can calculate the velocity of the
particle as

up = vp + ωp × r (2.15)

in which the first term of RHS is a contribution by translational motion and the second term is due
to rotational motion [14].

To consider the volume-average force arising from the difference between particle velocity and
fluid velocity, we define the volume-weighted average of velocity as

u = (1− α)uf + αup (2.16)

where α denotes volume fraction ∈ [0, 1] [14]. Since α is 0 for fluid and 1 for solid fraction respectively,
we have u = uf for computational cells occupied only by fluid whereas u = up for the solid cells.
At the interface cells where the particle’s boundary intersects with the background (fluid domain)
mesh, we need to find α for its averaged velocity. In the sdfibm solver, Zhang [4] applied signed
distance function to calculate α value accurately.

For the particles whose boundary surface is imposed by no-slip and no-penetration boundary
conditions, there exists a continuity restriction as

∇ · u = 0 (2.17)

for the volume-weighted average of velocity [14], too. Moreover, we rewrite the momentum equation
Eq. (2.12) for the averaged velocity u as

∂u

∂t
= H −∇P + fp (2.18)
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where
H ≡ −u · ∇u+ νf∇2u,

P ≡ p/ρf and fp denotes fluid-solid interaction force i.e. the force arisen due to the presence of the
particle in the fluid. In other words, fp is the force required to adjust the single-phase fluid velocity
uf to the averaged velocity u defined by Eq. (2.16) [14].

Using the general scheme of temporal integration of Eq. (2.18), the velocity at time instance
n+ 1 can be described as

un+1 = un +∆t
(
H −∇P + fp

)
(2.19)

where n = current time instance and ∆t = discrete time interval [14]. If the velocity is predicted as
the fluid phase velocity regardless of any phase in the computational cell, we get

û = un +∆t (H −∇P ) (2.20)

in which no interaction force is included. The difference between û and un+1 in Eq. (2.19) will be
un+1 − û = ∆tfp. For the solid cell, since we require un+1 = up i.e. the averaged velocity is of
course the particle velocity, the interaction force fp will be (up − û) /∆t. If the cell is fully occupied
by fluid, we will impose simply fp = 0. Regarding the interface cells, the interaction force can be
approximated as

fp = α
up − û

∆t
(2.21)

where α needs to determined by geometrical functions. Therefore, if we activate the interaction
force fp to Eq. (2.19) depending on the volume fraction α, we will obtain the correct velocity for
the next time step.

2.4.1.1 Calculation algorithm

As a first step of IBM in sdfibm solver, the fractional step velocity is predicted by excluding the
interaction force fp and pressure gradient term ∇P to get

ũ = un +
∆t

2

(
3Hn −Hn−1

)
(2.22)

using the Adams-Bashforth method [14]. Zhang [4] used the predicted velocity ũ in evaluating ∇2u,
and so the resulting discretized equation can be written as

ũ = un +
∆t

2

[
(−3un · ∇un) +

(
un−1 · ∇un−1

)
+ νf

(
∇2ũ+∇2un

)]
. (2.23)

It should be noted that the influence of the particle is not yet considered in this step.
For illustration of deriving the pressure Poisson equation, let’s assume that the predicted velocity

ũ is modified by adding the interaction force fn
p to obtain the second predicted velocity

ũ∗ = ũ+∆tfn
p (2.24)

where fn
p = α(un

p − ũ)/∆t i.e., the interaction force arisen due to the difference between particle’s
velocity un

p and the predicted velocity ũ. Therefore, we rewrite the momentum equation Eq. (2.19)
as

un+1 = ũ∗ −∆t∇P (2.25)

using the second predicted velocity, ũ∗. If this equation is substituted into continuity equation, the
pressure Poisson equation is obtained as

∇2P =
1

∆t
∇ · ũ+∇ · fn

p (2.26)

after substituting ũ∗ by Eq. (2.24) as well. It is noted that in the numerical procedure the velocity
field ũ is interpolated onto mesh faces to create a flux field ϕ̃ as per requirement of FVM discretization
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in OpenFOAM. Then, the resulting flux is used for calculation of ∇· ũ by summing up the flux through
mesh faces, ϕ̃.

After solving the pressure Poisson equation, the fractional step velocity is updated by adding the
pressure term to the predicted velocity in order to get the pressure-corrected velocity

û = ũ−∆t∇P. (2.27)

Similarly, the flux field correction reads

ϕn+1 = ϕ̃−∆t∇faceP dSface (2.28)

where ∇face represents gradient evaluated at the face, and dSface is differential surface area of the
face.

As the next step, the interaction force is calculated as

fp = αn
un
p − û

∆t
(2.29)

where α and up are values at the current time step. Afterwards, the pressure-corrected velocity is
modified by adding the interaction force fp to get the velocity at time step n+ 1

un+1 = û+∆tfp. (2.30)

After updating the fluid velocity, the force and torque acting on the particle are calculated using
volume integration

F n
p = −ρf

∫
Vp

fpdV (2.31)

and

T n
p = −ρf

∫
Vp

r × fpdV. (2.32)

Before we perform the particle’s advection, the linear and angular velocities are updated for the
new time step using the linear multistep method [4] using Eqs. (2.33)

vn+1
p = vn

p +

(
3

2
F n

p − 1

2
F n−1

p

)
∆t

m

ωn+1
p = ωn

p +

(
3

2
T n

p − 1

2
T n−1

p

)
∆t

Ip
. (2.33)

Finally, the particle’s position xp is moved according to Crank-Nicolson method [14, 4]

xn+1
p = xn

p +
∆t

2

(
vn
p + vn+1

p

)
. (2.34)

2.4.1.2 Determination of alpha

To determine the volume fraction, alpha α, in the forcing term, the signed distance function (sdf)
is used in combination with Pyramid decomposition method [4].

Signed distance functions are functions to represent the surface implicitly, which are a subset of
implicit functions [16]. A signed distance function is defined by φ such that |φ(x)| = d(x) for all
x ∈ Rn with d(x) = min(|x − xI |) for all interface points xI ∈ ∂Ω [16]. This means that for all
points existing on the boundary xI we have φ(x) = d(x) = 0. For the points inside the boundary
surface, it holds φ(x) = −d(x) while for the outside points, there exists φ(x) = d(x) [16].

Fig. 2.2 shows the sdf of a boundary surface indicated by the φ(xI) = 0 contour, also with
φ(x) > 0 for the region outside the boundary. The inside region of the boundary surface is described
by φ(x) < 0 contours.

The advantage of sdf approach is that it describes information not only of the surface itself but
also of its relation with the entire space i.e. the distance between every point and the boundary
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Figure 2.2: Example of signed distance function for a circle indicated by the red line (φ = 0 contour).
The region outside the circle is shown in green lines (φ > 0) while for the inside region is φ < 0.

surface can be retrieved easily [4]. For instance, let us consider a line segment AB with point A
located inside the surface S and point B outside S shown in Fig. 2.2, the fraction of AB lying within
the surface S is simply the ratio: −φA/(φB − φA) [4], which shall be used to calculate the volume
fraction in sdfibm solver. It should be noted that points A and B are close enough to S such that
local sdf is approximately linear [4]. In such a case, finding an intersection point is not necessary
anymore, therefore avoiding a complicated step.

Another advantage of sdf approach is that different functions can be combined in boolean opera-
tions to obtain a composite geometry. Therefore, if two shapes described by φ1 and φ2 are unioned,
we can easily take min(φ1, φ2) rather than finding their intersections explicitly [4].

Another ingredient of calculating α is Pyramid decomposition method that is used especially
for the case of the boundary surface is intersected with the cubic mesh or n-face polyhedron cell.
In brief, the intersected cell is divided into n pyramids, and the solid fraction for each face αf is
calculated. Summing up αf -weighted solid volumes for all pyramids will give the total solid volume
fraction at this cell [4]. Detailed explanation is given by the paper of Zhang et al. [17].

2.4.2 Implementation of sdfibm solver in OpenFOAM v9

In this subsection, implementations of sdfibm solver will be explained briefly in line with procedures
of Subsection 2.4.1.1. Detailed algorithm of particle collision, shape generation, material generation
and motions will not be discussed here because our emphasis is just to reimplement sdfibm solver
in another variant of OpenFOAM.

Sub-directories and file contents of the sdfibm solver are shown below. Compilation of the source
code is instructed in the CMakeLists.txt file. The src sub-directory contains all C++ source codes
that handle IBM calculations including particle collision, shape, motion and material. The tool_vof
sub-directory includes the source codes for extra functionality that applies sdf approach to initialize
the field of volume-of-fraction. That functionality is not related to IBM calculation of the solver,
therefore it will not be discussed here.

Sub-directories and files of sdfibm solver

1 |-- CMakeLists.txt

2 |-- LICENSE.txt

3 |-- README.md

4 |-- examples

5 |-- figs

6 |-- src

7 `-- tool_vof

The src folder contains main.cpp file in which the main algorithm of the solver is implemented,
and four sub-directories for libraries of collision, material, motion, and shape, respectively. The files

15



2.4. sdfibm solver Chapter 2. Background

under the src directory are shown below, omitting some source code files and header files for the sake
of clarity. The main.cpp file includes solidcloud.h header file for the IBM while the conventional
OpenFOAM header files are included for solving fluid equations. The solidcloud.cpp is used for the
IBM calculation and creating solid objects that will be explained later.

Sub-directories and files in src directory of sdfibm solver

1 src/

2 |-- CMakeLists.txt

3 |-- libcollision

4 |-- libmaterial

5 |-- libmotion

6 |-- libshape

7 |-- main.cpp

8 |-- solid.cpp

9 |-- solid.h

10 |-- solidcloud.cpp

11 |-- solidcloud.h

12 `-- utils.h

Listing 2.4 shows the code snippet of main.cpp that calls the solidcloud.h header file and
creates a solidcloud object using sdfibm::SolidCloud class via sdfibm namespace. In order
to create a solidcloud object, the required solidDict file is checked whether it exists in the case
directory or latest time directory, or not. Then, the initial condition of solidcloud object is written
out in cloud.out file according to the properties defined in solidDict file.

Listing 2.4: Creation of solidcloud object in main.cpp of sdfibm solver

1 #include "fvCFD.H"

2 #include "solidcloud.h"

3

4 int main(int argc, char *argv[])

5 {

6 #include "setRootCase.H"

7 #include "createTime.H"

8 #include "createMesh.H"

9 #include "createFields.h"

10 #include "initContinuityErrs.H"

11

12 std::string dictfile;

13

14 // if start-time > 0, read from start-time-folder for solidDict, otherwise read from case root

15 if(runTime.time().value() > 0)

16 {

17 if(!Foam::Pstream::parRun())

18 dictfile = mesh.time().timeName() + "/solidDict";

19 else

20 dictfile = "processor0/" + mesh.time().timeName() + "/solidDict";

21 }

22 else

23 {

24 dictfile = "solidDict";

25 }

26

27 sdfibm::SolidCloud solidcloud(args.path() + "/" + dictfile, U, runTime.value());

28 solidcloud.saveState(); // write the initial condition

Implementation for solving the momentum and pressure equations are shown in Listing 2.5. It
is noted that though Zhang [4] did not discuss temperature or tracer equation in his paper, the
sdfibm solver included this equation as a convection-diffusion type equation and solved it. Before
solving the equations, the conditional testing is performed whether the solver runs for “fluid-structure
interaction” (FSI) or “Discrete-element Model” (DEM). In the latter case, solving equations of fluid
phase is disabled in calculation. If on_fluid flag is found as 1 in solidDict file, the momentum
and pressure equations will be solved.
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Listing 2.5: Solving momentum and pressure equations in main.cpp of sdfibm solver

30 while (runTime.loop())

31 {

32 Foam::Info << "Time = " << runTime.timeName() << Foam::endl;

33

34 #include "CourantNo.H"

35 Foam::dimensionedScalar dt = runTime.deltaT();

36

37 if(solidcloud.isOnFluid())

38 {

39 Foam::fvVectorMatrix UEqn(

40 fvm::ddt(U)

41 + 1.5*fvc::div(phi, U) - 0.5*fvc::div(phi.oldTime(), U.oldTime())

42 ==0.5*fvm::laplacian(nu, U) + 0.5*fvc::laplacian(nu, U));

43 UEqn.solve();

44

45 phi = linearInterpolate(U) & mesh.Sf();

46 Foam::fvScalarMatrix pEqn(fvm::laplacian(p) == fvc::div(phi)/dt - fvc::div(Fs));

47 pEqn.solve();

48

49 U = U - dt*fvc::grad(p);

50 phi = phi - dt*fvc::snGrad(p)*mesh.magSf();

51

52 Foam::fvScalarMatrix TEqn(

53 fvm::ddt(T)

54 + fvm::div(phi, T)

55 ==fvm::laplacian(alpha, T));

56 TEqn.solve();

57 }

In Listing 2.5, UEqn is constructed as fvVectorMatrix according to Eq. (2.23). To solve im-
plicit part of Eq. (2.23) which is ∇2ũ in RHS, fvm::laplacian(nu,U) was used instead of using
fvc::laplacian(nu,U). The latter one was used for solving the explicit part ∇2un of Eq. (2.23). It
should be noted that Eq. (2.23) used second-order time discretization [4, 14] and the same manner
was implemented in Listing 2.5. Then, flux field phi is created by interpolating the velocity field
onto the mesh face that will be used in solving pressure Poisson equation.

To solve pressure Poisson equation Eq. (2.26), pEqn is constructed as fvScalarMatrix in which
phi variable is used for the first divergence term of Eq. (2.26) that is operated dot product with the
predicted velocity. Here, it should be noted that -fvc::div(Fs) is included in the code Listing 2.5
whereas it is not found in the original manuscript of Zhang et al. [17]. In fact, Eq. (2.26) was derived
independently and checked with formulation of Breugem [18]. Nevertheless, although the forcing
term is found in the code of Zhang [4], this term is subtracted in Listing 2.5 whereas it is added in
Eq. (2.26). The reason why the minus sign appears in his code is due to implementation of forcing
term in solidcloud.cpp file shown in Listing 2.6. Zhang [4] implemented (uf - us) to calculate
the forcing term instead of (us - uf) as used in Eq. (2.21) where us is velocity of the solid particle
and uf is the fluid velocity.

Listing 2.6: Implementation of forcing term in solidcloud.cpp of sdfibm solver

365 vector us = solid.evalPointVelocity(cc[icur]);

366 vector uf = m_Uf[icur];

367 vector localforce = alpha*cv[icur]*(uf - us)*dtINV;

368 force += localforce;

369 torque += (cc[icur]-solid.getCenter()) ^ localforce;

370 m_Fs[icur] += localforce/cv[icur];

If we go back to Listing 2.5, we see that pressure Poisson equation is solved by pEqn.solve(). Af-
terwards, the fractional step velocity U is corrected by adding the pressure term -dt*fvc::grad(p)

according to Eq. (2.27). In a similar manner, flux term phi is corrected by pressure contribu-
tion as shown in Eq. (2.28). Then, the temperature or tracer T equation was constructed as a
fvScalarMatrix and solved using TEqn.solve().

Now we will move on with the calculation of fluid-particle interaction as shown in Listing 2.7. At
first, an interact() function of the solidcloud object is called to solve the fluid-particle interaction
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problem. Detailed implementation of interaction can be found in Listing A.1. After obtaining
interaction forces Fs from solidFluidInteract function (shown in Listing A.2), the velocity field
U is updated according to Eq. (2.30) as well as the flux field phi. The reason why the minus sign
appears in the code implementation instead of the plus sign was already explained above.

Listing 2.7: Updating for fluid-particle interaction in main.cpp of sdfibm solver

60 solidcloud.interact(runTime.value(), dt.value());

61

62 if(solidcloud.isOnFluid())

63 {

64 U = U - Fs*dt;

65 phi = phi - dt*(linearInterpolate(Fs) & mesh.Sf());

66

67 U.correctBoundaryConditions();

68 adjustPhi(phi, U, p);

69

70 T = (1.0 - As)*T + Ts;

71 T.correctBoundaryConditions();

72

73 #include "continuityErrs.H"

74 }

After updating the flux field, the boundary fields of U are corrected and to satisfy the mass
continuity, flux balances are also adjusted. Then, temperature or tracer field T is updated and its
boundary conditions are corrected. The continuityErrs.H header file is included to calculate and
print the continuity errors in Listing 2.7.

Listing 2.8 performs the evolution of the solid particles in solidcloud object using its evolve()
function. The evolve method of SolidCloud class includes computing particle-particle interaction
by using solidSolidInteract() method and updating the particles’ motion via move method of
solid class. Listing A.3 shows implementation of evolve method in solidcloud.cpp.

Listing 2.8: Updating for fluid-particle interaction in main.cpp of sdfibm solver

76 solidcloud.evolve(runTime.value(), dt.value());

77 solidcloud.saveState();

78

79 if(solidcloud.isOnFluid())

80 {

81 solidcloud.fixInternal(dt.value());

82 }

To obtain forces and torques around the surface of a solid particle, Eqs. (2.31) and (2.32) are
implemented inside the solidFluidInteract method shown in Listing A.2. The resulting force
and torque values are used to update the velocity vp and angular velocity ωp of the particles. To
update as such, addMidFluidForceAndTorque method implements Eqs. (2.33) in Listing A.4. In
Listing A.3, particle-particle interaction is handled by solidSolidInteract method of SolidCloud
class.

As a next step in Listing 2.8, the particles are advected by using updated velocities according
to Eq. (2.34). This action is implemented in Listing A.5. Afterwards, fixInternal method of
solidcloud object corrects the fluid velocity inside the cells that are fully covered by the solid
particles.

Finally, saving output files is managed by implementation of Listing 2.9. Moreover, sdfibm solver
takes care of saving the latest solidDict file in the latest time directory that will be used to restart
simulation.

Listing 2.9: Saving output files in main.cpp of sdfibm solver

84 if(runTime.outputTime())

85 {

86 runTime.write();

87

88 if(Foam::Pstream::master())
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89 {

90 std::string file_name;

91 if(Foam::Pstream::parRun())

92 file_name = "./processor0/" + runTime.timeName() + "/solidDict";

93 else

94 file_name = "./" + runTime.timeName() + "/solidDict";

95 solidcloud.saveRestart(file_name);

96 }

97 }

98 }

99

100 Foam::Info << "DONE\n" << endl;

101 return 0;

102 }

2.5 Simulation of laminar flow around a sphere

Flow around a sphere was simulated to testify the working condition of three different solvers, namely
porousPimpleIbFoam, pimpleDyMIbFoam and sdfibm solvers, in a three-dimensional setting. Since
the porousPimpleIbFoam solver was intended to simulate the flow through the porous region and its
governing equations contain division by n, the sphere in our simulation was required to be porous
as well. Therefore, porosity of the sphere was set to 0.1 in the constant/porosityDict file. In the
simulation, inflow velocity was set to 0.008 m/s to obtain Reynolds number Re = 16 for a laminar
case. The dimensions of the background computational mesh are shown in Fig. 2.3, showing the
names of the patches defined in blockMeshDict file.

Figure 2.3: Geometry of computational mesh indicating the names of the patches defined in
blockMeshDict file.

2.5.1 Simulation results from three different solvers

Figs. 2.4a, 2.4b and 2.4c show simulation results of flow velocity around a sphere using the three
different solvers — porousPimpleIbFoam, pimpleDyMIbFoam and sdfibm solvers, respectively. As
mentioned earlier, porousPimpleIbFoam solver was used for flow around a porous sphere while
the other two solvers were used for flow around an impermeable sphere. Fig. 2.5 shows detailed
comparison of longitudinal velocity U at z = 0 plane along the x−axis for y = 0, and along the
y−axis for x = 0, respectively. In general, simulation results show a good agreement between three
solvers although flow velocity of sdfibm solver differs slightly from the other two solvers, especially
near the surface of the sphere shown in Fig. 2.5. It is worth to mention that we applied the same
numerical settings for each simulation case. Hence, this difference might be due to different methods
of immersed boundary implementation in each solver. However, we did not investigate the difference
in this report since it is beyond the scope of the project.
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(b) pimpleDyMIbFoam solver
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Figure 2.4: Velocity results for flow around a sphere using three different solvers: (left) longitudinal
transect, (right) transverse transect.
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Figure 2.5: Comparison of longitudinal velocity U at z = 0 plane using three different solvers: (left)
along the line x−axis for y = 0, (right) along the line y−axis for x = 0.

2.6 Conclusion

We briefly discussed a general idea of IBM in CFD simulations, and presented different approaches for
imposing the forcing term in the hydrodynamic equations. Continuous forcing approach was applied
in porousPimpleIbFoam solver and direct forcing approach was used in pimpleDyMIbFoam solver and
sdfibm solver. The main difference between these two forcing approaches is that the former one adds
the forcing term to the hydrodynamic equations before numerical discretization while the latter one
adds after discretization. Regarding the representation of a particle in the flow domain, an STL file
was required for its geometry in porousPimpleIbFoam and pimpleDyMIbFoam solvers. However, this
file is not necessary in sdfibm solver because the solver uses standard predefined geometry shapes
and can also easily combine these shapes to form a complex geometry, thanks to the sdf method.

Among the three solvers, sdfibm solver was emphasized, providing detailed explanation of its nu-
merical algorithm and code implementation in OpenFOAM v9 version. Moreover, a brief explanation
of sdf method was presented for calculation of volume fraction. Implementation of IBM in sdfibm

solver was found relatively simple compared to implementation in pimpleDyMIbFoam solver.
Finally, we simulated a test case for laminar flow (Re = 16) around a sphere using these three

solvers. Longitudinal flow velocity was compared for each solver and results of sdfibm solver slightly
differ from the other two solvers’ results near the surface of the sphere. However, a good agreement
was observed generally.
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Chapter 3

Reimplementing sdfIbmESI solver

In Chapter 2, basic ideas of different IBM methods were introduced together with their implemen-
tations in different OpenFOAM solvers. Among these solvers, implementation of main.cpp in sdfibm

solver was explained in more detail since we will reimplement this solver in OpenFOAM-v2112 ESI
version. In this chapter, a brief procedure for reimplementing the solver is presented. The newly
reimplemented solver is named sdfIbmESI solver as this solver is based on sdfibm solver and aligned
with code and compilation standards of OpenFOAM-v2112.

3.1 sdfIbmESI solver

Philosophy of sdfIbmESI solver is just to introduce functionalities of sdfibm solver originally de-
veloped by Zhang [4] into OpenFOAM-v2112. Therefore, detailed code implementations will remain
the same, except for some minor changes. Major changes or modifications need to be done in the
compilation procedure because of a big difference in the compiling method between two OpenFOAM

versions.

3.1.1 Creating sdfIbmESI directory

First of all, a new directory called sdfIbmESI is created by the Linux command mkdir sdfIbmESI

under the directory $WM_PROJECT_USER_DIR/applications/solvers/incompressible/. Copy the
files of any single-phase, incompressible solver e.g. pimpleFoam solver to the newly created directory
sdfIbmESI. It is important to rename the file as sdfIbmESI.C and executable file name inside
Make/files. Also, the executable file of the solver after compilation should be under the user’s
binary directory $(FOAM_USER_APPBIN). Typical directory of the sdfIbmESI solver should be similar
to the one as shown below.

Typical directory of sdfIbmESI solver

1 sdfIbmESI/

2 |-- Make

3 |-- UEqn.H

4 |-- correctPhi.H

5 |-- createFields.H

6 |-- pEqn.H

7 |-- sdfIbmESI.C

8 `-- setRDeltaT.H

3.1.2 Creating the required library files

Before editing the contents of sdfIbmESI.C file, the required library files should be created first.
The required library directories are libcollision for particle-particle collision, libmaterial for
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generating material of the particle, libmotion for handling motion of the particle and libshape for
generating shape of the particle.

To create the required libraries, a separate directory was created for each library under the top
directory of sdfIbmESI. Under the directory of each library, Make directory was created along with
two files which are files and options. Moreover, the required header files should be included in
Make/options file to link with corresponding files via lnInclude. Such an example is shown in
Listing 3.1 that shows the linkage of libcollision with other necessary libraries such as libshape.
For more information on developing the library in OpenFOAM, the reader is referred to lecture slides
on “OpenFOAM user directory organization and compilation” delivered by Chalmers University of
Technology.

Listing 3.1: options file under Make directory of libcollision library

1 EXE_INC = \

2 -I$(LIB_SRC)/finiteVolume/lnInclude \

3 -I$(LIB_SRC)/meshTools/lnInclude \

4 -I$(LIB_SRC)/OpenFOAM/lnInclude \

5 -I../libshape/lnInclude \

6 -I../libmotion/lnInclude \

7 -I../libmaterial \

8 -I..

9

10 LIB_LIBS = \

11 -lfiniteVolume \

12 -lmeshTools \

13 -lOpenFOAM

After successful compilation of library files, one should see three libFILENAME.so files, namely
libcollision.so, libmotion.so and libshape.so, under their respective directories. These shared
libraries need to be linked with the sdfIbmESI solver using environment variable LD_LIBRARY_PATH
that is a dynamic link loader. This process can be automated by using the source command and
exportFile.sh file that is provided in the accompanying files.

Here, it is worth mentioning that there is a difference in including method of header files between
two solvers. In our newly reimplemented sdfIbmESI solver, header files were included by only indi-
cating their file names as #include "FILENAME.H" while in the original solver these were included
using relative path as #include "../FILENAME.H". The exact location of these header files were,
however, directed in the corresponding Make/options file of our sdfIbmESI solver.

3.1.3 Adding other necessary files

It is also necessary to add other necessary files, for instance, solid.C, solidcloud.C and types.H

in the top directory of sdfIbmESI solver. Therefore, one should see the final directory as below.

Final directory of sdfIbmESI solver

1 sdfIbmESI/

2 |-- Make

3 |-- cellenumerator.C

4 |-- cellenumerator.H

5 |-- createFields.H

6 |-- geometrictools.C

7 |-- geometrictools.H

8 |-- libcollision

9 |-- libmaterial

10 |-- libmotion

11 |-- libshape

12 |-- logger.C

13 |-- logger.H

14 |-- meshinfo.C

15 |-- meshinfo.H

16 |-- sdfIbmESI.C

17 |-- setRDeltaT.H

18 |-- solid.C
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19 |-- solid.H

20 |-- solidcloud.C

21 |-- solidcloud.H

22 |-- types.H

23 `-- utils.H

Here, some minor changes need to be highlighted that arise due to version difference of two
solvers. As a first example, type conversion was performed for meta.lookup("gravity") and
solid.lookup("pos") by using vector() function in solidcloud.C file. Another example is
also type conversion for transportProperties.lookup("rho") by using readScalar function in
solidcloud.C file. Last example is inclusion of IFstream.H file by using #include "IFstream.H"

in solidcloud.C file to be able to read dictfile file which is a user-input file e.g. solidDict file.

3.1.4 Editing sdfIbmESI.C file

Now, we will edit the contents of sdfIbmESI.C file by including solidcloud.H header file that
handles immersed boundary method. By including this header file, we could create a SolidCloud

object using the properties defined in dictfile file that will be provided in the case directory. The
rest of the sdfIbmESI.C file were edited accordingly as in main.cpp of original sdfibm solver. The
final version of sdfIbmESI.C is shown in Listing B.1.

3.1.5 Compiling sdfIbmESI solver

To compile the solver using wmake command, Make directory consisting of files file shown in
Listing 3.2 and options file shown in Listing 3.3 are required. Executable output file after the
compilation will be saved as sdfIbmESI under the user’s binary directory $FOAM_USER_APPBIN.

Listing 3.2: files file under Make directory of sdfIbmESI solver

1 solidcloud.C

2 solid.C

3 meshinfo.C

4 logger.C

5 geometrictools.C

6 cellenumerator.C

7 sdfIbmESI.C

8

9 EXE = $(FOAM_USER_APPBIN)/sdfIbmESI

Listing 3.3: options file under Make directory of sdfIbmESI solver

1 EXE_INC = \

2 -I$(LIB_SRC)/finiteVolume/lnInclude \

3 -I$(LIB_SRC)/meshTools/lnInclude \

4 -I$(LIB_SRC)/sampling/lnInclude \

5 -I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \

6 -I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \

7 -I$(LIB_SRC)/transportModels \

8 -I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \

9 -I$(LIB_SRC)/functionObjects/field/lnInclude \

10 -Ilibshape/lnInclude \

11 -Ilibmotion/lnInclude \

12 -Ilibcollision/lnInclude \

13 -Ilibmaterial

14

15 EXE_LIBS = \

16 -lfiniteVolume \

17 -lfvOptions \

18 -lmeshTools \

19 -lsampling \

20 -lturbulenceModels \

21 -lincompressibleTurbulenceModels \

22 -lincompressibleTransportModels \
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23 -Llibshape \

24 -lshape \

25 -Llibmotion \

26 -lmotion \

27 -Llibcollision \

28 -lcollision

3.1.6 Testing with the benchmark case

To test the ability of the sdfIbmESI solver, a benchmark case was simulated which is a two-
dimensional simulation of the flow around a cylinder in Re = 200. Fig. 3.1 shows the velocity
contours for the flow around a cylinder around which vortex shedding was observed. This observa-
tion is indeed a typical feature of flow around the cylinder as shown by Zhang [4].
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Figure 3.1: Velocity result for flow around a cylinder for Re = 200.
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Chapter 4

Tutorial case for sdfIbmESI solver

To demonstrate the ability of the newly reimplemented sdfIbmESI solver, we repeat the same sim-
ulation of flow around a solid sphere as explained in Subsection 2.5.

4.1 Case Directory

Required files for the simulation are shown below and provided as the accompanying files in the
course repository. In 0.orig directory, T file denotes initial condition of temperature (or) tracer
field (though in this case, it is not our main objective), U denotes initial condition for flow velocity,
and p is the initial condition for pressure. More importantly, solidDict file is required in the
top directory for creating a solidcloud object in sdfIbmESI solver. In case of parallel run, the
solidDict file needs to be copied in each processorID directory. Material properties, geometrical
shape, types of the motion, and initial position need to be defined of the solid object in the solidDict
file.

Required files for simulation of flow around a solid sphere with sdfIbmESI solver

1 sdfIbmESISphereLaminar/

2 |-- 0.orig

3 | |-- T

4 | |-- U

5 | `-- p

6 |-- Allclean

7 |-- Allrun

8 |-- constant

9 | |-- transportProperties

10 | `-- turbulenceProperties

11 |-- solidDict

12 `-- system

13 |-- blockMeshDict

14 |-- controlDict

15 |-- fvSchemes

16 `-- fvSolution

Listing 4.1 shows the definition of a sphere of radius 0.1 m using Sphere keyword and radius

keyword in solidDict file. This sphere is named sphere1. To define different kinds of shapes e.g.
circle, ellipse, it is explained in the paper of Zhang [4].

Listing 4.1: Definition of a sphere in solidDict file for sdfIbmESI solver

25 shapes

26 {

27 shape1

28 {

29 name sphere1;

30 type Sphere;

31 radius 0.1;
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32 }

33 }

Also, definition of the material of the solid particle in the solidDict file is shown in Listing 4.2.
For material1 material, its density is defined as 1.0 kg/m3 by the keyword rho. This defined
material is termed as mat1.

Listing 4.2: Definition of material in solidDict file for sdfIbmESI solver

35 materials

36 {

37 material1

38 {

39 name mat1;

40 type General;

41 rho 1.0;

42 }

43 }

In Listing 4.3, allowable type of motion for the solid particle is prescribed in the solidDict file
using the keywords type and mask. In this case, mask entry b000000 means that six degrees of
freedom of the solid body is frozen i.e. the solid sphere is fixed in space. This defined motion is
named static1.

Listing 4.3: Definition of material in solidDict file for sdfIbmESI solver

45 motions

46 {

47 motion1

48 {

49 name static1;

50 type Motion01Mask;//Motion000000;

51 mask b000000;

52 }

53 }

Finally, a solid sphere is created in the solidDict file shown in Listing 4.4 using the defined
properties of the particle, which are sphere1, mat1, static1, and initial position pos keyword and
velocity vel keyword. In this case, the sphere is fixed at the origin (0.0 0.0 0.0) with initial
velocity vector (0.0 0.0 0.0).

Listing 4.4: Definition of a solid sphere solid1 in solidDict file for sdfIbmESI solver

55 solids

56 {

57 solid1

58 {

59 shp_name sphere1;

60 mot_name static1;

61 mat_name mat1;

62 pos (0.0 0.0 0.0);

63 vel (0.0 0.0 0.0);

64 }

65 }

Properties of the fluid are defined in transportProperties file under constant directory as
shown in Listing 4.5. The entries of the dictionary are self-explanatory.

Listing 4.5: Fluid properties defined in transportProperties file for sdfIbmESI solver

18 transportModel Newtonian;

19

20 nu [ 0 2 -1 0 0 0 0 ] 1e-04;// kinematic viscosity of the fluid

21 alpha [ 0 2 -1 0 0 0 0 ] 0.01; // coefficient of diffusion

22 rho 1000; // density of the fluid
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Type of simulation is defined in turbulenceProperties file of constant directory, described in
Listing 4.6. In this tutorial, the laminar flow simulation was applied.

Listing 4.6: Flow properties defined in turbulenceProperties file for sdfIbmESI solver

13 location "constant";

14 object turbulenceProperties;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 simulationType laminar;

19

20 // ************************************************************************* //

In the system directory, blockMeshDict file specifies the geometry of the computational domain
and mesh sizes. Also, under this system directory, controlDict file defines the computational time
step, name of the solver and other options for saving output files. Discretization scheme and linear
solver for the field variables need to be defined in system/fvSchemes and system/fvSolution files,
respectively.

Two script files, Allrun and Allclean, are intended to automate the procedure of the simula-
tion. Otherwise, blockMesh command needs to be used to create the computational domain, and
sdfIbmESI command can be used in order to run the case. Therefore, in order to simulate the
tutorial case, one can execute the commands shown in Listing 4.7.

Listing 4.7: Commands to run the tutorial case using sdfIbmESI solver.

1 cp -r 0.orig 0

2 blockMesh

3 sdfIbmESI

4.2 Simulation results

Fig. 4.1 shows longitudinal velocity of the flow around the solid sphere. As expected, the result from
the sdfIbmESI solver is similar to the simulation result from the original sdfibm solver shown in
Fig. 2.4c.
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Figure 4.1: Longitudinal velocity of the flow around a solid sphere using sdfibmESI solver: (left)
longitudinal transect, (right) transverse transect.

Detailed study of simulation results and their differences is beyond the scope of this project. Nev-
ertheless, this reimplemented sdfIbmESI solver can provide targeted ability of the original sdfibm
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solver. Moreover, one can find the tool_vof directory in the accompanying folder. The tool_vof

is not directly related to IBM method, but can be used to initialize the VOF field of two-phase flow
simulations. In this report, this aspect is not discussed for the sake of simplicity.
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Study questions

How to use it:

1. What is the main difference between IBM and body-fitted mesh in terms of governing equa-
tions?

2. For a complex computational geometry in which detailed meshing is almost impossible, which
approach should be preferred among IBM and body-fitted mesh?

The theory of it:

1. Describe the main difference between continuous forcing approach and discrete forcing ap-
proach regarding the forcing term.

2. Which specific method of discrete forcing approach is applied in sdfibm solver?

How it is implemented:

1. When used sdfIbmESI or sdfibm solver, an STL file is not required to generate the im-
mersed boundary or surface. How is it possible in these two solvers, while it is not in
porousPimpleIbFoam solver?

2. Which text file is essential to generate the immersed body in sdfIbmESI or sdfibm solver?

How to modify it:

1. How many libraries need to be linked in Make/options file for successful compilation of
sdfIbmESI solver?

2. How can a solid body be created which shape is a circle of radius 1.0 m and its motion is free
in all six degrees of freedom in the sdfIbmESI solver?
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Appendix A

Codes of sdfibm solver

Listing A.1: Implementation of interact method in solidcloud.cpp of sdfibm solver

397 void SolidCloud::interact(scalar time, scalar dt)

398 {

399 // reset solid field, which are source terms for the fluid solver

400 m_ct = 0;

401 m_As = 0.0;

402 m_Fs = Foam::dimensionedVector("zero", Foam::dimAcceleration, Foam::vector::zero);

403 m_Ts = Foam::dimensionedScalar("zero", Foam::dimTemperature, 0.0);

404 using namespace std::chrono;

405 high_resolution_clock::time_point t1 = high_resolution_clock::now();

406

407 for (Solid& solid : m_solids)

408 solidFluidInteract(solid, dt);

409

410 checkAlpha();

411

412 high_resolution_clock::time_point t2 = high_resolution_clock::now();

413 duration<double> t_elapse = duration_cast<duration<double>>(t2 - t1);

414

415 if (Foam::Pstream::master())

416 {

417 std::ostringstream msg;

418 msg << "t = " << std::setw(6) << time

419 << " [FSI took " << std::left << std::setprecision(3) << std::setw(6)

420 << 1000*t_elapse.count() << " ms]";

421 LOG(msg.str());

422 }

423

424 m_As.correctBoundaryConditions();

425 m_Fs.correctBoundaryConditions();

426 m_Ts.correctBoundaryConditions();

427 }

Listing A.2: Implementation of solidFluidInteract method in solidcloud.cpp of sdfibm solver

333 void SolidCloud::solidFluidInteract(Solid& solid, scalar dt)

334 {

335 m_geotools.clearCache();

336 const Foam::vectorField& cc = m_mesh.cellCentres();

337 const Foam::scalarField& cv = m_mesh.V();

338

339 scalar dtINV = 1.0/dt;

340 vector force = vector::zero;

341 vector torque = vector::zero;

342

343 m_cellenum.SetSolid(solid);

344

345 int numInsideCell = 0;
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346 int numBorderCell = 0;

347 int insideType = solid.getID() + 4;

348 scalar alpha = 0.0;

349 while (!m_cellenum.Empty())

350 {

351 int icur = m_cellenum.GetCurCellInd();

352 if (m_cellenum.GetCurCellType() == CellEnumerator::ALL_INSIDE)

353 {

354 ++numInsideCell;

355 alpha = 1.0;

356 m_ct[icur] = insideType;

357 }

358 else

359 {

360 m_ct[icur] = m_cellenum.GetCurCellType();

361 ++numBorderCell;

362 alpha = m_geotools.calcCellVolume(icur, solid, m_ON_TWOD)/cv[icur];

363 }

364

365 vector us = solid.evalPointVelocity(cc[icur]);

366 vector uf = m_Uf[icur];

367 vector localforce = alpha*cv[icur]*(uf - us)*dtINV;

368 force += localforce;

369 torque += (cc[icur]-solid.getCenter()) ^ localforce;

370 m_Fs[icur] += localforce/cv[icur];

371 m_As[icur] += alpha;

372 m_Ts[icur] += alpha;

373

374 m_cellenum.Next();

375 }

376

377 if (Foam::Pstream::parRun())

378 {

379 Foam::reduce(numInsideCell, Foam::sumOp<Foam::scalar>());

380 Foam::reduce(numBorderCell, Foam::sumOp<Foam::scalar>());

381 }

382

383 Foam::Info << "Solid " << solid.getID() << " has " << numInsideCell << '/'
384 << numBorderCell << " internal/boundary cells.\n";

385

386 force *= m_rhof;

387 torque *= m_rhof;

388

389 if (Foam::Pstream::parRun())

390 {

391 Foam::reduce(force, Foam::sumOp<Foam::vector>());

392 Foam::reduce(torque, Foam::sumOp<Foam::vector>());

393 }

394 solid.setFluidForceAndTorque(force, torque);

395 }

Listing A.3: Implementation of evolve method in solidcloud.cpp of sdfibm solver

483 void SolidCloud::evolve(scalar time, scalar dt)

484 {

485 m_time = time;

486 static label N_SUBITER = 20;

487 if (m_solids.size() == 1) N_SUBITER = 1;

488 scalar dt_sub = dt / N_SUBITER;

489 for (int i = 0; i < N_SUBITER; ++i)

490 {

491 // clear all forces

492 for (Solid& solid : m_solids)

493 solid.clearForceAndTorque();

494 // NOW Fn = 0.0

495

496 for (Solid& solid : m_solids)

497 {
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498 solid.addMidFluidForceAndTorque();

499 }

500 // NOW Fn = F_f

501

502 this->addMidEnvironment();

503 // NOW Fn = F_f + m*g

504

505 this->solidSolidInteract();

506 // NOW Fn = F_f + F_c + m*g

507

508 for (Solid& solid : m_solids)

509 {

510 solid.move(time, dt_sub);

511 }

512 }

513

514 // appear plane has no env force and no solid-solid interactoin TODO

515

516 for (Solid& solid : m_solids)

517 solid.storeOldFluidForce();

518 }

Listing A.4: Implementation of addMidFluidForceAndTorque method in solid.h of sdfibm solver

152 inline void addMidFluidForceAndTorque()

153 {

154 force += (1.5*fluid_force - 0.5*fluid_force_old);

155 torque += (1.5*fluid_torque - 0.5*fluid_torque_old);

156 }

Listing A.5: Implementation of move method in solid.h of sdfibm solver

163 void move(const scalar& time, const scalar& dt)

164 {

165 // motion = velocity & omega

166 // temporarily store motion at time n

167 vector velocity_old = velocity;

168 vector omega_old = omega;

169

170 // update motion to n+1 using force at time n+1/2

171 velocity += force*mass_inv*dt; // velocity updated to t + dt

172 tensor R = orientation.R();

173 tensor moi_inv_world = R & moi_inv & R.T();

174 omega += (moi_inv_world & torque)*dt; // omega updated to t + dt

175

176 // constrain motion

177 if(ptr_motion != nullptr)

178 ptr_motion->constraint(time, velocity, omega);

179

180 // position & orientation updated AFTER constraint

181 center += 0.5*(velocity + velocity_old)*dt;

182 orientation += 0.5*quaternion(0.5*(omega + omega_old))*orientation*dt;

183 orientation.normalise(); // no need to normalise every step, but cheap anyway

184 }
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Listing B.1: sdfIbmESI.C of sdfibmESI solver

40 #include "fvCFD.H"

41 #include "singlePhaseTransportModel.H"

42 #include "turbulentTransportModel.H"

43 #include "pimpleControl.H"

44 #include "fvOptions.H"

45 #include "localEulerDdtScheme.H"

46 #include "fvcSmooth.H"

47

48 #include "solidcloud.H"

49 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

50

51 int main(int argc, char *argv[])

52 {

53 argList::addNote

54 (

55 "Transient solver for incompressible, turbulent flow"

56 " of Newtonian fluids on a moving mesh."

57 );

58

59 #include "postProcess.H"

60

61 #include "addCheckCaseOptions.H"

62 #include "setRootCaseLists.H"

63 #include "createTime.H"

64 #include "createMesh.H" // chit added

65 #include "initContinuityErrs.H"

66 #include "createFields.H"

67 #include "createUfIfPresent.H"

68 #include "CourantNo.H"

69

70 std::string dictfile;

71

72 turbulence->validate();

73

74 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

75

76 // if start-time > 0, read from start-time-folder for solidDict, otherwise read from case root

77 if(runTime.time().value() > 0)

78 {

79 dictfile = mesh.time().timeName() + "/solidDict";

80 }

81 else

82 {

83 dictfile = "solidDict";

84 }

85

86 sdfibm::SolidCloud solidcloud(args.path() + "/" + dictfile, U, runTime.value()); // chit

36



Appendix B. Main file of sdfIbmESI solver

87 solidcloud.saveState(); // write the initial condition edited by chit

88

89 Info<< "\nStarting time loop\n" << endl;

90

91 while (runTime.loop())

92 {

93 Info<< "Time = " << runTime.timeName() << nl << endl;

94 Foam::dimensionedScalar dt = runTime.deltaT();

95

96 // --- Pressure-velocity PIMPLE corrector loop

97 if(solidcloud.isOnFluid())

98 {

99 Foam::fvVectorMatrix UEqn(

100 fvm::ddt(U)

101 + 1.5*fvc::div(phi, U) - 0.5*fvc::div(phi.oldTime(), U.oldTime())

102 ==0.5*fvm::laplacian(nu, U) + 0.5*fvc::laplacian(nu, U));

103 UEqn.solve();

104

105 phi = linearInterpolate(U) & mesh.Sf();

106 Foam::fvScalarMatrix pEqn(fvm::laplacian(p) == fvc::div(phi)/dt - fvc::div(Fs));

107 pEqn.solve();

108

109 U = U - dt*fvc::grad(p);

110 phi = phi - dt*fvc::snGrad(p)*mesh.magSf();

111

112 Foam::fvScalarMatrix TEqn(

113 fvm::ddt(T)

114 + fvm::div(phi, T)

115 ==fvm::laplacian(alpha, T));

116 TEqn.solve();

117 }

118

119 solidcloud.interact(runTime.value(), dt.value());

120

121 if(solidcloud.isOnFluid())

122 {

123 U = U - Fs*dt;

124 phi = phi - dt*(linearInterpolate(Fs) & mesh.Sf());

125

126 U.correctBoundaryConditions();

127 adjustPhi(phi, U, p);

128

129 T = (1.0 - As)*T + Ts;

130 T.correctBoundaryConditions();

131 #include "continuityErrs.H"

132 }

133

134 solidcloud.evolve(runTime.value(), dt.value());

135 solidcloud.saveState();

136

137 if(solidcloud.isOnFluid())

138 {

139 solidcloud.fixInternal(dt.value());

140 }

141

142 if(runTime.outputTime())

143 {

144 runTime.write();

145

146 if(Foam::Pstream::master())

147 {

148 std::string file_name;

149 if(Foam::Pstream::parRun())

150 {

151 for (int i=0; i<Pstream::nProcs() ;i++)

152 {

153 file_name = "./processor"+ std::to_string(i) + "/" + runTime.timeName()+"/

solidDict";
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154 solidcloud.saveRestart(file_name);

155 }

156 }

157 else

158 {

159 file_name = "./" + runTime.timeName() + "/solidDict";

160 solidcloud.saveRestart(file_name);

161 }

162 }

163 }

164

165 }
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