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Learning outcomes 

The  main  requirements  of  a  tutorial  is  that  it  should  teach  the  four  points:  How  to  use  it,  

The theory of it, How it is implemented, and How to modify it.  Therefore the list of learning 

outcomes is organized with those headers. 

 

The reader will learn: 

 

How to use it: 

• How to create the base solver of topology optimization: “myAdjointShapeOptimizationFoam” 

solver. 

 

The theory of it: 

• Topology optimisation of fluids considering the frozen turbulence approach and the turbulent 

adjoint equations. 

 

How it is implemented: 

• Modifications needed to use myAdjointShapeOptimizationFoam at the version 1906 of 

OpenFOAM. 

• The structure of the turbulent adjoint solver “adjointOptimizationFoam”. 

 

How to modify it: 

• The material modeling and volume constraint equations are included at 

“myAdjointShapeOptimizationFoam” solver to create the new solver 

“frozenTopologyOptimization”, based on the frozen turbulence assumption.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Prerequisites 

It is suggested to have a background at the following topics: 

 

• CFD modeling in OpenFOAM. 

• Modification and structure of OpenFOAM software [7]. 

• Develop the tutorial of “myAdjointShapeOptimizationFoam” [8]. 

• Review in topology optimization of fluids [2]. 
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1. Topology Optimization 

The Topology Optimization Method (TOM) consists in determine the material distribution in a 

design domain to maximize or minimize an objective function subject to certain constraints 

(SIGMUND et al., 2003). To maximize/minimize the objective function at flow devices is done by 

adding the velocity field 𝒖 multiplied by a scalar field 𝛼 to the momentum equations, so regions 

with a high value of 𝛼 determine a low permeability area (solid portion) and regions with a low value 

of 𝛼 determine a high permeability area (fluid portion). In Figure 1, a scheme of how the Topology 

Optimization Method is applied to flow machine devices can be seen. 

 

Figure 1 - Topology Optimization of flow machine [1] 

Initially, the design domain is chosen (in this case, half of a circular crown). Then, the domain is 

discretized using some numerical method followed by TOM performing, which results in a geometry 

that must be post processed. 

1.1. Theoretical Formulation 

Topology Optimization applied to flow problems using the Finite Volume Method (FVM) and a 

continuous adjoint formulation for the sensitivities calculation is proposed [2]. The optimization 

problem is stated as: 

Min 𝐽 = 𝐽(𝛼, 𝒖, 𝑝)

subject to 𝑅(𝛼, 𝒖, 𝑝) = 0
 (1) 

Where 𝐽 is the objective function to be minimized at this case, 𝒖 is the velocity vector, 𝑝 is the 

pressure and 𝛼 are the design variables. The constraint 𝑅(𝛼, 𝒖, 𝑝)  



1.2. State Equations 

The restrictions (𝑅) of the objective functions (𝐽) are expressed in terms of the state variables 𝑢, 𝑝 

and a porosity term 𝛼 label as the design variable which determines the permeability of a cell to 

represent a solid or fluid distribution. At this case, the incompressible steady state Navier Stokes 

equations are considered and modified including the porosity term “𝛼𝒖” at the end of the 

momentum equation: 

𝑅𝑝 = −
𝜕𝒖𝑗

𝜕𝑥𝑗
= 0 

𝑅𝑖
𝑢 = 𝒖𝑗

𝜕𝒖𝑖
𝜕𝑥𝑗

−
𝜕

𝜕𝑥𝑗
[(𝑣 + 𝑣𝑡) (

𝜕𝒖𝑖
𝜕𝑥𝑗

+
𝜕𝒖𝑗

𝜕𝑥𝑖
)] +

𝜕𝑝

𝜕𝑥𝑖
+ 𝛼𝒖𝒊⏟

𝑇𝑎,𝑣

= 0 
(1) 

 

where 𝑅𝑝 and 𝑅𝑖
𝑢 are the restrictions of the conservative and momentum equations respectively. 

The constrained optimization problems can be solved using the augmented Lagrange Multipliers: 

𝐿 = 𝐽 + ∫ (𝒗, 𝑞)𝑅 𝑑𝛺
𝛺

=  𝐽 +∫𝑞𝑅𝑝 𝑑𝛺
𝛺

++∫𝑣𝑅𝑢 𝑑𝛺
𝛺

 (2) 

 

where 𝛺 is the flow domain, 𝒗 is the adjoint velocity and 𝑞 the adjoint pressure, both terms known 

as the Lagrange multipliers. To solve the augmented Lagrange function its differentiation is 

calculated in terms the state and design variables, i.e. 𝑢, 𝑝 and 𝛼. The viscosity is not differentiated, 

which is a first approximation known as “frozen turbulence”. By doing so, the augmented Lagrangian 

function differentiation is stated as: 

𝛿𝐿 = 𝛿𝑢𝐿 + 𝛿𝑝𝐿 + 𝛿𝛼𝐿 (3) 

 

and to find the minimum optimal global point of the variable field, the following statement must 

be accomplished: 

 𝛿𝛼𝐿 = 0 ⋀  𝛿𝑢𝐿 + 𝛿𝑝𝐿 = 0 (4) 

 

By calculating 𝛿𝛼𝐿 = 0 and 𝛿𝑢𝐿 + 𝛿𝑝𝐿 = 0 the sensitivity and the adjoint equations can be 

stablished respectively.  



 

1.3. Adjoint Equations 

The adjoint continuity equations can be formulated as: 

𝛿𝑢𝐿 + 𝛿𝑝𝐿 = 0 

(
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(5) 

 

By using Frechet derivatives and considering that in topology optimization the total derivative can 

be simplified as a local derivative as there is no change variation, the field adjoint state equations 

can be found: 

−2D(𝒗)𝒖 − 𝛻 ∙ (2ν𝐷(𝒗)) + 𝛼𝒗 = −𝛻𝑞 

∇ ∙ 𝑣 = 0 
(6) 

 

and its boundaries conditions as well. For the inlet and wall, the equations are stated as: 

𝑣𝑡 = 0 

𝑣𝑛 = −
𝜕𝐽𝛤
𝜕𝑝

 

𝛻𝑞 ∙ 𝑛 = 0 

(7) 

 

and for the outlet boundary condition it is found that: 

𝒗 ∙ 𝒖 + 𝑣𝑛𝑢𝑛 + ν(𝒏 ∙ 𝛻)𝑣𝑛 − 𝑞 +
𝜕𝐽Γ
𝜕𝑢𝑛

= 0 

𝑢𝑛𝑣𝑡 + ν(n ∙ ∇)𝑣𝑡 +
∂JΓ
∂𝑢𝑡

= 0 

(8) 

 

 



1.4. Sensitivity Equation 

It can be found by differentiating the augmented Lagrange Function in terms of the design variable 

𝛼: 

𝛿𝛼𝐿 = 0 
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1.5. Topology Optimization in OpenFOAM 

The theory explained has been used to formulate a topology optimization solver in OpenFOAM 2.2.x 

in a previous work. The solver is based in the “adjointShapeOptimizationFoam” solver and the code 

structure has been written as straight line code composed by the following items: 

 

Figure 2. Topology Optimization Flowchart 

As the code proposed in [8] is a modification of the original solver “adjointShapeOptimizationFoam”, 

it cannot be found in an original version of OpenFOAM. Therefore, an executable file to generate 

such modified solver is developed for the readers to establish the base of the new solver. Each line 

modification can be find at [8].  

Start by locating in your own applications/solvers library. If there is non location, it can be created 

by using: 

OFv1906 



cd $FOAM_RUN 

mkdir -p ../applications/solvers/ 

 

and create the executable file by writing in the terminal: 

touch frozenTurbulenceTO 

chmod +x frozenTurbulenceTO 

 

After that, copy and paste the following lines at the created “frozenTurbulenceTO” file. Copy at first 

the code of this page, and then press enter to separate the code written at the next page:  

#!/bin/sh 

mkdir topologyOptimization 

cd $WM_PROJECT_DIR 

cp -r applications/solvers/incompressible/adjointShapeOptimizationFoam $WM_PROJECT_USER_DIR/applications/solvers/topologyOptimization 

cd $WM_PROJECT_USER_DIR/applications/solvers/topologyOptimization 

mv adjointShapeOptimizationFoam myAdjointShapeOptimizationFoam 

cd myAdjointShapeOptimizationFoam 

mv adjointShapeOptimizationFoam.C myAdjointShapeOptimizationFoam.C 

sed -i s/FOAM_APPBIN/FOAM_USER_APPBIN/g Make/files 

sed -i s/adjointShapeOptimizationFoam/myAdjointShapeOptimizationFoam/g Make/files 

 

#modification of the steepest descent algorithm 

sed -i s/"alpha + lambda"/"alpha - lambda"/g myAdjointShapeOptimizationFoam.C 

 

#creating the power dissipation BC 

cp -r adjointOutletVelocity/ adjointOutletVelocityPower 

cp -r adjointOutletPressure/ adjointOutletPressurePower 

cd adjointOutletPressurePower 

sed s/adjointOutletPressure/adjointOutletPressurePower/g adjointOutletPressureFvPatchScalarField.C > adjointOutletPressurePowerFvPatchScalarField.C 

sed s/adjointOutletPressure/adjointOutletPressurePower/g adjointOutletPressureFvPatchScalarField.H > adjointOutletPressurePowerFvPatchScalarField.H 

cd ../adjointOutletVelocityPower 

sed s/adjointOutletVelocity/adjointOutletVelocityPower/g adjointOutletVelocityFvPatchVectorField.C > adjointOutletVelocityPowerFvPatchVectorField.C 

sed s/adjointOutletVelocity/adjointOutletVelocityPower/g adjointOutletVelocityFvPatchVectorField.H > adjointOutletVelocityPowerFvPatchVectorField.H 

cd .. 

rm adjointOutletPressurePower/adjointOutletPressureFvPatchScalarField.* 

rm adjointOutletVelocityPower/adjointOutletVelocityFvPatchVectorField.* 

 

#adding the BC 

sed -i '2 a adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C' Make/files 

sed -i '32 a #include "RASModel.H"' adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '104 a scalarField Up_n = phip / patch().magSf(); // Primal' adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '105 a scalarField Uap_n = phiap / patch().magSf(); // Adjoint' adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '106 a const incompressible::RASModel& rasModel =db().lookupObject<incompressible::RASModel>("TurbulenceProperties");' adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '107 a scalarField nueff = rasModel.nuEff()().boundaryField()[patch().index()];' adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '108 a const scalarField& deltainv = patch ().deltaCoeffs(); //distance inverse' adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '109 a scalarField Uaneigh_n = (Uap.patchInternalField() & patch().nf());' adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '111 a /*' adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '113 a */' adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '114 a operator== ((Up&Uap) + (Up_n*Uap_n) + nueff*deltainv*(Uap_n-Uaneigh_n) - 0.5*mag(Up)*mag(Up) - (Up & patch().Sf()/patch().magSf())*(Up & patch().Sf()/patch().magSf()));' adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

 



#adjoint velocity power dissipation modification 

sed -i '3 a adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C' Make/files 

sed -i '32 a #include "RASModel.H"' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '93 a const fvsPatchField<scalar>& phip =patch().lookupPatchField<surfaceScalarField, scalar>("phi");' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '97 a const fvPatchField<vector>& Uap = patch().lookupPatchField<volVectorField, vector>("Ua");' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '101 a const incompressible::RASModel& rasModel = db().lookupObject<incompressible::RASModel>("TurbulenceProperties");' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '102 a scalarField nueff = rasModel.nuEff()().boundaryField()[patch().index()];' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '103 a const scalarField& deltainv = patch().deltaCoeffs();' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '104 a scalarField Up_ns = phip/patch().magSf();' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '105 a vectorField Up_t = Up - (phip*patch().Sf())/(patch().magSf()*patch ().magSf());' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '106 a //tangential component of adjoint velocity in neighbouring node' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '107 a vectorField Uaneigh = Uap.patchInternalField();' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '108 a vectorField Uaneigh_n = (Uaneigh & patch().nf())*patch().nf();' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '109 a vectorField Uaneigh_t = Uaneigh - Uaneigh_n;' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '110 a vectorField Uap_t = ((Up_ns*Up_t) + nueff*deltainv*Uaneigh_t)/(Up_ns+nueff*deltainv);' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '111 a vectorField Uap_n = (phiap*patch().Sf())/(patch().magSf()*patch().magSf());' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '117 a /*' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '120 a */' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '121 a operator==(Uap_t+Uap_n);' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

 

#including sensitivity 

sed -i '244 a sens=Ua&U;' myAdjointShapeOptimizationFoam.C 

sed -i '$ a volScalarField sens(IOobject("sensitivity",runTime.timeName(),mesh,IOobject::READ_IF_PRESENT,IOobject::AUTO_WRITE),Ua&U);' createFields.H 

 

#printing the cost function 

sed -i '$ a dictionary optFunc = mesh.solutionDict().subDict("objectiveFunctionDict");' createFields.H 

sed -i '$ a int nObjPatch = optFunc.lookupOrDefault<scalar>("numberObjectivePatches", 0);' createFields.H 

sed -i '$ a int objFunction = optFunc.lookupOrDefault<scalar>("objectiveFunction", 0);' createFields.H 

sed -i '$ a wordList objPatchNames=optFunc.lookup("objectivePatchesNames");' createFields.H 

sed -i '$ a Info<< "Initializing objective function calculation" << endl;' createFields.H 

sed -i '$ a Info<< "The objective function chosen is" << objFunction<<endl;' createFields.H 

sed -i '$ a Info<< "Name of the patches for which the cost function will be calculated" << objPatchNames<<endl;' createFields.H 

sed -i '$ a Info<< "Number of patches" << nObjPatch<<endl;' createFields.H 

sed -i '$ a label objPatchList [nObjPatch];' createFields.H 

sed -i '$ a int iLoop;' createFields.H 

sed -i '$ a for (iLoop=0; iLoop<nObjPatch; iLoop++){' createFields.H 

sed -i '$ a objPatchList [iLoop] = mesh.boundaryMesh().findPatchID(objPatchNames[iLoop]);}' createFields.H 

sed -i '103 a #include "costFunction.H"' myAdjointShapeOptimizationFoam.C 

touch costFunction.H 

echo "scalar jDissPower(0);">>costFunction.H 

sed -i '$ a for (iLoop=0; iLoop<nObjPatch; iLoop++)' costFunction.H 

sed -i '$ a {' costFunction.H 

sed -i '$ a if (objFunction==1) {' costFunction.H 

sed -i '$ a jDissPower = jDissPower - sum(phi.boundaryField()[objPatchList[iLoop]]*(p.boundaryField()[objPatchList [iLoop]] + 0.5*magSqr(U.boundaryField()[objPatchList[iLoop]])));' costFunction.H 

sed -i '$ a }' costFunction.H 

sed -i '$ a }' costFunction.H 

sed -i '$ a if (objFunction==1) {' costFunction.H 

sed -i '$ a Info<<"Objective Function (Power Dissipated) J:"<<jDissPower<<endl;}' costFunction.H 

 

It will create the executable file to update the “adjointShapeOptimizationFOAM” solver based on 

[8]. The code lines size had been modified to avoid problems during the implementation, 

nevertheless the code can be read easily at the created file or at the annexes of this work. 

As the solver is not made for OFv1906, some additional commands have to be added at the end of 

the previous code: 



#modifications to the code 

sed -i '33 a #include "IncompressibleTurbulenceModel.H"' adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '34 a #include "turbulentTransportModel.H"' adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '33 a #include "IncompressibleTurbulenceModel.H"' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '34 a #include "turbulentTransportModel.H"' adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

 

End up by compiling the updated topology optimization solver by writing at the terminal 

cd topologyOptimization/myAdjointShapeOptimizationFoam 

wclean 

wmake 
 

At this point, the solver “myAdjointShapeOptimization” based on [8] has been created. 

Nevertheless, its results can be improved my modifying the state equations including additional 

main functions. 

 

1.6. “myAdjointShapeOptimization” Modification 

 

Material Model: At the end of the momentum equation, an interpolation function 𝛼 is introduced 

to represent the porous media through the domain for improving the optimization results [1]. It 

behaves as identifying a high permeability zone (𝛼(𝛾)~0) where fluid domain is achieved, and low 

permeability zones (𝛼(𝛾) ≫ 1) where solid domain cells can be placed. The goal is for the design 

variable, 𝛾, to take values of 0 or 1, as 𝛾~0 returns a near solid domain (𝛼(𝛾) ≈ 𝛼𝑚𝑎𝑥) and 𝛾~1 

returns a near fluid domain (𝛼(𝛾) ≈ 𝛼𝑚𝑖𝑛), and choose 𝛼 in such a way that intermediate values of 

𝛾 are suppressed. Therefore, the following convex interpolation function is adopted, which is a 

function of the 𝑞 parameter that controls the grey level areas: 

𝛼(𝛾) = 𝛼𝑚𝑎𝑥 + (𝛼 𝑚𝑖𝑛 − 𝛼 𝑚𝑎𝑥)𝛾
1 + 𝑞

𝛾 + 𝑞
 (10) 

 

where minimum and maximum 𝛼 value can be given in terms of the Darcy equation, i.e. 𝛼𝑚𝑎𝑥 =

𝑣/𝐷𝑎𝑙2. At [1] the 𝛼𝑚𝑎𝑥and 𝛼 𝑚𝑖𝑛 values are expressed as 2.5𝜇/0.012 and 2.5𝜇/1002 respectively, 

and by using those correlations the 𝑞 parameter shows the following behavior: 



 

Figure 3. Interpolation scheme of alpha distribution under different q values. 

 

The definition of the interpolation function 𝛼, should be included at 

myAdjointShapeOptimizationFoam.C, between the “alpha” steepest descent equation and the  

“zeroCells” declaration, as: 

alpha = alphaMax + (alphaMin - alphaMax)*(vf*(1 + q)/(vf + q)); 

 

where vf is equal to 𝛾. 

 

Volume constraint:  when considering the Lagrangian function the addition of the volume constraint 

term has given also reliable results [4], which is established as: 

𝐿 = 𝐽 − 𝜆𝑣𝑜𝑙𝑐𝑣𝑜𝑙 + 𝑤𝑣𝑜𝑙𝑐𝑣𝑜𝑙
2  (11) 

 

where 𝜆𝑣𝑜𝑙 is the Lagrange multiplier of the volume constraint (𝑐𝑣𝑜𝑙) and 𝑤𝑣𝑜𝑙 is a scalar weight 

factor defined by the user at the first iteration of the solver.  The volume constraint 𝑐𝑣𝑜𝑙 is defined 

as 

𝑐𝑣𝑜𝑙 = (∫𝛾𝑑𝛺 − 𝑉𝑡𝑎𝑟𝑔𝑒𝑡)
2

 (12) 

  

where ∫𝛾𝑑𝛺 is the distribution of the porosity field along the domain and 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 is the minimum 

volume fraction aimed to be occupied by solid.  

 

Therefore, by considering the material distribution and the volume constraint at the optimization 

problem, the state equation of the augmented Lagrangian updates to: 

𝐿𝑎𝑢𝑔 = 𝐽 − 𝜆𝑣𝑜𝑙𝑐𝑣𝑜𝑙 +𝑤𝑣𝑜𝑙𝑐𝑣𝑜𝑙
2 +∫𝑞𝑅𝑝 𝑑𝛺

𝛺

+∫𝒗𝑅𝒖 𝑑𝛺
𝛺

 (13) 

 

𝛼 

 

𝛾 

 



affecting the calculation of the sensitivity differential, 𝛿𝛼𝐿𝑎𝑢𝑔 = 0, as it depends on the design 

variable 𝛼: 

𝛿𝐿

𝛿𝛼
=
𝛿𝐽

𝛿𝛼
+∫ 𝑞

𝛿𝑅𝑝

𝛿𝛼
 𝑑𝛺

𝛺

+∫ 𝒗
𝛿𝑅𝑢

𝛿𝛼
 𝑑𝛺

𝛺

+∫(−𝜆𝑣𝑜𝑙 + 2𝑤𝑣𝑜𝑙𝑐𝑣𝑜𝑙
 )

𝛿𝑐𝑣𝑜𝑙
𝛿𝛼

𝑑𝛺
𝛺

 

 

𝛿𝛼𝐿 = ∫𝒖 ∙ 𝒗 𝑑Ω 
Ω

𝜕𝛼

𝜕𝛾
+ (−𝜆𝑣𝑜𝑙 + 2𝑤𝑣𝑜𝑙𝑐𝑣𝑜𝑙

 )
𝛿𝑐𝑣𝑜𝑙
𝛿𝛼

 

𝛿𝛼𝐿 = (𝒖 ∙ 𝒗)(Vdomain) [(𝛼 − α̅)𝑞
(1 + 𝑞)

(𝛾 + 𝑞)2
]

+ (−λ𝑣𝑜𝑙 + 2𝑤𝑣𝑜𝑙 (∫ 𝛾𝑑𝛺 − 𝑉𝑡𝑎𝑟𝑔𝑒𝑡)
2

) 2 (∫𝛾𝑑𝛺 − 𝑉𝑡𝑎𝑟𝑔𝑒𝑡) 𝑉𝑐𝑒𝑙𝑙 

(14) 

 

which differs from the sensitivity equation defined in “myAdjointShapeOptimization”,  

𝛿𝛼𝐿 = 𝒗 ∙ 𝑢. 

The update of the material distribution implemented at “myAdjointShapeOptimizationFoam” solver 

is expressed in terms of 𝛼, the design variable. The current modification of the solver considers 𝛼 

an interpolation function and non the design variable. The design variable is 𝛾, and by using the 

steepest descent algorithm, expressed as 

𝛼𝑛+1 = 𝛼𝑛 − (𝒖 ∙ 𝒗)(V) ∗ 𝒍𝒂𝒎𝒃𝒅𝒂 (15) 
 

written in myAdjointShapeOptimizationFoam.C at line 109 as  

alpha +=  mesh.fieldRelaxationFactor("alpha") *(min(max(alpha - 

lambda*(Ua & U), zeroAlpha), alphaMax) - alpha); 

 

should be updated to: 

𝛾
𝑛+1

= 𝛾
𝑛
− (𝒖 ∙ 𝒗)(Vdomain) [(𝛼 − α̅)𝑞

(1 + 𝑞)

(𝛾 + 𝑞)2
]

+ (−λ𝑣𝑜𝑙 + 2𝑤𝑣𝑜𝑙 (∫ 𝛾𝑑𝛺 − 𝑉𝑡𝑎𝑟𝑔𝑒𝑡)
2

) 2 (∫𝛾𝑑𝛺 − 𝑉𝑡𝑎𝑟𝑔𝑒𝑡) 𝑉𝑐𝑒𝑙𝑙 ∗ 𝑙𝑎𝑚𝑏𝑑𝑎 

(16) 

 

written as 

vf = min(max(vf-lambda.value()*sens*cte3, zeroVf), vfMax); 

 

where “lambda” is a time-step relaxation factor related with the cell volume, sens is the sensitivity 

equation (5) and cte3 is a value 1 factor to control the units between lambda and the sensitivity 



equation. The evaluation of the design variable, 𝛾, is established between the two values: zero 

written as zeroVf and 1 written as  vfMax. 

 

Up to this point the sensitivity calculation has been called, but its evaluation along with the integral 

calculation along the domain of the design variable (∫ 𝛾𝑑𝛺) has not been defined. To do so, at the 

end of the adjoint Pressure-velocity SIMPLE corrector, after the “turbulence->correct” command, 

the integral is defined as: 

        intvfVol = 0.0; 

    forAll(mesh.C(), ID){intvfVol += vf[ID]*mesh.V()[ID];} 

 

where intvfVol is the definition of the design variable integral along the domain (∫ 𝛾𝑑𝛺). By doing 

so, the sensitivity calculation can be updated at line 246, as: 

sens=(Ua&U)*vol*((alphaMin-

alphaMax)*q*(1+q)/((vf+q)*(vf+q)))*cte1+cte2*(-lvol+2*wf*sqr(intvfVol-

vTarget))*2*vCell; 

 

Finally, the function to update the Lagrange multiplier λ𝑣𝑜𝑙  and the weight factor 𝑤𝑣𝑜𝑙  defined at [4] 

should be included as: 

 lvol = lvol-2*wf*sqr(intvfVol-vTarget); 

 wf = min (gamma*wf, wMax); 

  

 

createFields.H MODIFICATIONS 

After that, the createFields.H file must be updated by the new set up sensitivity calculation and 

include the new variables used. To do so, a zero value dimensioned scalar should be defined for the 

volumetric Lagrange multiplier 𝜆𝑣𝑜𝑙, in order to avoid a negative value through its update. 

 

 It can be included after the zeroAlpha definition: 

dimensionedScalar zeroLvol(dimless, Zero); 

 



Before the alpha variable definition (line 109), the new variables to calculate the sensitivity are 

included:  

//domain volume 

dimensionedScalar vol 

( 

"vol", 

dimless, 

laminarTransport 

); 

 

//minimum value of interpolation function 

dimensionedScalar alphaMin 

( 

 "alphaMin", 

 dimless/dimTime, 

 laminarTransport 

); 

 

//grey control 

dimensionedScalar q 

( 

 "q", 

 dimless, 

 laminarTransport 

); 

 

//volume of each cell 

dimensionedScalar vCell 

( 

 "vCell", 

 dimless, 

 laminarTransport 

); 

 

//Minimum volume value occupied by solid 

dimensionedScalar vTarget 

( 

 "vTarget", 

 dimless, 

 laminarTransport 

); 

 

 

The previous values have been defined as constants entries that must be selected according to the 

case of modeling. Now, the design variable 𝛾, label as vf in the code, is specified as an entry value 

along the patches of the domain (as the state and adjoint variables), to have an initial guess for its 

calculation. As well its minimum and maximum value are defined, of zero and 1 respectively. 



//Minimum value of design variable 

dimensionedScalar zeroVf 

( 

 "zeroVf", 

 dimless, 

 laminarTransport 

); 

 

//Maximum value of the design variable 

dimensionedScalar vfMax 

( 

 "vfMax", 

 dimless, 

 laminarTransport 

); 

 

volScalarField vf 

( 

    IOobject 

    ( 

        "vf", 

        runTime.timeName(), 

        mesh, 

        IOobject::READ_IF_PRESENT, 

        IOobject::AUTO_WRITE 

    ), 

    mesh 

); 

  

Then the variables to update the volumetric Lagrange multiplier and the weight factor are defined 

//lagrange multiplier lambda vol (lvol0) 

dimensionedScalar lvol0 

( 

 "lvol0", 

 dimless, 

 laminarTransport 

); 

 

//volumetric weight factor 

dimensionedScalar wf 

( 

 "wf", 

 dimless, 

 laminarTransport 

); 

 

//volumetric weight factor Max 

dimensionedScalar wMax 

( 

 "wMax", 

 dimless, 

 laminarTransport 



); 

 

//time-step factor to update wf 

dimensionedScalar gamma 

( 

 "gamma", 

 dimless, 

 laminarTransport 

); 

 

 

At the sensitivity calculation, some constants with value of 1 should be included to overcome units 

troubles, because every variable introduced has been defined as dimensionless: 

//constants for units managing  

dimensionedScalar cte1 

( 

 "cte1", 

 dimTime, 

 laminarTransport 

); 

 

dimensionedScalar cte2 

( 

"cte2", 

sqr(dimLength)/sqr(dimTime), 

laminarTransport 

); 

 

dimensionedScalar cte3 

( 

"cte3", 

sqr(dimTime)/sqr(dimLength), 

1.0 

); 

 

 

As the 𝛼 variable has ben defined as the interpolation function, the equation for the material 

modeling should be updated: 

volScalarField alpha 

( 

    IOobject 

    ( 

        "alpha", 

        runTime.timeName(), 

        mesh, 

        IOobject::READ_IF_PRESENT, 

        IOobject::AUTO_WRITE 



    ), 

    alphaMax + (alphaMin - alphaMax)*(vf*(1 + q)/(vf + q)) 

); 

 

After the “zeroCells” line, the volumetric Lagrangian value should be defined using the previous 

constants: 

volScalarField lvol 

( 

    IOobject 

    ( 

        "lambdaVol", 

        runTime.timeName(), 

        mesh, 

        IOobject::MUST_READ, 

        IOobject::AUTO_WRITE 

    ), 

    max(lvol0-2*wf*sqr(1-(alpha/alphaMax)-vf), zeroLvol) 

); 

 

scalar intvfVol=0.0; 

 

 

Then, the sensitivity definition is updated: 

volScalarField sens 

( 

 IOobject 

 ( 

  "sensitivity", 

  runTime.timeName(), 

  mesh, 

  IOobject::READ_IF_PRESENT, 

  IOobject::AUTO_WRITE 

 ), 

 (Ua&U)*vol*((alphaMin-alphaMax)*q*(1+q)/((vf+q)*(vf+q)))*cte1+cte2*(-

lvol+2*wf*sqr(intvfVol-vTarget))*2*vCell 

); 

 

Finally the name of the new solver should be updated from “myAdjointShapeOptimizationFoam” to 

“frozenTopologyOptimization”, as it is an algorithm to calculate topology optimization distribution 

based on the frozen turbulence assumption. To do so, enter the following commands: 

mv myAdjointShapeOptimizationFoam.C frozenTopologyOptimization.C 

sudo i/myAdjointShapeOptimizationFoam/frozenTopologyOptimization/g 

Make/files 

cd .. 



mv myAdjointShapeOptimizationFoam frozenTopologyOptimization 

 

Now the solver is ready to be used, compile by entering the following: 

cd frozenTopologyOptimization 

wclean 

wmake 

 

1.7. Optimization Algorithm 

The Augmented Lagrange Methods for turbulent flow, constrained optimization comprises the 

following steps: 

a) Initialize the porosity field 𝛼 and the Lagrangian multipliers 𝜆𝑘 (the latter with zero values). The 

penalty factor 𝑤 takes on a user-defined value. A constant 𝛾 with which the value of 𝑤 is 

multiplied in each optimization cycle along with the maximal allowed 𝑤𝑚𝑎𝑥 value are also 

defined. The initial value of 𝑤 along with the 𝛾 and 𝑤𝑚𝑎𝑥 values are quantities linked with the 

imposition of constraints that the user has to specify. 

b) Solve the state equations in which the porosity-dependent terms have been added to the 

turbulence model and momentum equations. 

c) Compute the values of the objective and constraint functions. Terminate the algorithm if 𝐿 is 

less than a threshold value. 

d) Solve the adjoint equations, including the adjoint to the turbulence model equations. 

e) Compute the sensitivities 𝛿𝐿/𝛿𝛼. 

f) Update the porosity field using the steepest descent formula 

𝑎𝑛+1 = 𝑎𝑛 − 𝜂
𝛿𝐿

𝛿𝛼
|
𝑛

 

where 𝑛 is the optimization cycle index and 𝜂 an user defined step. The porosity value is allowed 

to vary within the range [0, 𝛼𝑚𝑎𝑥]. The maximum porosity value needs to have a sufficiently 

large value in order to zero the velocities in the solidified parts of the porous media. 

g) Update 𝜆𝑘 and 𝑤 as follows: 

𝜆𝑘
𝑛+1 = 𝜆𝑘

𝑛 − 2𝑤𝑐𝑘
𝑛 

𝑤𝑘
𝑛+1 = min(𝛾𝑤𝑛, 𝑤𝑚𝑎𝑥) 

h) Repeat step b). 

 



1.8. Setting up the Case 

The structure of a case is similar to a tutorial in OpenFOAM. A good case could be starting from 

the “pitzdaily” which can be located at: 

cd $FOAM_TUTORIALS/incompressible/adjointShapeOptimizationFoam 

cp –r pitzDaily $FOAM_RUN/tutorials/ 

 

The folder can be adapted to solve a state case of Topology Optimization based in [1]. At the present 

document the “diffuser” case is solved, therefore the name of the case should be stablished as such: 

mv pitzDaily diffuser 

  

The domain of the case consists in a square with an inlet and outlet parabolic velocity, with 

maximum value of 1 and 3 respectively.  

 

Figure 4. Design domain for the diffuser example. [1] 

The folders at the case must be modified at following files: 

 

Figure 5. Diffuser case structure folders. 



Starting by the 0 folder, where the boundary conditions of the adjoint variables are stated, they 

depend on the objective function to be evaluated, e.g. total pressure losses or power dissipation. At 

[8] the power dissipation boundary condition is implemented and will be used. By calculating such 

objective function, the boundary conditions of the state and adjoint variables are stated as: 

Table 1. Boundary conditions of state and adjoint variables. 

 Inlet Outlet Wall 

(adjoint 

Velocity) 

Ua 

parabolicVelocity 

max. Value 1 

adjointOutletVelocityPower NoSlip 

(state 

velocity)     

U 

ParabolicVelocity 

Max. Value 1 

ParabolicVelocity 

Max. Value 3 

NoSlip 

(adjoint 

pressure) 

pa 

zeroGradient adjointOutletPressurePower zeroGradient 

(state 

pressure)    

p 

ZeroGradient FixedValue zeroGradient 

 

At the system/fvSolution file, the objective function must be called and the patches where the 

optimization will be made [8]: 

 

objectiveFunctionDict 

{ 

    objectiveFunction  1; 

    numberObjectivePatches 2; 

    objectivePatchesNames (inlet outlet); 

} 

 

Finally, every new variable defined at the sensitivity calculation must be placed at the 

constant/transportProperties file. It is highlighted that these parameters must be adjusted 

according to the case: 



 

    object      transportProperties; 
} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

transportModel  Newtonian; 

 

nu              1; 

 

lambda          1; 

alphaMax        25000; 

vol  0.05; 

alphaMin 0.00025; 

q  0.1; 

lvol0  0; 

wf  1; 

cte1  1; 

cte2  1; 

vCell  0.000005; 

vTarget 0.5; 

vfMax  1; 

wMax  1000; 

gamma  10; 

cte3  1; 
 

As the optimization problem is not considering the turbulence phenomena, it is recommended to 

switch off its parameter at the turbulenceProperties file. 

 

At following the solvers “myAdjointShapeOptimizationFoam” and “frozenOptimization” are 

compared by using a 100x100 mesh on the domain: 

   

(a) (b) (c) 

Figure 6. Diffuser results from (a) benchmark case, (b) myAdjointShapeOptimizationFoam and (c) frozenOptimization 
solver 

 

It can be seen that the developed solver “frozenOptimization” is able to provide an accurate result 

than “myAdjointShapeOptimizationFoam”.  It is encouraged to the reader vary the values at the 

transportProperties file to obtain better results and check its influence. 



   

2. Turbulence modeling at Topology Optimization  

The impact of neglecting the differentiation of the turbulent viscosity (frozen turbulence) had lead 

that depending on the problem, the computed sensitivities can differ from FD even in computed 

sign. The approach using the continuous adjoint for high Reynolds recommends the use of the 

adjoint wall functions as the incomplete differentiation of the turbulence model with wall functions 

may lead to bad results. Also, the strict mesh requirements associated with low-Re turbulence 

models (particularly close to the solid walls), latter cannot always be used in industrial applications. 

In contrast, high Reynolds numbers turbulence models, employing the wall functions technique are 

usually used. The need to obtain accurate sensitivity derivatives for these applications dictates the 

necessity for differentiating high-Re turbulence models, and the law of the wall. 

In low-re turbulence models the multipliers of flow variables variations are set to zero in the 

boundary integrals in order to derive the adjoint boundary conditions; similarly, when dealing with 

High-Re turbulence models, flow variations at the wall boundaries should be expresses as functions 

of the friction velocity variation, the multiplier of which should be set to zero in order to derive the 

adjoint high-Re boundary conditions. The differentiation of  the high-Re turbulence models using 

the continuous adjoint method for the 𝑘 − 𝜖 can be found at [5], introducing the adjoint friction 

velocity and the so-called adjoint wall functions. The theory and implementation were bases on an 

in-house, vertex- centred finite volume code, using a pseudo-compressibility scheme to solve the 

primal and adjoint equations for incompressible flows. The implementation of the primal wall 

functions is based on a slip velocity condition, where the “real” solid is assumed to lie at a distance 

∆𝑟𝑤 underneath the grid boundary.  The differentiation of the incompressible high-Re Spalart-

Allmaras model can be found at [4], based at the cell-centered pressure-based implementation, 

where a no-slip velocity boundary condition is imposed on the wall boundaries along with the law 

of the wall, expressed by a single formula governing both the linear sublayer and logarithmic part 

of the boundary layer. 

2.1. Spalart Allmaras modified turbulence model 

A porosity dependent term is also added to the Spalart-Allmaras model equation, yielding: 

𝑅𝜈̃ = 𝑢𝑗
𝜕𝜈

𝜕𝑥𝑗
−
𝜕

𝜕𝑥𝑗
[(𝜈 +

𝜈

𝜎
)
𝜕𝜈

𝜕𝑥𝑗
] −

𝑐𝑏2
𝜎
(
𝜕𝜈

𝜕𝑥𝑗
)

2

− 𝜈𝑃(𝜈) + 𝜈𝐷(𝜈) + 𝛼𝜈⏟
𝑇𝑎,𝜈̃

= 0 (17) 



 

This allows the computation of zero 𝜈 values in the solidified parts, whereas the original Spalart-

Allmaras equation is solved in the fluid parts [4]. 

Calculating the distance nearest wall method 

The law of the wall is applied to the fluid-solid interfaces, 𝑆𝑎, after following the steps described: 

- Given a porosity distribution, track the fluid-solid interfaces. This is done by employing a 

simple criterion: let face 𝑓 belongs to cells 𝐶1 and 𝐶2 (Figure 7). 

 

Figure 7. Internal mesh face 𝑓 belongs to cells 𝐶1 and 𝐶2. If 𝐶1 belongs to the solidified domain where 𝐶2 to the 
fluid domains, face f is added to the fluid-solid interface. 

If 𝛼(𝐶1) ∙ 𝛼(𝐶2) = 0, i.e. are orthogonal vectors, and 𝛼(𝐶1) + 𝛼(𝐶2) > 𝜖1, then add face 𝑓 to 

the list with the internal mesh faces comprising the fluid-solid interface. 

- Identify which of the 𝐶1, 𝐶2 cells belongs to the fluid domain by checking whether 𝛼(𝐶1) > 0 or 

𝛼(𝐶2) > 0. Based on the velocity magnitude of this cells, compute the friction velocity, 𝑣𝜏 as: 

𝑓𝑊𝐹 = −𝑒
−𝜅𝐵[𝑒𝜅𝑣 − 1 − 𝜅𝑣+ −

(𝜅𝑣+)2

2
−
(𝜅𝑣 +)3

6
+ 𝑦+ − 𝑣+ = 0 

; 𝐵 ≈ 5.5,   𝑦𝑝
+ =

∆𝑝𝑣𝜏

𝑣
,   𝑣𝑝

+ =
|𝑣𝑖|

𝑝

𝑣𝜏
 and   𝑣𝜏

2 = −[(𝑣 + 𝑣𝑡) (
𝜕𝑣𝑖

𝜕𝑥𝑗
+
𝜕𝑣𝑗

𝜕𝑥𝑖
)]
𝑓

𝑛𝑗𝑡𝑗
𝐼  

(18) 

 

where 𝑛𝑗 and 𝑡𝑗
𝐼 are the components of the normal to the wall and parallel to the velocity at the 

first cell 𝑃 (considered as parallel velocity component to the wall) unit vectors. The indices 𝑓 

denote quantities defined at the boundary wall face and 𝑝 the first cell center (Figure 8). 

                                                           
1 where 𝜖 is a user defined infinitesimally small positive number  and 𝛼 = 0 ∴  𝛼 ≤ 𝜖 corresponds to a fluid 

region and 𝛼 ≠ 0 ∴  𝛼 > 𝜖 corresponds to a solidified region. 



 

Figure 8. Finite volume adjacen to the wall, where 𝒏 is the outwards normal unit vector, 𝒕𝐼 is parallel to the velocity 

velocity vector at first cell center P and 𝒕𝑰𝑰 = 𝑒𝑖𝑗𝑘𝑛𝑗𝑡𝑘
𝐼 . 

- Compute the “artificial” 𝑣𝑡|
𝑓 value using: 

𝑣𝑡
𝑓
= −

𝑣𝜏
2

(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖
)
𝑓

𝑛𝑗𝑡𝑖
𝐼

− 𝑣 ≈ |𝑃𝑓|
𝑣𝜏
2

𝑣𝑖
𝑃𝑡𝑖
𝐼 − 𝑣 

(19) 

 

Here, 𝑣𝑖|
𝑓 = 0 is not imposed as a “hard” conditions, but practically results from the fact that 

𝑓 is located at the fluid-solid boundary. 

 

- Compute the viscous flux at 𝑓 through: 

−[(𝑣 + 𝑣𝑡) (
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣

𝜕𝑥𝑖
)]

𝑓

𝑛𝑗 ≈ −(𝑣 + 𝑣𝑡
𝑓
)
𝑣𝑖
𝑓
− 𝑣𝑖

𝑃

|𝑃𝑓|
 (20) 

 

i.e. the normal velocity gradient at 𝑓 is computed through a local FD scheme. However, any 

differentiation normal to the boundary must be avoided on the coarses meshes used with high 

Re turbulence models. So that error made due the discretization of the normal velocity gradient 

is corrected by computing and using an artificial 𝑣𝑡
𝑓

, so that the wall shear stress and that 

computed by differentiating the velocity field in space and multiplying by 𝑣𝑡
𝑓

 be equal.  

Regarding the rest of the domain boundaries, typical boundary conditions imposed for internal 

aerodynamics simulations are used. Then, the Hamilton-Jacobi equation is used to compute the 

distances from the evolving fluid-solid interface, 𝑆𝑎 (See derivation at [4] section 4.4.1.) [4]. 

 



2.2. Turbulent State Equations 

 

An optimization problem defined as minimize the objective function 𝐹, subject to 𝐸 equality 

constraints can be expressed as: 

Min 𝐹 

Subject to 𝑐𝑘 = 0, 𝑘 = 1,… , 𝐸 

 

The Augmented Lagrange Multiplier (ALM) method is used to cope with equality constraints. In the 

ALM, the Lagrangian function L is defined as: 

𝐿 = 𝐹 − 𝜆𝑘𝑐𝑘 +𝑤𝑐𝑘
2 (21) 

 

where 𝜆𝑘 is the 𝑘 − 𝑡ℎ Lagrange multipliers and 𝑤 a scalar weight factor. Since the restrictions of 

each variable are set to zero, i.e. 𝑅𝑝 = 𝑅𝑖
𝑣 = 𝑅𝑣̃ = 𝑅∆ = 0, an augmented objective function 𝐿𝑎𝑢𝑔, 

can be defined and minimized instead, defined as: 

𝐿𝑎𝑢𝑔 = 𝐿 +∫𝑞𝑅
𝑝

 

Ω

𝑑Ω +∫𝑢𝑖𝑅𝑖
𝑣

 

Ω

𝑑Ω +∫ 𝑣̃𝑎𝑅 
𝑣̃

 

Ω

𝑑Ω +∫∆𝑎𝑅 
∆

 

Ω

𝑑Ω (22) 

 

Since in topology optimization there are no changes in the computational domain and mesh, the 

total derivate is equal to the partial derivative:  

𝛿𝜙

𝛿𝛼
=
𝜕𝜙

𝜕𝛼
,

𝛿𝑆𝜙

𝛿𝛼
=
𝜕𝜙

𝜕𝛼
 (23) 

 

therefore, the variation in the augmented function with respect to the porosity variable is expressed 

as: 

𝛿𝐿𝑎𝑢𝑔

𝛿𝛼
=
𝛿𝐹

𝛿𝛼
+ (−𝜆𝑘 + 2𝑤𝑐𝑘

 )
𝛿𝑐𝑘
𝛿𝛼

+ ∫ 𝑞
𝜕𝑅𝑝

𝜕𝛼

 

Ω

𝑑Ω +∫ 𝑢𝑖
𝜕𝑅𝑖

𝑣

𝜕𝛼

 

Ω

𝑑Ω +∫ 𝑣̃𝑎
𝜕𝑅 

𝑣̃

𝜕𝛼

 

Ω

𝑑Ω

+∫ ∆𝑎
𝜕𝑅∆

𝜕𝛼

 

Ω

𝑑Ω 

(24) 

 



The derivative depends of the objective function to be analyzed 
𝛿𝐹

𝛿𝛼
, and its constraints imposed, 

𝛿𝑐𝑘

𝛿𝛼
, 

further detail on a derivation for a general objective function or constrained can be found at [4], 

section 3.3.2. Focusing on the Navier Stokes equations, 
𝜕𝑅𝑝

𝜕𝛼
 and 

𝜕𝑅∆

𝜕𝛼
 are equal to zero as are not 

expressed in terms of the design variable. Then, the next two integrals are defined as: 

∫ 𝑢𝑖
𝜕(𝛼𝑣𝑖)

𝜕𝛼

 

Ω

𝑑Ω = ∫𝑢𝑖𝑣𝑖

 

Ω

𝑑Ω +∫ 𝛼𝑢𝑖
𝜕𝑣𝑖
𝜕𝛼

 

Ω

𝑑Ω (25) 

 

∫ 𝜈𝑎̌
𝜕(𝛼𝜈̌)

𝜕𝛼

 

Ω

𝑑Ω = ∫𝜈 ̌𝜈𝑎̌

 

Ω

𝑑Ω +∫ 𝛼𝜈𝑎̌
𝜕𝜈̌

𝜕𝛼

 

Ω

𝑑Ω (26) 

 

 

2.3. Field Adjoint Equations 

Therefore, the turbulent field adjoint equations can be read as: 

𝑅𝑞 = −
𝜕𝑢𝑗

𝜕𝑥𝑗
= 0 

𝑅𝑖
𝑢 = 𝑢𝑗

𝜕𝑣𝑗

𝜕𝑥𝑖
−
𝜕(𝑣𝑗𝑢𝑖)

𝜕𝑥𝑗
−
𝜕

𝜕𝑥𝑗
[(𝜐 + 𝜐𝑡) (

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)] +

𝜕𝑞

𝜕𝑥𝑖
+ 𝜈𝑎̌

𝜕𝜈 ̌
𝜕𝑥𝑖

−
𝜕

𝜕𝑥𝑖
(𝜈𝑎̌𝜈 ̌

𝐶𝑌
𝑌
𝑒𝑚𝑗𝑘

𝜕𝑣𝑘
𝜕𝑥𝑗

𝑒𝑚𝑙𝑖) + 𝛼𝑢𝑖⏟
𝑇𝑎,𝑢

= 0 

𝑅𝑣̃𝑎 = −
𝜕(𝑣𝑗𝑣̃𝑎)

𝜕𝑥𝑗
−
𝜕

𝜕𝑥𝑗
[(𝜐 +

𝑣̃ 
𝜎
)
𝜕𝑣̃𝑎
𝜕𝑥𝑗

] +
1

𝜎

𝜕𝑣̃𝑎
𝜕𝑥𝑗

𝜕𝑣̃ 
𝜕𝑥𝑗

+
2𝑐𝑏2
𝜎

𝜕

𝜕𝑥𝑗
(𝑣̃𝑎

𝜕𝑣̃ 
𝜕𝑥𝑗
) + 𝑣̃𝑎𝑣̃ 𝐶𝑣̃ 

+
𝜕𝑣𝑡 
𝜕𝑣̃

𝜕𝑢𝑖 
𝜕𝑥𝑗

× (
𝜕𝑣𝑖 
𝜕𝑥𝑗

+
𝜕𝑣𝑗 
𝜕𝑥𝑖

) + (−𝑃 + 𝐷)𝑣̃𝑎 + 𝛼𝑣̃𝑎⏟
𝑇𝑎,𝑣̃𝑎

= 0 

𝑅∆𝑎 = −2
𝜕

𝜕𝑥𝑗
(∆𝑎

𝜕∆

𝜕𝑥𝑗
) + 𝑣̃𝑣̃𝑎𝐶∆ = 0 

(27) 

 

The terms marked as 𝑇𝑎,𝑢 and 𝑇𝑎,𝑣̃𝑎 results from the differentiation of the porosity dependent terms, 

indicating that 𝑢𝑖 and 𝑣̃𝑎 will have practically zero values in the solidified parts of the porous media 

domain.  

 



2.4. Turbulent Adjoint Boundary conditions 

As the terms 𝑇𝑎,𝑣 and 𝑇𝑎,𝑣̃ of the primal equations do not contain a differential operator, they do 

not contribute any additional term to the adjoint boundary conditions. Furthermore, in topology 

optimization the total derivative is equal to the partial derivative, leading to conclude boundary 

condition of topology optimization problem based on the high-Re Spalart-Allmaras model is 

identical to the presented at shape optimization which is explained at following. 

After satisfying the field adjoint equations, the remaining terms of the augmented objective function 

gradient for topology optimization, where non parametrized wall boundary is used (𝑆𝑊𝑝), reads as: 

𝛿𝐹𝑎𝑢𝑔

𝛿𝑎𝑛
= ∫ 𝐵𝐶𝑖

𝑢
𝜕𝑣𝑖
𝜕𝑎𝑛

 

𝑆

𝑑𝑆 + ∫ (𝑢𝑗𝑛𝑗 +
𝜕𝐹𝑆𝑖
𝜕𝑝

𝑛𝑖)
𝜕𝑝

𝜕𝑎𝑛

 

𝑆

𝑑𝑆 + ∫ (−𝑢𝑖𝑛𝑗 +
𝜕𝐹𝑆𝑘
𝜕𝜏𝑖𝑗

𝑛𝑘)
𝜕𝜏𝑖𝑗

𝜕𝑎𝑛

 

𝑆

𝑑𝑆 (28) 

 

where the sub-index 𝑆 at the integrals stands for the boundaries to be analysed, either inlet, outlet 

or at the walls. 

2.4.1. Inlet Boundaries, 𝑺𝑰 

At the inlet boundaries, 𝛿𝑣𝑖/𝛿𝑎𝑛 = 𝜕𝑣𝑖/𝜕𝑎𝑛=0, then the first integral vanishes. The second and 

third integrals must take the following values to accomplish the equal zero condition: 

𝑢〈𝑛〉 = 𝑢𝑗𝑛𝑗 = −
𝜕𝐹𝑆𝐼,𝑖
𝜕𝑝

𝑛𝑖 

𝑢〈𝑡〉
𝐼 =

𝜕𝐹𝑆𝐼,𝑘
𝜕𝜏𝑖𝑗

𝑛𝑘𝑡𝑖
𝐼𝑛𝑗 +

𝜕𝐹𝑆𝐼,𝑘
𝜕𝜏𝑖𝑗

𝑛𝑘𝑡𝑗
𝐼𝑛𝑖 

𝑢〈𝑡〉
𝐼𝐼 =

𝜕𝐹𝑆𝐼,𝑘
𝜕𝜏𝑖𝑗

𝑛𝑘𝑡𝑖
𝐼𝐼𝑛𝑗 +

𝜕𝐹𝑆𝐼,𝑘
𝜕𝜏𝑖𝑗

𝑛𝑘𝑡𝑗
𝐼𝐼𝑛𝑖 

(29) 

 

where 𝑡𝑖
𝐼, 𝑡𝑖

𝐼𝐼 are the components of the tangent surface unit vector and 𝑢〈𝑡〉
𝐼 , 𝑢〈𝑡〉

𝐼𝐼  are the 

corresponding components of the adjoint velocity. 

2.4.2. Outlet Boundaries, 𝑺𝒐 

Along the outlet boundaries 𝛿𝑝/𝛿𝑎𝑛 = 𝜕𝑝/𝜕𝑎𝑛=0, which makes vanish the second integral of the 

equation 𝛿𝐹𝑎𝑢𝑔/𝛿𝑎𝑛. Also, by assuming an almost uniform velocity profile along 𝑆𝑜, the third 

integral can be neglected. This leaves that the first integrand to be zeroed   



2.4.3. Unparameterized/fixed wall boundaries, 𝑺𝑾 

For high Reynolds values using wall functions, the equation for the Spalart Allmaras turbulence 

model varies as 

𝛿𝐹𝑎𝑢𝑔

𝛿𝑎𝑛
= ∫ 𝐵𝐶𝑖

𝑢
𝜕𝑣𝑖
𝜕𝑎𝑛

 

𝑆

𝑑𝑆 + ∫ (𝑢𝑗𝑛𝑗 +
𝜕𝐹𝑆𝑖
𝜕𝑝

𝑛𝑖)
𝜕𝑝

𝜕𝑎𝑛

 

𝑆

𝑑𝑆 + ∫ (−𝑢𝑖𝑛𝑗 +
𝜕𝐹𝑆𝑘
𝜕𝜏𝑖𝑗

𝑛𝑘)
𝜕𝜏𝑖𝑗

𝜕𝑎𝑛

 

𝑆

𝑑𝑆

+∫ 𝐵𝐶 
𝑣𝑎̃
𝜕𝑣̃

𝜕𝑎𝑛

 

𝑆

𝑑𝑆 − ∫ 𝑣𝑎̃ (𝑣 +
𝑣̃

𝜎
)
𝜕

𝜕𝑎𝑛
(
𝜕𝑣̃

𝜕𝑥𝑗
)𝑛𝑗

 

𝑆

𝑑𝑆 + ∫ 2∆𝑎
𝜕∆

𝜕𝑥𝑗
𝑛𝑗
𝜕∆

𝜕𝑏𝑛

 

𝑆

𝑑𝑆 

(30) 

 

Since 𝑆𝑊 is fixed, the partial and total derivatives of any flow quantity are identical and the total 

derivatives of the normal and tangent unit vectors are equal to zero. Due to the Dirichlet condition 

imposed on 𝑣̃, the fourth integral vanishes. To make the equation independent of 
𝜕

𝜕𝑎𝑛
(
𝜕𝑣̃

𝜕𝑥𝑗
)𝑛𝑗, a 

zero Dirichlet condition is imposed on 𝑣𝑎̃. To eliminate the dependency on 
𝜕𝑝

𝜕𝑎𝑛
, the normal adjoint 

velocity must be equal to 

𝑢{𝑛} = −
𝜕𝐹𝑆𝑊,𝑖
𝜕𝑝

𝑛𝑖 (31) 

 

By further developing the first and third integrals a Dirichlet condition for 𝑢〈𝑡〉
𝐼𝐼  results along with the 

following expression 

𝑢𝜏
2 = (𝜈 + 𝜈𝑡) (

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) 𝑛𝑗𝑡𝑖

𝐼 = 0 (32) 

 

which can be characterized as the square adjoint friction velocity and its role is similar to that of the 

primal friction velocity, i.e. is used to compute the adjoint viscous flux in order to complete the 

adjoint momentum equilibrium at the first cell adjacent to 𝑆𝑊 (Figure 8). The adjoint friction velocity 

is an indispensable part of the adjoint system of equations to the high-Re Spalart-Allmaras model, 

because the long distance between 𝑓(face) and 𝑃(center), differentiating normal to the wall is prone 

to important errors, established at [4] section 5.3. 

 



2.5. Turbulent Sensitivity Derivatives 

After satisfying the field adjoint eqautions and their boundary conditions, the rmaining terms giving 

the gradient expressions reads as 

δ𝐿𝑎𝑢𝑔

δ𝛼
= ∫𝑣𝑖𝑢𝑖

 

Ω

𝑑Ω
⏟      

𝑆𝐷1

+∫𝑣 ̃𝑣𝑎̃

 

Ω

𝑑Ω
⏟      

𝑆𝐷2

+∫ [𝐹́Ω
𝛼 + (−𝜆𝑘 + 2𝑤𝑐𝑘)𝑐𝑘́Ω

𝛼]
 

Ω

𝑑Ω
⏟                    

𝑆𝐷3

 
(33) 

 

The terms 𝐹́Ω
𝛼 and 𝑐𝑘́Ω

𝛼  denote the direct dependency of the objective and constraint functions on 

the porosity variable. In areas where 𝑣𝑖 and 𝑢𝑖 form an obtuse angle, the local sensitivity is negative 

leding to an increase in the local porosity value (solid), and reversely in areas with acute angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Turbulent Adjoint Solver: AdjointOptimizationFoam  

The solver is label as “adjointOptimizationFOAM” and its first version has been released at the 

OpenFOAM version 1906 since June of 2019. It is a functionality targeting automated gradient-based 

optimization loop assisted by the continuous adjoint method that supports multiple types of 

optimization (shape, topology etc). The solver is being constructed and up to his point works solves 

the state, adjoint and sensitivities equations of incompressible steady-state turbulent flow, which 

forms the highlighted parts of the following optimization loop: 

 

Figure 5.7.1. Turbulent adjoint solver functions in OpenFOAM. 

 

The advantage of considering this solver is the inclusion of turbulent effects. The solver structure is 

explained at the adjointOptimizationFoam.C file, starting by the classes that solve the fundamental 

tools of finite volume calculation (fvCFD.H), the class uncharged of making the optimization which 

has not been released yet just constructed (optimizationManager.H), the one of solving the state 

equations if necessary (primalSolver.H) and finally the one to calculate adjoint turbulent equations 

manager (adjointSolverManager.H):  

 
#include "fvCFD.H" 

#include "optimisationManager.H" 

#include "primalSolver.H" 

#include "adjointSolverManager.H" 

 

 
Then, each class parameter is called to solve the optimisation problem, as stated in Figure , starting 

with the |time loop solve the primal equations, then the adjoint equations an finally the sensitivity 

calculation. It can be seen that the optimisation library is called as well to close the loop of the 

optimisation, but it has not been created yet, there is only the structure of the software: 



 
     
    Info<< "\nStarting time loop\n" << endl; 

 

    for (om++; !om.end(); om++) 

    { 

        Info<< "* * * * * * * * * * * * * * * * * * *" << endl; 

        Info<< "Time = " << runTime.timeName()         << endl; 

        Info<< "* * * * * * * * * * * * * * * * * * *" << endl; 

 

        if (om.update()) 

        { 

            om.updateDesignVariables(); 

        } 

        else 

        { 

            om.solvePrimalEquations(); 

        } 

 

        om.updatePrimalBasedQuantities(); 

 

        om.solveAdjointEquations(); 

 

        om.computeSensitivities(); 

    } 

    Info<< "End\n" << endl; 

 

    return(0); 

} 

 

To control every function of the adjoint software, the createFields.H uses the optimisation manager 

declared as: 

 
createFields.H: 
 
    autoPtr<optimisationManager> optManagerPtr 

    ( 

        optimisationManager::New(mesh) 

    ); 

    optimisationManager& om = optManagerPtr(); 

 
 

 

 

 

 



and composed by the following directories in OpenFOAM: 

 

Figure 5.7.2. Optimisation Manager structure 

each one pointing to the function controller solver, i.e. the controller of the primal solver resolution, 

the adjoint solver resolution and the optimisation type to be used, at this case incompressible 

optimisation only available. Inside each function controller solver can be found the was as the 

coupling of the state variables are made, e.g. SIMPLE algorithm for the primal solver resolution. At 

following the adjoint turbulent solver function is explained.  

 

Make 

The folder is composed by two directories label as “files” and “options”. 

 Files 

At first the name of the solver is specified, followed by the commund that creates the execution 

script of the developed solver, at this case “adjointOptimisationFoam”. 

 

adjointOptimisationFoam.C 

 

EXE = $(FOAM_APPBIN)/adjointOptimisationFoam 

 

 

 



 Options 

The different libraries created in the OpenFOAM source are called such as finite volume calculations, 

turbulence models, turbulence models used at incompressible flow for this case, transport models, 

and for this case, the calculation of the adjoint, which will be analyzed. 

 

EXE_INC = \ 

    -I$(LIB_SRC)/finiteVolume/lnInclude \ 

    -I$(LIB_SRC)/fvOptions/lnInclude \ 

    -I$(LIB_SRC)/meshTools/lnInclude \ 

    -I$(LIB_SRC)/sampling/lnInclude \ 

    -I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \ 

    -I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \ 

    -I$(LIB_SRC)/transportModels \ 

    -

I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \ 

    -I$(LIB_SRC)/optimisation/adjointOptimisation/adjoint/lnInclude 

 

 

EXE_LIBS = \ 

    -lfiniteVolume \ 

    -lfvOptions \ 

    -lmeshTools \ 

    -lsampling \ 

    -lturbulenceModels \ 

    -lincompressibleTurbulenceModels \ 

    -lincompressibleTransportModels \ 

    -ladjointOptimisation 

 

 

3.1. adjointOptimisation solver 

To compute the adjoint equations and the sensitivities, the adjointSolverManager is called in the 

code as following: 

void Foam::adjointSolverManager::solveAdjointEquations() 
{    for (adjointSolver& solver : adjointSolvers_)     

    {         

    objectiveManager& objManager = solver.getObjectiveManager();         
    objManager.updateAndWrite(); 
    solver.solve();    }} 
 

 

 

 



being linked at different structures inside the code as shown in Figure . 

 

Figure 5.7.3. adjointSolverManager pointers structure. 

 

which ended up being composed by the adjointSimple solver, found at: 

$FOAM_SRC/optimization/solvers/adjointSolvers/incompressible/adjointSimple 

 

The main function of the adjointSimple solver starts by linking the time step iteration with the 

faces fluxes of the state equations results: 

void Foam::adjointSimple::solveIter() 

{ 

    const Time& time = mesh_.time(); 

    Info<< "Time = " << time.timeName() << "\n" << endl; 

 

    const surfaceScalarField& phi = primalVars_.phi(); 

 

And define the adjoint references: get the adjoint variables (getAdjointVars), the adjoint 

pressure defined as a volumetric scalar field (pa = adjointVars.paInst), the adjoint velocity 

as a volumetric vector field (Ua = adjointVars.UaInst), the adjoint flux as a surface scalar 

field (phia = adjointVars.phiaInst), the adjoint turbulence called as an object of the 

adjointRASModel of the incompressibleAdjoint class 

(adjointTurbulence=adjointVars.adjointTurbulence) and assigning the reference cell 

and reference value the adjoint pressure: 

// Grab adjoint references 

    incompressibleAdjointVars& adjointVars = getAdjointVars(); 

    volScalarField& pa = adjointVars.paInst(); 

    volVectorField& Ua = adjointVars.UaInst(); 

    surfaceScalarField& phia = adjointVars.phiaInst(); 

    autoPtr<incompressibleAdjoint::adjointRASModel>& adjointTurbulence 

= 

        adjointVars.adjointTurbulence(); 

    const label&  paRefCell  = solverControl_().pRefCell(); 

    const scalar& paRefValue = solverControl_().pRefValue(); 

 



Then the momentum equation is defined 

  // Momentum predictor 

    //~~~~~~~~~~~~~~~~~~~ 

 

    tmp<fvVectorMatrix> tUaEqn 

    ( 

        fvm::div(-phi, Ua) 

      + adjointTurbulence-

>divDevReff(Ua) 

      + adjointTurbulence-

>adjointMeanFlowSource() 

      == 

        fvOptionsAdjoint_(Ua) 

    ); 

     

fvVectorMatrix& UaEqn = 

tUaEqn.ref(); 

∇ ∙ (−𝜙𝑈𝑎) + 𝐷𝑖𝑣𝐷𝑒𝑣𝑅𝑒𝑓𝑓(𝑈𝑎)

+ 𝑎𝑑𝑗𝑜𝑖𝑛𝑡𝑀𝑒𝑎𝑛𝐹𝑙𝑜𝑤𝑆𝑜𝑢𝑟𝑐𝑒( ) = 𝑈𝑎 

 

𝐷𝑖𝑣𝐷𝑒𝑣𝑅𝑒𝑓𝑓(𝑈𝑎)

= −∇(∇𝑣𝑒𝑓𝑓𝑈) − ∇

∙ (𝑣𝑒𝑓𝑓∇(𝑈𝑇)) 

𝑎𝑑𝑗𝑜𝑖𝑛𝑡𝑀𝑒𝑎𝑛𝐹𝑙𝑜𝑤𝑆𝑜𝑢𝑟𝑐𝑒

= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑓 𝑐ℎ𝑜𝑠𝑒𝑛 

Therefore the initial equation is: 

−∇ ∙ (𝑈𝑎) − ∇(∇𝑣𝑒𝑓𝑓𝑈𝑎) − ∇ ∙ (𝑣𝑒𝑓𝑓∇(𝑈𝑎𝑇))

= 𝑈𝑎 

 

 

Then, the boundary condition, the objective function, the addition of ATC terms and the source of 

the Optimisation type are set, to calculate the adjoint velocity equation (UaEqn): 

    UaEqn.boundaryManipulate(Ua.boundaryFieldRef()); 

 

    objectiveManagerPtr_().addUaEqnSource(UaEqn); 

 

    ATCModel_->addATC(UaEqn); 

 

    addOptimisationTypeSource(UaEqn); 

 

Then the adjoint velocity equation is relaxed, and the adjoint constraint is applied to the same: 

    UaEqn.relax(); 

 

    fvOptionsAdjoint_.constrain(UaEqn); 

 

Finally, the adjoint velocity equation is equaled to the adjoint pressure, request to be solved and 

correct the adjoint velocity: 

    if 

(solverControl_().momentumPredictor()) 

    { 

        Foam::solve(UaEqn == -

fvc::grad(pa)); 

 

 

𝑈𝑎 = −∇𝑝𝑎 



 

        fvOptionsAdjoint_.correct(Ua); 

    } 

 

 

After that, a Simple adjoint momentum corrector solver is implemented to couple the adjoint 

variables. The way is implemented obeys the same order as its defined in the simpleFoam solver. 

 

3.2. Sensitivity calculation 

As presented in section 2.5, the sensitivity calculation is obtained after the augmented Lagrangian 

derivation with respect to its design variable: 

δ𝐿𝑎𝑢𝑔

δ𝛼
= ∫𝑣𝑖𝑢𝑖

 

Ω

𝑑Ω
⏟      

𝑆𝐷1

+∫𝑣 ̃𝑣𝑎̃

 

Ω

𝑑Ω
⏟      

𝑆𝐷2

+∫ [𝐹́Ω
𝛼 + (−𝜆𝑘 + 2𝑤𝑐𝑘)𝑐𝑘́Ω

𝛼]
 

Ω

𝑑Ω
⏟                    

𝑆𝐷3

 

The implementation of the sensitivity calculation can be found at: 

$FOAM_SRC/optimisation/adjointOptimisation/adjoint/optimisation/adjointSensitiv

ity/incompressible/adjointSensitivity 

 

At the end of the adjoint sensitivity member function, the sensitivity calculation can be found as: 

// Compute dxdb multiplier 

flowTerm = 

ATCModel->getFISensitivityTerm() 

- fvc::grad(p) * Ua 

- nuEff*(gradU & (gradUa + T(gradUa))) 

+ (- nuEff*(gradUa & (gradU + T(gradU))) 

       + fvc::grad(nuEff * Ua & (gradU + T(gradU))) 

+ (pa * gradU) 

// from the adjoint turbulence model 

       + turbulenceTerm.T() 

// Term 7, term from objective functions 

       + objectiveContributions; 

 

which in vectorial form can be written as: 

𝐴𝑇𝐶 + 𝛻𝑝 ∗ 𝑈𝑎 − 𝑣𝑒𝑓𝑓 ∗ (𝛻𝑢 ∙ (𝛻𝑢𝑎 + 𝛻𝑢
𝑇)) + (−𝑣𝑒𝑓𝑓 ∗ (𝛻𝑢𝑎 ∙ (𝛻𝑢𝑎 + 𝛻𝑢

𝑇)) + 𝛻(𝑣𝑒𝑓𝑓 ∗ 𝑈𝑎

∙ (𝛻𝑢𝑎 + 𝛻𝑢
𝑇) + 𝑝𝑎 ∗ 𝛻𝑢 + 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒𝑇𝑒𝑟𝑚 + 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 



3.3. AdjointOptimisationFoam user manual 

The present section describes the available options for using the adjointOptimisationFoam solver 

focusing in topology optimisation entries for turbulent flow mainly. To check the other entries 

available and shape optimisation, the reader is recommended to check [6]. 

 

3.3.1. optimisationDict 

Located at “system/optimisationDict”, is composed by the following commands: 

optimisationManager singleRun;  The “singleRun” entry is the only available 

at this point of the solver, which indicates 

that the primal and adjoint equations are 

solved without performing an optimisation 

loop. 

primalSolvers 

{ 

 

 The primalSolvers dictionary is where the 

solver of the primal equations are defined.  

    op1 

    { 

        active               true; 

 The “active” entry defines if the primal 

equations corresponding to the solver are 

going to be solved or not. 

        type       incompressible;  Only the incompressible option is available. 

        solver             simple;  Solution algorithm to solve the primal 

equations. Entrances available:  

“simple”: replace the behavior of 

simpleFoam.  

“RASTurbulenceModel”: solve the 

turbulence models PDEs.  

     useSolverNameForFields false;  If not specified it means that is in default as 

“false”. When specified as “true”, all flow 

variable names related to this solver will pe 

appended with the solver name (e.g. “U” 

would become “Uop1”). Then, the entries 

in fvSolution and fvSchemes have to 



appropriately be adapted manually. If set to 

true, boundary conditions will be read in 

the following way: If a file exists with the 

specific name (e.g. “Uop1”), boundary 

conditions will be read from there, 

otherwise, the code attempt to read the 

base file (e.g. “U”). If it fails, the code will 

exit with an appropriate error message. 

        solutionControls 

        { 

            consistent yes; 

            nIters 1000; 

            residualControl 

            { 

                "p.*"       1.e-5; 

                "U.*"       1.e-5; 

            } 

 

 Here are the entries to manage the solution 

process of the primal equations, e.g. when 

using the “simple” solver, the entries would 

be read through 

system/fvSolution/SIMPLE, which are not 

going to be explained here. 

            averaging 

            { 

 

 This is an optional entry that controls 

averaging of the primal fields during the 

solution of the primal equations. It is mainly 

used to feed the adjoint equations with 

averaged primal fields. 

                average     true;  It is set as false by default. If it is set as true, 

all primal field related to the solver will be 

averaged (e.g. 𝑈, 𝑝, 𝑝ℎ𝑖, turbulence 

models, etc.). 

                startIter   500; 

            } 

        } 

    } 

} 

 Start iteration of the averaging process. 

adjointManagers 

{ 

    adjManager1 

    { 

 One “adjointManager” should be defined 

for each primal solver present in the 

“primalSolvers” dictionary. It is responsible 

for the adjoint PDEs to be solved at the 

corresponding operating point. 



        primalSolver          op1;  Indicate the name of primal solver (e.g. 

op1) 

        operatingPointWeight    1;  Its default value is 1. Stablishes the weight 

factor of using multiple objective functions, 

i.e. 𝐽 = ∑ 𝑤𝑖
𝑜𝑝
𝐽𝑗
𝑜𝑝 

𝑖 , where 𝑤𝑖
𝑜𝑝

 is the weight 

factor. 

        adjointSolvers 

        { 

            adjS1 

            { 

 

 Here a list of dictionaries are defined to set 

up the adjoint solvers to be used in this 

point. One set of adjoint PDEs will be solved 

for each adjoint solver and one 

corresponding set of sensitivity derivatives 

will be computed. Multiple adjointSolvers 

can be used if sensitivities of multiple 

objectives must be computed separately 

from each other.  

            //choose adjointsolver                 

                active       true; 

 True is stablished by default, and specifies 

whether the adjoint equations are going to 

be solved for this adjointSolver. 

              Type incompressible;  Only incompressible is available. 

             Solver adjointSimple;  Solution algorithm used to solve the adjoint 

equations. Only adjointSimple is available. 

     useSolverNameForFields false;  “false” is stablished as default. Its 

equivalent at the defined in the 

primalSolvers section. Should be set to 

“true” if more than one adjointSolver is 

present. 

      computeSensitivities   true;  The default values is “true”. Specifies if 

should be computed sensitivity derivatives 

after solving the adjoint equations. 

              // manage objectives 

              objectives 

              { 

              type incompressible; 

 Type of objective functions to be 

constructed. Ony incompressible is valid for 

the moment. 



              objectiveNames  Here the list of dictionaries corresponding 

to the objective functions to be minimized 

is specified. Each objective function value is 

written in a file located in the 

“optimisation” folder, under 

“objective/TimeName/objective 

Name+AdjointSolverName. One set of 

adjoint equations is solved for each 

“adjointSolver”, minimizing the weighted 

sum of the objectives declared in 

“objectiveNames”. 

                    { 

                        lift 

                        { 

                      weight   1.; 

                      type  force; 

       patches (pressure suction); 

       direction     (0.3 -0.9 0); 

       Aref                    2.; 

       rhoInf               1.225; 

       UInf                     1; 

                        } 

                    } 

                } 

 The entries in each dictionary under 

objectiveNames depend on the objective 

type. The two mandatory entries are: 

“type” (force, moment, PtLosses) 

“weight” objective Function weight. (if 

multiple objective functions are used). 

       // ATC treatment 

       ATCModel 

       { 

                 

 Here the options of the “Adjoint Transpose 

Convection (ATC) term are provided, which 

exists in the adjoint momentum equations. 

The ATC is numerically stiff and can often 

cause convergence difficulties for the 

adjoint equations. The ATCModel dict 

provides some options to smooth it in order 

to facilitate convergence in industrial cases. 

                ATCModel standard;  Available entrances: standard, UaGradU, 

cancel 

The “standard” computes it as 𝑢𝑗
𝜕𝑣𝑗

𝜕𝑥𝑖
, where 

𝑢 is the adjoint velocity vector and 𝑣 the 



primal velocity vector. It is formulated by 

differentiating the non-conservative form 

of the convection term in the primal 

momentum equations. 

“UaGradU” computes the ATC term as 

−𝑣𝑗
𝜕𝑢𝑗

𝜕𝑥𝑖
 and is formulated by differentiating 

the conservative form of the convection 

term in the primal momentum equations. 

“cancel” excludes the ATC term from the 

adjoint momentum equations during the 

solution of the adjoint PDEs.  

               extraConvection  0;  Default value is zero. In order to facilitate 

convergence, add and subtract the adjoint 

convection term this many times, using 

slightly different discretization schemes in 

order to add numerical dissipation. 

               nSmooth          0;  Default value of zero. Propagate the 

smoothing of the ATC term applied to the 

cells collected through zeroATCPatchTypes 

and zeroATCZones, by using a Laplacian-like 

filter nSmooth times. 

            zeroATCPatchTypes ();  Defaults to an “empty” wordlist. Zero the 

ATC term next to patches of the provided 

types. No zeroing will be conducted if the 

wordlist is empty. 

            ZeroATCZones      ();  Similar to the previous described, but works 

on the provided cellZones. 

            maskType    faceCells; 

 

} 

 Default is “faceCells” but can be specified as 

pointCells. It stablishes how will the cells 

next to the zeroATCPatchTypes will be 

chosen for smoothing the ATC term. If 



faceCells is used, every cell having a face in 

the zeroATCPatchTypes boundaries will be 

chosen whereas if pointCells is used, every 

cell that has a point in the 

zeroATCPatchTypes will be used. 

       // solution control 

                solutionControls 

                { 

                    nIters 3000; 

                                     

ResidualControl 

               { 

               "pa.*"       1.e-6; 

               "Ua.*"       1.e-6; 

               "nuaTilda.*" 1.e-6; 

                    } 

                } 

            } 

        } 

 Has entries to manage the solution process 

of the adjoint equations. Its entries are the 

same as the ones in the solutionControls 

dictionary of the primalSolvers dict. 

Averaging can be applied to the adjoint 

fields, and the mean adjoint fields will be 

used to compute the sensitivity derivatives.  

Additional entries read:  

 

PrintMaxMags                false;  Established as false by default.  Define 

whether to print the maximum values of 

the adjoint field to the log file. These can be 

useful indicators of simulation stability. 

 

If sensitivity derivatives are computed, then the following optimisation part should be included: 

optimisation 

{ 

    sensitivities 

    { 

 At the sensitivities dict, the setup for the 

computation of sensitivity derivatives is 

provided. Sensitivities will be computed 

after all adjoint PDEs are solved, for the 

adjoint solvers for which 

“computeSensitivities” is set to “true”. 

Only two entries are mandatory: 

        type            surfacePoints; 

  

 

 Avialable options: “surface”, 

“surfacePoints” and “sensitivityMultiple”. 

       patches         (lower upper); 

    } 

} 

 The patches to compute sensitivities. 



 

 

optimisation/sensitivity/type: surface 

The “surface” entry is used to compute the sensitivity maps, i.e. the derivative of the objective 

function with respect to the normal displacement of the boundary wall faces. It is related to mesh 

movement in the domain of shape optimisation, therefore is not described, except for the 

“includeDistance” entry related to the Spalart-Allmaras turbulence model. The way as the “surface” 

entry looks is shown at following, the other entries should be set as “false” because “true” is the 

default value. 

Table 2. “surface” entries at sensitivities calculation. 

type  

patches  

includeSurfaceArea  

includeObjectiveContribution 

includeMeshMovement 

includeDistance 

surface ; 

( "wall . * " ) ; 

false; 

false; 

false; 

true; 

 

IncludeDistance: Used for cases including the adjoint to the Spalart-Allmaras turbulence model. If is 

set to “true” the boundary conditions for the adjoint distance field should be set, which is a 

volScalarField named as “da”. The BC should be set as “fixedValue” for inlet and oulet 

boundaries, and “zeroGradient” for walls. Then, the adjoint field “da” is generated automatically by 

the code, unless read from the current time-step folder. In addition, a  solver for “da” should be 

added to “fvSolution” along with a realaxation factors for the “da” equation. A discretization scheme 

for 𝑑𝑖𝑣(−𝑖𝑃ℎ𝑖, 𝑑𝑎) should be added in “𝑓𝑣𝑆𝑐ℎ𝑒𝑚𝑒𝑠/𝑑𝑖𝑣𝑆𝑐ℎ𝑒𝑚𝑒𝑠”. The adition of the 

“𝑎𝑑𝑗𝑜𝑖𝑛𝑡𝐸𝑖𝑘𝑜𝑛𝑎𝑙𝑆𝑜𝑙𝑣𝑒𝑟” is not necessary entry as it is working for topology optimisation. 

 

optimisation/sensitivity/type: surfacePoints 

It accomplishes the same function as “surface”, but sensitivities are computed with respect to the 

normal displacement of boundary points, not faces. When sensitivity maps are of interest, this 

option is preferred to “surface” since some of the terms included in the computations (e.g. variation 

in the normal vector) are better posed when differentiating with respect to points.  

 



optimisation/sensitivity/type: multiple 

Ir provides a framework for computing multiple types of sensitivity derivatives. Sensitivities will be 

computed for all sub-dictionaries in sensTypes.  

Table 3. "multiple" example entrie at sensitivies definition for optimisation. 

sensitivities 

{ 

  type          multiple ; 

  patches      ( lower upper ) ; 

  sensTypes 

  { 

       faces 

       { 

         type    surface ; 

         patches ( lower upper ) ; 

       } 

       points 

       { 

         type     surfacePoints ; 

         patches  ( lower upper ) ; 

       } 

   } 

} 

 

 

3.3.2. fvSolution and fvSchemes 

 fvSolution 

Relaxation factors for the adjoint turbulence variables are generally small (≈ 0.1) for industrial 

cases. A relaxation of about 0.5 is utilized when solving the adjoint distance PDE for 𝑑𝑎.  

 FvSchemes 

Additional entries need to be provided in all subDicts of fvSchemes in order to solve the adjoint 

PDEs. A 𝑑𝑖𝑣𝑆𝑐ℎ𝑒𝑚𝑒 of the form of 𝑑𝑖𝑣(−𝑝ℎ𝑖, 𝑎𝑑𝑗𝑜𝑖𝑛𝑡𝐹𝑖𝑒𝑙𝑑) should be used for the convection 

term of the adjoint mean flow and turbulence model PDEs. Also, a 𝑑𝑖𝑣(−𝑦𝑃ℎ𝑖, 𝑑𝑎) should be used 

for the adjoint distance convection term. A first order scheme, like 𝐺𝑎𝑢𝑠𝑠 𝑢𝑝𝑤𝑖𝑛𝑑 might be needed 

to ensure convergence in challenging industrial cases. An example of the 𝑑𝑖𝑣𝑆𝑐ℎ𝑒𝑚𝑒 is provided at 

Table 4. 

 

 



Table 4. divScheme used at tutorial naca0012 turbulent. 

divSchemes 

{ 

    default            Gauss linear; 

    div(phi,U)         bounded Gauss linearUpwind gradUConv; 

    div(-phi,Ua)       bounded Gauss linearUpwind gradUaConv; 

    div(yPhi,yWall)            Gauss linearUpwind gradDConv; 

 

    div(phi,nuTilda)   bounded Gauss linearUpwind gradNuTildaConv; 

    div(-phi,nuaTilda) bounded Gauss linearUpwind gradNuaTildaConv; 

    div(-yPhi,da)              Gauss linearUpwind gradDaConv; 

} 
 

3.3.3. Turbulence modeling 

Inside the constant folder, a directory label as “adjointRASProperties” specifies the adjoint 

turbulence properties as follows: 

 

adjointRASModel adjointSpalartAllmaras; 

 

 There are two options available: 

“adjointLaminar” and 

“adjointSpalartAllmaras”. The first one is 

used when solving laminar flow or using 

the “frozen turbulence assumption”. The 

second one solves the PDEs of the adjoint 

to the Spalart Allmaras turbulence model. 

At using it, BC should be set for nuaTilda. 

adjointSpalartAllmarasCoeffs 

{ 

    nSmooth           0; 

    zeroATCPatchTypes (); 

    maskType          faceCells; 

} 

 

adjointTurbulence on; 

 

 This entry is optional and its used for 

smoothing out numerically challenging 

terms. 

 

3.3.4. Adjoint boundary conditions 

 

These files are provided at the “0” folder and the type of adjoint BCs to be applied in each patch 

depends on the type of primal BCs used there. The guidelines provided are for the adjoint velocity 

(𝑈𝑎), the adjoint pressure (𝑝𝑎), adjoint turbulence mode (𝑛𝑢𝑎𝑇𝑖𝑙𝑑𝑎) and adjoint distance (𝑑𝑎). 

For constrained patches like symmetry, cyclic, etc.., the same BC types on the primal fields should 

also be applied to their adjoint counterparts.  Table 5 presents a summary of the available BC. 



Table 5. Adjoint boundary conditions. 

 
Adjoint Velocity 

(𝑈𝑎) 

Adjoint 

Pressure (𝑝𝑎) 

Adjoint modified 

viscosity “nuaTilda” (𝑣𝑎̃) 

Normal 

distance (𝑑𝑎) 

Inlet 

𝑢 = 𝑐𝑡𝑒 

𝛻𝑝 = 0 

𝑣𝑡 = 𝑐𝑡𝑒 

adjointInletVelo

city 
ZeroGradient AdjointOnletNuaTilda 

FixedValue 

uniform 0 

Outlet 

𝛻𝑢 = 0 

𝑝 = 𝑐𝑡𝑒, 

𝛻𝑣𝑡 = 0 

adjointOutletVel

ocity 

adjointOutle

tPressure 

adjointOutletNuaTild

a 

FixedValue 

uniform 0 

AdjointOutletVel

ocityFlux 

(back-flow 

observed) 

AdjointOutletNuaTild

a 

(back flow observed) 

Wall 

𝑢 = 𝑐𝑡𝑒 

𝛻𝑝 = 0 

adjointWallVeloc

ity 
 fixedValue 

zeroGradien

t adjointWallVeloc

ityLowRe 

Freestream 

InletOutlet 

adjointFarFieldV

elocity 

adjointFarFi

eldPressure 

adjointFarFieldNuaTi

lda 
 

 

 

 

 

 

 

 

 

 

 



STUDY QUESTIONS 

 

1. Different objective functions can be considered during an optimisation as total pressure 

loses or entropy generation. By considering such, how will be affected the programming 

on the  topology optimisation solvers? 

2. During the first step of the solver use, a discretization of the domain is made. How will 

affect the mesh density in topology optimisation ? 

3. After analizing the turbulent adjoint solver “adjointOptimisationFoam”, it can be seen that 

an optimisation is not feasible yet, why is it the reason? 

4. What will be the objective of developing a turbulent adjoint solver with a complex structure 

as the recent released one? 
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ANNEXES 

A1. Code to create “myAdjointShapeOptimization”  

#!/bin/sh 

mkdir topologyOptimization 

cd $WM_PROJECT_DIR 

cp -r applications/solvers/incompressible/adjointShapeOptimizationFoam 

$WM_PROJECT_USER_DIR/applications/solvers/topologyOptimization 

cd $WM_PROJECT_USER_DIR/applications/solvers/topologyOptimization 

mv adjointShapeOptimizationFoam myAdjointShapeOptimizationFoam 

cd myAdjointShapeOptimizationFoam 

mv adjointShapeOptimizationFoam.C myAdjointShapeOptimizationFoam.C 

sed -i s/FOAM_APPBIN/FOAM_USER_APPBIN/g Make/files 

sed -i s/adjointShapeOptimizationFoam/myAdjointShapeOptimizationFoam/g 

Make/files 

#modification of the steepest descent algorithm 

sed -i s/"alpha + lambda"/"alpha - lambda"/g myAdjointShapeOptimizationFoam.C 

#creating the power dissipation BC 

cp -r adjointOutletVelocity/ adjointOutletVelocityPower 

cp -r adjointOutletPressure/ adjointOutletPressurePower 

cd adjointOutletPressurePower 

sed s/adjointOutletPressure/adjointOutletPressurePower/g 

adjointOutletPressureFvPatchScalarField.C > 

adjointOutletPressurePowerFvPatchScalarField.C 

sed s/adjointOutletPressure/adjointOutletPressurePower/g 

adjointOutletPressureFvPatchScalarField.H > 

adjointOutletPressurePowerFvPatchScalarField.H 

cd ../adjointOutletVelocityPower 

sed s/adjointOutletVelocity/adjointOutletVelocityPower/g 

adjointOutletVelocityFvPatchVectorField.C > 

adjointOutletVelocityPowerFvPatchVectorField.C 

sed s/adjointOutletVelocity/adjointOutletVelocityPower/g 

adjointOutletVelocityFvPatchVectorField.H > 

adjointOutletVelocityPowerFvPatchVectorField.H 

cd .. 

rm adjointOutletPressurePower/adjointOutletPressureFvPatchScalarField.* 

rm adjointOutletVelocityPower/adjointOutletVelocityFvPatchVectorField.* 

#adding the BC 



sed -i '2 a 

adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C' 

Make/files 

sed -i '32 a #include "RASModel.H"' 

adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '104 a scalarField Up_n = phip / patch().magSf(); // Primal' 

adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '105 a scalarField Uap_n = phiap / patch().magSf(); // Adjoint' 

adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '106 a const incompressible::RASModel& rasModel 

=db().lookupObject<incompressible::RASModel>("TurbulenceProperties");' 

adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '107 a scalarField nueff = 

rasModel.nuEff()().boundaryField()[patch().index()];' 

adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '108 a const scalarField& deltainv = patch ().deltaCoeffs(); //distance 

inverse' 

adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '109 a scalarField Uaneigh_n = (Uap.patchInternalField() & 

patch().nf());' 

adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '111 a /*' 

adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '113 a */' 

adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '114 a operator== ((Up&Uap) + (Up_n*Uap_n) + nueff*deltainv*(Uap_n-

Uaneigh_n) - 0.5*mag(Up)*mag(Up) - (Up & patch().Sf()/patch().magSf())*(Up & 

patch().Sf()/patch().magSf()));' 

adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

#adjoint velocity power dissipation modification 

sed -i '3 a 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C' 

Make/files 

sed -i '32 a #include "RASModel.H"' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '93 a const fvsPatchField<scalar>& phip 

=patch().lookupPatchField<surfaceScalarField, scalar>("phi");' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '97 a const fvPatchField<vector>& Uap = 

patch().lookupPatchField<volVectorField, vector>("Ua");' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 



sed -i '101 a const incompressible::RASModel& rasModel = 

db().lookupObject<incompressible::RASModel>("TurbulenceProperties");' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '102 a scalarField nueff = 

rasModel.nuEff()().boundaryField()[patch().index()];' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '103 a const scalarField& deltainv = patch().deltaCoeffs();' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '104 a scalarField Up_ns = phip/patch().magSf();' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '105 a vectorField Up_t = Up - 

(phip*patch().Sf())/(patch().magSf()*patch ().magSf());' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '106 a //tangential component of adjoint velocity in neighbouring node' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '107 a vectorField Uaneigh = Uap.patchInternalField();' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '108 a vectorField Uaneigh_n = (Uaneigh & patch().nf())*patch().nf();' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '109 a vectorField Uaneigh_t = Uaneigh - Uaneigh_n;' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '110 a vectorField Uap_t = ((Up_ns*Up_t) + 

nueff*deltainv*Uaneigh_t)/(Up_ns+nueff*deltainv);' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '111 a vectorField Uap_n = 

(phiap*patch().Sf())/(patch().magSf()*patch().magSf());' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '117 a /*' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '120 a */' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '121 a operator==(Uap_t+Uap_n);' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

#including sensitivity 

sed -i '244 a sens=Ua&U;' myAdjointShapeOptimizationFoam.C 

sed -i '$ a volScalarField 

sens(IOobject("sensitivity",runTime.timeName(),mesh,IOobject::READ_IF_PRESENT,I

Oobject::AUTO_WRITE),Ua&U);' createFields.H 

#printing the cost function 

sed -i '$ a dictionary optFunc = 

mesh.solutionDict().subDict("objectiveFunctionDict");' createFields.H 



sed -i '$ a int nObjPatch = 

optFunc.lookupOrDefault<scalar>("numberObjectivePatches", 0);' createFields.H 

sed -i '$ a int objFunction = 

optFunc.lookupOrDefault<scalar>("objectiveFunction", 0);' createFields.H 

sed -i '$ a wordList objPatchNames=optFunc.lookup("objectivePatchesNames");' 

createFields.H 

sed -i '$ a Info<< "Initializing objective function calculation" << endl;' 

createFields.H 

sed -i '$ a Info<< "The objective function chosen is" << objFunction<<endl;' 

createFields.H 

sed -i '$ a Info<< "Name of the patches for which the cost function will be 

calculated" << objPatchNames<<endl;' createFields.H 

sed -i '$ a Info<< "Number of patches" << nObjPatch<<endl;' createFields.H 

sed -i '$ a label objPatchList [nObjPatch];' createFields.H 

sed -i '$ a int iLoop;' createFields.H 

sed -i '$ a for (iLoop=0; iLoop<nObjPatch; iLoop++){' createFields.H 

sed -i '$ a objPatchList [iLoop] = 

mesh.boundaryMesh().findPatchID(objPatchNames[iLoop]);}' createFields.H 

sed -i '103 a #include "costFunction.H"' myAdjointShapeOptimizationFoam.C 

touch costFunction.H 

echo "scalar jDissPower(0);">>costFunction.H 

sed -i '$ a for (iLoop=0; iLoop<nObjPatch; iLoop++)' costFunction.H 

sed -i '$ a {' costFunction.H 

sed -i '$ a if (objFunction==1) {' costFunction.H 

sed -i '$ a jDissPower = jDissPower - 

sum(phi.boundaryField()[objPatchList[iLoop]]*(p.boundaryField()[objPatchList 

[iLoop]] + 0.5*magSqr(U.boundaryField()[objPatchList[iLoop]])));' 

costFunction.H 

sed -i '$ a }' costFunction.H 

sed -i '$ a }' costFunction.H 

sed -i '$ a if (objFunction==1) {' costFunction.H 

sed -i '$ a Info<<"Objective Function (Power Dissipated) 

J:"<<jDissPower<<endl;}' costFunction.H 

#modifications to the code 

sed -i '33 a #include "IncompressibleTurbulenceModel.H"' 

adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '34 a #include "turbulentTransportModel.H"' 

adjointOutletPressurePower/adjointOutletPressurePowerFvPatchScalarField.C 

sed -i '33 a #include "IncompressibleTurbulenceModel.H"' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 

sed -i '34 a #include "turbulentTransportModel.H"' 

adjointOutletVelocityPower/adjointOutletVelocityPowerFvPatchVectorField.C 



 

 

A2. OptimisationManager.H 

#include "runTimeSelectionTables.H" 

#include "IOdictionary.H" 

#include "optimisationTypeIncompressible.H" 

#include "primalSolver.H" 

#include "adjointSolverManager.H" 

 

 

namespace Foam 

{ 

 

/*-------------------------------------------------------------*\ 

                     Class optimisationManager Declaration 

\*-------------------------------------------------------------*/ 

 

class optimisationManager 

: 

    public IOdictionary 

{ 

protected: 

 

    // Protected data 

 

        fvMesh& mesh_; 

        Time& time_; 

        PtrList<primalSolver> primalSolvers_; 

        PtrList<adjointSolverManager> adjointSolverManagers_; 

        const word managerType_; 

        autoPtr<incompressible::optimisationType> optType_; 

 

 

private: 

 

    // Private Member Functions 

 

        //- Disallow default bitwise copy construct 

        optimisationManager(const optimisationManager&) = delete; 

 

        //- Disallow default bitwise assignment 

        void operator=(const optimisationManager&) = delete; 

 

 

public: 

 

    //- Runtime type information 

    TypeName("optimisationManager"); 

 

 

    // Declare run-time constructor selection table 

 



        declareRunTimeSelectionTable 

        ( 

            autoPtr, 

            optimisationManager, 

            dictionary, 

            ( 

                fvMesh& mesh 

            ), 

            (mesh) 

        ); 

 

 

    // Constructors 

 

        //- Construct from components 

        optimisationManager(fvMesh& mesh); 

 

 

    // Selectors 

 

        //- Return a reference to the selected turbulence model 

        static autoPtr<optimisationManager> New(fvMesh& mesh); 

 

 

    //- Destructor 

    virtual ~optimisationManager() = default; 

 

 

    // Member Functions 

 

        virtual PtrList<primalSolver>& primalSolvers(); 

 

        virtual PtrList<adjointSolverManager>& 

adjointSolverManagers(); 

 

        virtual bool read(); 

 

        //- Prefix increment, 

        virtual optimisationManager& operator++() = 0; 

 

        //- Postfix increment, this is identical to the prefix 

increment 

        virtual optimisationManager& operator++(int) = 0; 

 

        //- Return true if end of optimisation run. 

        //  Also, updates the design variables if needed 

        virtual bool checkEndOfLoopAndUpdate() = 0; 

 

        //- Return true if end of optimisation run 

        virtual bool end() = 0; 

 

        //- Whether to update the design variables 

        virtual bool update() = 0; 

 

        //- Update design variables. 

        //  Might employ a line search to find a correction 

satisfying the step 



        //  convergence criteria 

        virtual void updateDesignVariables() = 0; 

 

        //- Solve all primal equations 

        virtual void solvePrimalEquations(); 

 

        //- Solve all adjoint equations 

        virtual void solveAdjointEquations(); 

 

        //- Compute all adjoint sensitivities 

        virtual void computeSensitivities(); 

 

        //- Solve all primal equations 

        virtual void updatePrimalBasedQuantities(); 

}; 

 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * * // 

 

} // End namespace Foam 

 

 


