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Learning outcomes

The reader will learn:

How to use it:

� How to use the interIsoFoam solver.

� How to use the setAlphaField utility.

The theory of it:

� The theory of the isoAdvector algorithm and the reconstruction scheme, plicRDF, available to
the interIsoFoam solver.

� The theory of the PIMPLE loop; the pressure-velocity coupling and the discretizations schemes
used in the interIsoFoam solver.

How it is implemented:

� The implementation details of the advection of the interface using isoAdvector

� The implementaion of the plicRDF reconstruction scheme.

� How we may recognize the discretization schemes in the implementation

How to modify it:

� How to use the TwoPhaseFlow library

� How to add an extension to the library

� How to utilize the isoAdvector algorithm to ensure a hydrostatic balance between pressure and
gravity
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Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

� How to run standard document tutorials like a damBreak tutorial.

� Fundamentals of Computational Methods for Fluid Dynamics, Book by J. H. Ferziger and M.
Peric

� How to customize a solver and do top-level application programming.

� Basic knowledge of C++ programming

� Basic knowledge of the Linux/Unix command line
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Nomenclature

Acronyms
RDF Reconstructed Distance Function

English symbols
n̂ Interface unit normal
H H operator
A Area
g Gravitational acceleration
H Heaviside function
n Interface area normal
p Total pressure
U Cartesian velocity vector
V Volume
w Weight

Greek symbols
α Volume fraction
δ Dirac delta function
Γ The interface between the fluids
Ω+ Domain covered by the heavy fluid
Ω− Domain covered by the light fluid
ϕ Volumetric flow rate
Ψ Reconstructed distance function
ρ Fluid density

Superscripts
∗ Auxiliary velocity
+ Heavy fluid
− Light fluid
n Time step

Subscripts
C Cell
d Dynamic
f Face
N Neighbour
S Surface
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Chapter 1

Introduction

This project is concerned with the development of computational methods for multiphase flows, i.e.,
flows regarding two or more fluids co-existing in a common spatial domain. Examples could be
the air and water phases in fire sprinklers or a wave hitting an offshore structure such as a wind
turbine foundation. With the increase in computational power of modern computers, the interest in
doing computations for these complex free surfaces has increased. However, the power of of modern
computers are not enough. There is still a need for accurate and efficient computational methods
and algorithms. Even though the governing equations of multiphase flows are well known and have
been for a long time, the practical computations are still in a developing phase with several aspects
suited for potential improvement.

In this project we consider an alternative numerical discretization of the gravitational force found
in the governing equation for interfacial flows, or more specific, the interIsoFoam solver of Open-
FOAM. The new method will utilize the interface advection algorithm, isoAdvector , developed by
Roenby et al. [1].

A key challenge for multiphase flow is the discontinuities arising at the interface, e.g. the change
in density which may be of the order 1:1000. Discontinuities are historically known to be difficult to
handle for our numerical tools as the tools are developed with continuous functions in mind. With
the development of the interfacial advection algorithm, isoAdvector, new opportunities arise but also
new challenges. With isoAdvector, we may model and advect an interface accurately, efficiently and
sharply. The sharpness of the interface will also be reflected in the discrete momentum equation.
If this is not done properly, the discontinuity gives rise to spurious velocities which may cause
a divergence from the true underlying solution as shown by Larsen et al. [2]. Here the authors
consider the progression of nonlinear stream function waves from Fenton [3], where analytic solutions
are known to the heavy phase.

If we use interIsoFoam for such simulations, we observe that the velocity behaves strange at the
interface. This can be seen in Figure 1.1, where we visualize the volume fraction and the velocity
magnitudes. These large velocities appear and disappear quickly hence they will not have an effect
on the progression of the wave. However, they will put huge restrictions on the time step through
the Courant number.

Regardless of the effect in the simulation, the spurious currents tells us that there is something
fundamentally wrong in the current simulations using the interIsoFoam solver. In order to limit
the scope, we will here anaylse the discretization errors found in the gravitational force. To isolate
these errors, we will consider a hydrostatic test case. In this case we, for a consistent numerical
scheme, should balance the pressure with the gravitational force hence it becomes a case where we
may focus on the discretization of the pressure gradient and the gravitational force found in the
momentum equation.

In this report, we will look at the current implementation of the interIsoFoam solver. We will
dive into the theory behind it, show how to use the solver and how we may recognize the theory in the
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Chapter 1. Introduction

Figure 1.1: Simulation of a stream function wave using interIsoFoam. On top we have the volume
fraction and below we have the velocity magnitude where the α = 0.5 contour have been coloured
in white. Notice how the spurious currents are present just above the interface.

implemented code. This will be followed by an analysis showing the hydrostatic issue of the solver.
From here we will introduce a modification to the interIsoFoam solver through the TwoPhaseFlow
library developed by Scheufler and Roenby [4]. This library offers a framework for faster and
easier implementation of new models for interfacial flows. The modification, we will employ, will be
through the interFlow solver of the TwoPhaseFlow library. This solver can be seen to be identical
to the interIsoFoam solver. The modification, we employ to the TwoPhaseFlow library, is called
gravityRecon and is developed by Henning Scheufler from German Aerospace Center (DLR). We
will show how to add gravityRecon to the library and how to use the interFlow solver. Also, we
will analyse the gravityRecon extension and show how it ensures a hydrostatic balance between
the pressure and the gravitational force.

The performance of the interIsoFoam solver and the interFlow solver with gravityRecon will
be shown on a simple hydrostatic test case. We will elaborate on how to set up the case using the
two solvers and also highlight their similarities and differences.

7



Chapter 2

Theory

Let us start out the tour by looking into the theory of the interfacial flow solver, interIsoFoam.
We will initially introduce the equations governing interfacial flows of two inviscid, incompressible
fluids. We will then show how these equations will be solved and coupled in the interIsoFoam solver.
The solver is shown to be composed of an advection step, using the isoAdvector algorithm, and a
pressure-velocity coupling using the PIMPLE algorithm. In the advection step we will, with a focus
on the plicRDF reconstruction scheme, elaborate on the explicit reconstruction of the interface as a
planar interface. In the pressure-velocity coupling we will see how the pressure equation is formed
using an auxiliary velocity field and in particular how we handle the gravitational force found in the
governing equations.

2.1 Governing Equations

Let us first examine the governing equations for flows consisting of two immiscible, incompressible
fluids. We will limit the scope to inviscid fluids and neglect the effect of surface tension. The
governing equations will take a ”one fluid” approach, see e.g. Tryggvason et al. [5], where the
two fluids are modelled using one common density field with a sharp jump at the interface. The
governing equations for the flow are then; the conservation of momentum

∂(ρU)

∂t
+∇ · (ρUU) = −∇p+ ρg (2.1)

the incompressibility condition
∇ ·U = 0 (2.2)

and mass conservation
∂ρ

∂t
+∇ · (ρU) = 0 (2.3)

with U being the velocity field, p the pressure field, g the gravitational vector and ρ is the density
field. The gravity vector will act in the negative z-direction hence we may write g = (0, 0,−g)T .
The density field will be modelled using a Heaviside function

H(x, t) =

{
1 ,x ∈ Ω+

0 ,x ∈ Ω−

where Ω+ and Ω− denote the domains of the heavy and light fluid, respectively. We will occasionally
use Γ to denote the shared interface. Note here that we have used the heavy fluid as reference fluid
but the light fluid could be used likewise. With the above Heaviside function, we model the density
field as

ρ(x, t) = [ρ]H(x, t) + ρ− (2.4)

8



2.2. Numerical solution procedure Chapter 2. Theory

where [ρ] = ρ+−ρ− denotes the jump in density with ρ+ and ρ− being the densities of the heavy and
light fluid, respectively. Furthermore, as discussed by Rusche [6] and Popinet [7], we may improve
the specification of boundary conditions by introducing a modified pressure, also named the dynamic
pressure, as a dependent variable. The dynamic pressure is defined as

pd = p− (g · x)ρ

thus the equation for conservation of momentum can be written as

∂(ρU)

∂t
+∇ · (ρUU) = −∇pd − (g · x)∇ρ (2.5)

Let us take a note on the gravitational force here as it is the main subject of this report. By
using the formulation of the density field in Eq. (2.4), we may write the last term of Eq. (2.5) as

(g · x)∇ρ = (g · x)∇
(
[ρ]H + ρ−

)
= [ρ](g · x)∇H
= [ρ](g · x)nΓδΓ

(2.6)

where nΓ is the normal to the interface between the fluids and we use the Dirac delta function,
δΓ which takes non-zero values on the interface only, (see e.g. the work of Popinet [7] for more
derivation details). That is, by using the dynamic pressure as dependent variable, we change the
gravitational force from a body force into a force acting on the interface only.

In the following sections we will elaborate on the interIsoFoam solver and its components. The
main goal is to solve the above equations, (2.2), (2.3) and (2.5), simultaneously to have an expression
of the velocity field, the density field and the (dynamic) pressure field for each point in space and
time.

2.2 Numerical solution procedure

In OpenFOAM, hence also the interIsoFoam solver, we use the Finite Volume Method to discretize
our governing equations. That is, we divide the computational domain into a finite number of
volumes (or cells). In each cell we wish to satisfy the governing equations in the weak sense, i.e. in
an integral form.

In order to solve the governing equations numerically, the interIsoFoam solver has, like many
other solvers of OpenFOAM, adapted to the use of the PIMPLE algorithm. The PIMPLE algorithm
may be seen as a combination of the SIMPLE and the PISO algorithms. The PIMPLE algorithm will
consist of an outer loop (the SIMPLE part) and an inner loop (the PISO part). In the outer loop,
we initially use conservation of mass, Eq. (2.3), to advect the density field or, as we will see, advect
the volume fractions hence the interface. Then, as the fluids are assumed incompressible, we need to
couple the pressure and the velocity. The coupling is done through an auxiliary velocity field based
on the momentum equation, Eq. (2.5), where the effect from the pressure is neglected. With the
auxiliary velocity field and the incompressibility condition, Eq. (2.2), we form a pressure equation
from which we compute a pressure that ensures a divergence-free velocity field. The inner loop of the
PIMPLE algorithm will then be composed of the construction and solution to the pressure equation
together with the update of the velocity field. See the work of Moukalled et al. [8], Ferziger et al. [9]
and Holzmann [10] for more information on the PIMPLE algorithm and its usage in OpenFOAM.

An overview of the interIsoFoam solver can be seen in Algorithm 1. Here we have included
the time loop, the outer loop and the inner loop. However, for simplicity and with a focus on the
relevant topics of this work, we have left out important aspects of the solver in this algorithm. This
includes mesh motion, the non-orthogonal correction loop and turbulence computations. Also, we
have assumed no momentum predictor step and no sub-cycles within each time step. In the following
section, we elaborate on some of the steps of the algorithm and also go through the discretization
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2.2. Numerical solution procedure Chapter 2. Theory

Algorithm 1 Overview of the interIsoFoam solver

1: Initialize fields: U, pd and ρ
2: while Time loop do
3: Compute ∆t according to Courant number
4: while Outer loop do
5: Reconstruct the interface ▷ Compute interface center and normal
6: Advect interface ▷ Update ρ
7: while Inner loop do
8: Build pressure equation ▷ With updated velocity
9: Solve pressure equation ▷ Update pd

10: Update velocity using the pressure gradient ▷ Update U
11: end while
12: end while
13: end while

and approximation procedures found in the interIsoFoam solver. For notational convenience, we
introduce the notation of an average value in a cell

⟨ψ⟩C =
1

|VC |

∫
C

ψ dV

with C denoting a computation cell, |VC | being the volume of the cell and ψ could be any field;
scalar or vector.

2.2.1 Advection of the interface: isoAdvector

We will start by presenting the isoAdvector algorithm which will be the first step of the outer loop
in the solver. The isoAdvector algorithm is a geometric volume-of-fluid (VoF) method. That is, we
explicitly reconstruct the interface between the fluids (line 5 in Algorithm 1) and then advect the
interface in a Lagrangian manner (line 6 in Algorithm 1) to have better estimates of the volume
fluxes.

Let us start by considering an integral form of conservation of mass∫
C

∂ρ

∂t
dV +

∫
C

∇ · (ρU) dV = 0

By using the expression of the density field in Eq. (2.4), we may write

[ρ]

∫
C

∂H

∂t
dV + [ρ]

∫
C

∇ · (HU) dV + ρ−
∫
C

∇ ·U dV = 0

[ρ]

∫
C

∂H

∂t
dV + [ρ]

∫
C

∇ · (HU) dV = 0∫
C

∂H

∂t
dV +

∫
C

∇ · (HU) dV = 0

where we have utilized the incompressibility condition. With this, the equations for conservation
of mass reduces to passive advection of the Heaviside function. We may reformulate the passive
advection equation by considering Leibniz integral rule for the transient term and the divergence
theorem for the advection term

d

dt

∫
C

H dV +

∫
∂C

HU · ndA = 0

10



2.2. Numerical solution procedure Chapter 2. Theory

where ∂C denotes the surface of the cell and n is the normal pointing out of the cell. By restricting
our selves to polygonal cells only, we can write the surface integral as a combination of faces

d

dt

∫
C

H dV +
∑
f

∫
f

HU · n dA = 0 (2.7)

where f denotes a face of a polygonal cell. For clarity, we remark here that the above formulation
leads to an advection scheme where only cells close to the interface needs attention. That is, in the
bulk of the two fluids, the Heaviside function will not change between time steps, if we assume that
the incompressibilty condition holds and there is no sources or sinks.

The above formulation, in Eq. (2.7), is the starting point of the isoAdvector algorithm. By
introducing the volume fraction of the reference fluid (here the heavy fluid) in a cell,

αC(t) =
1

|VC |

∫
C

H dV (2.8)

and integrating forward in time (from time t = tn to time t = tn+1), we get

αC(t
n+1) = αC(t

n)− 1

|VC |
∑
f

∫ tn+1

tn

∫
f

HU · n dA dτ

The purpose of the isoAdvector algorithm is then to approximate the above double integral in a
Lagrangian manner. That is, we will use an explicit reconstruction of the interface and then evaluate
the double integral analytically. First, we will denote the double integral as

∆Vf =

∫ tn+1

tn

∫
f

HU · n dAdτ (2.9)

Then, let us define the volumetric face flux,

ϕf (t) =

∫
f

U · n dA

and approximate U · n as

U · n ≈ 1

|Sf |

∫
f

U · ndA =
ϕf (t)

|Sf |

which would be exact for constant U and n. Here we have introduced |Sf | to denote the magnitude
of the surface normal vector, i.e. the area of the face. With this approximation, we may write

∆Vf ≈
∫ tn+1

tn

ϕf (τ)

|Sf |

∫
f

H dA dτ

Then, as we only have information of the velocity, hence fluxes, at t = tn, we will approximate the
fluxes as constant through the time integration; i.e. we will set ϕf (t) = ϕf (t

n) (denoted as ϕnf ) and
write

∆Vf ≈
ϕnf
|Sf |

∫ tn+1

tn

∫
f

H dA dτ (2.10)

In order to evaluate the integrals in Eq. (2.10), which gives the amount of the heavy fluid transported
over the face, we need an explicit reconstruction of the interface. This responds to line 5 of Algorithm
1 and will be the topic of the following section.
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2.2. Numerical solution procedure Chapter 2. Theory

Reconstruction of the interface

The reconstruction will only happen in cells that contain an interface. That is, we should distinguish
between interface cells and non-interface cells. Interface cells are cells occupied by both the heavy
and light fluid thus we may define interface cells as cells satisfying

ϵ < αC < 1− ϵ (2.11)

where ϵ≪ 1 is a user specified tolerance.

The interfaces, in the interface cells, will be estimated using a planar interface. That is, they
will be described by an interface center, xS and an interface area normal, nS with length equal
to the area of the interface in the cell. The question is now how we compute these two vectors.
The interIsoFoam solver offers three options; the isoAlpha reconstruction method, the gradAlpha
reconstruction method and the plicRDF reconstruction method. The isoAlpha method is the original
reconstruction method for the isoAdvector algorithm described by Roenby et al. [1]. Here, for each
interface cell, we interpolate the volume fraction data to the vertices of the cell using the volume
fractions of the neighbouring cells. From the information on the vertices, we determine cut points
on the edges. These cut points will be set in correspondence to the volume fraction of the given cell
and will be used to construct the interface center and interface area normal. See Figure 2.1 for a
visualization of the steps. The gradAlpha method will approximate the interface area normal using

(a) Interpolation of volume fractions
to vertices using neighbouring cell val-
ues

(b) Construction of planar interface
using cut points (blue points). The in-
terface center (black point) and the in-
terface area normal (black arrow) are
also shown

Figure 2.1: Visualization of isoSurface reconstruction steps using the iso-Alpha method; Figures are
from Roenby et al. [11]

the volume fractions. That is, we will reconstruct the interface unit normal, n̂S as

n̂S =
∇α
|∇α|

(2.12)

using a least square gradient. The interface area normal will then be the interface unit normal times
the area of the interface in the cell. The interface center will then be set, along the direction of the
interface normal, in correspondence to the volume fractions.

Scheuffler and Roenby [12] describes the plicRDF method and also compared it to the isoAlpha
method. Here it is demonstrated that the plicRDF method shows improved convergence properties
compared to the isoAlpha method; especially for the computation of the interface normals. In the
following we will dive into the theory of the plicRDF scheme used by isoAdvector.
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2.2. Numerical solution procedure Chapter 2. Theory

The plicRDF method uses an iterative procedure to calculate the interface area normals and
interface centers. To run this, we need an initial estimate of the interface unit normal. This can
be retrieved using either the interface normals from the previous time step or using the discrete
gradient of the volume fractions in a cell as for the gradAlpha method. Using the initial normals,
we will compute the interface location of the next iteration, xnew

S , as the point, along the interface
normal, that yields the correct volume fraction. See the left of Figure 2.2, where the new interface
center (the blue dot) is placed along the interface normal, to ensure that the planar interface cuts the
cell acording to the volume fraction, called αnew

i in the figure. With this new interface position we
will create a Reconstructed Distance Function (RDF), Ψ, which, for each cell close to the interface,
estimates the (signed) distance from the cell centers to the interface. How this value is computed
will follow shortly. First let us remark that with a value of the RDF in the cells close to the interface,
the interface unit normal will be computed as

n̂new
S =

∇Ψ

|∇Ψ|
(2.13)

where we use a least square gradient. Using this new interface normal, the procedure repeats until
the change in interface normal is below a specified tolerance. A sketch of the computations for the
new interface center, xnew

S , and interface unit normal, n̂new
S , can be seen in Figure 2.2. To the left,

we, as mentioned earlier, find the interface center, that cuts the cell according to the sought volume
fraction. To the right, we illustrate that with the new interface center (the blue dot), we compute
the RDF and update the interface unit normal using Eq. (2.13) (the blue vector).

Figure 2.2: Difference between old and new interface location and interface normal: (Left) Compu-
tation of new interface center (blue dot) along old interface normal (red vector) in correspondence
to new volume fraction, αnew

i (Right) Computation of new interface normal (blue vector) using the
RDF computed from new interface centers.

Now, let us return to the RDF value in the cells. It will be computed as the distance from the
cell center to the interface. The distance is computed differently for interface cells and non-interface
cells. Non-interface cells may have several point neighbours1 that contain an interface. By this,
the distance to the interface, for a non-interface cell, will be computed using a weighted sum of the
neighbouring interface cells

Ψi =

∑
j wijΨ̃ij∑

j wij
(2.14)

where Ψ̃ij denotes the normal distance between the center of cell i and the interface center of cell j

Ψ̃ij = n̂S,j · (xi − xS,j) (2.15)

and wij is a weighting factor defined as

wij =
|n̂S,j · (xi − xS,j) |2

|xi − xS,j |2
(2.16)

1Cells with which it shares a vertex

13



2.2. Numerical solution procedure Chapter 2. Theory

Here xi denotes the center of cell i. For interface cells, the distance will be measured using the
interface center and interface normal found in the cell. The RDF value will here be

Ψi = n̂S,i · (xi − xS,i)

A visualization of the measured distances, for both interface cells and non-interface cell, can be seen
in Figure 2.3.

(a) Interface cell (b) Non-interface cell

Figure 2.3: Illustration of how to compute the distance to the interface using cell center, xi interface
center, xS,j and interface unit normal, n̂S,j

Finalize the advection of the interface

With the reconstruction of the interface, we may now evaluate the double integral in Eq. (2.9) thus
advect the interface. Before doing so, let us remark here that the inner integral will be the area of
the face that are occupied with the reference fluid and with the use of polygonal cells, this area, and
its evolution within the entire time step, may be computed analytically. We will not go into these
details here, but see the work of Roenby et al. [1] for an explanation on how this is done.

This leaves us with the evaluation of the double integral, ∆Vf , and we may now update the
volume fraction as (line 6 of Algorithm 1)

αC(t
n+1) = αC(t

n)− 1

|VC |
∑
f

∆Vf (2.17)

where the only source of errors will be the estimation of the interface as planar within each cell and
the use of the velocity face fluxes of the old time step, ϕnf , which is integrated over the whole face
and not just the heavy fluid.

2.2.2 Pressure-velocity coupling

With the advection of the interface completed, the following section introduce how we combine the
pressure field with the velocity field in the interIsoFoam solver. This will correspond to line 7-11
of Algorithm 1. The solver uses the PIMPLE algorithm where we derive an equation for the pres-
sure using the incompressibility condition. This pressure will then be used to correct an auxiliary
velocity field thus making it incompressible. The pressure-velocity coupling in interIsoFoam is
identical to the one found in interFoam. A detailed description of the pressure-velocity coupling in
the interFoam solver can be found in the work of Deshpande et al. [13].

14



2.2. Numerical solution procedure Chapter 2. Theory

By spatially integrating the momentum equation over a cell, we may write∫
C

∂(ρU)

∂t
dV +

∫
C

∇ · (ρUU) dV = −
∫
C

∇pd dV −
∫
C

(g · x)∇ρdV

and similarly for the incompressibilty condition∫
C

∇ ·U dV = 0

We will start by deriving an expression for an auxiliary velocity, derived from the momentum
equation, followed by the pressure equation. As we only consider inviscid fluids, the auxiliary velocity
equation will consist of the transient term, the convection term and the gravitational force. The
discretization of these terms will be given, yielding the expression of the discrete auxiliary velocity
field.

For the time derivative we utilize Leibniz integral rule∫
C

∂(ρU)

∂t
dV =

d

dt

∫
C

ρUdV

We could then consider an Euler time integration scheme thus we would approximate the time
derivative as

d

dt

∫
C

ρUdV ≈
⟨ρU⟩n+1

C − ⟨ρU⟩nC
∆t

|VC |

where superscripts indicate the discrete time steps and ∆t is the chosen time step size. Last, in
order to get an expression for the velocity in the next time step, we do the approximation

⟨ρU⟩n+1
C ≈ ⟨ρ⟩n+1

C ⟨U⟩n+1
C

For the convective term, we will deviate from the usual discretization of the convective term.
We utilize that we, from the advection step, have information about how the interface, hence the
density, changes within a time step. The following description is base on the work of Roenby et al.
[11].

Consider the following
d

dt

∫
C

ρU dV +

∫
C

∇ · (ρUU) dV = ...

i.e. the left hand side of the integrated momentum equation. Now, let us integrate forward in time(
⟨ρU⟩n+1

C − ⟨ρU⟩nC
)
|VC |+

∫ tn+1

tn

∫
C

∇ · (ρUU) dV dτ = ...

and focus on the convective term. Using the divergence theorem and assuming a use of polygonal
cells yield ∫ tn+1

tn

∫
C

∇ · (ρUU) dV dτ =

∫ tn+1

tn

∫
∂C

ρUU · n dAdτ

=
∑
f

∫ tn+1

tn

∫
f

ρUU · ndAdτ

To linearize the term, let us, as we did in the advection step, approximate U · n as

U · n ≈ 1

|Sf |

∫
f

U · ndA =
ϕf (t)

|Sf |

If we then assume that the velocity is constant at each face, call if Uf , and evaluate the face flux,
ϕf (t) at t = tn, we may then write

∑
f

∫ tn+1

tn

∫
f

ρUU · n dA dτ ≈
∑
f

Uf

ϕnf
|Sf |

∫ tn+1

tn

∫
f

ρdAdτ
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2.2. Numerical solution procedure Chapter 2. Theory

Before we move into how we will evaluate Uf , let us continue with the double integral. From the
expression of the density field in Eq. (2.4), we may write

∑
f

Uf

ϕnf
|Sf |

∫ tn+1

tn

∫
f

ρ dA dτ =
∑
f

Uf

ϕnf
|Sf |

∫ tn+1

tn

∫
f

[ρ]H + ρ− dA dτ

by splitting the face integral, we get

=
∑
f

Uf

ϕnf
|Sf |

∫ tn+1

tn
[ρ]

∫
f

H dA+ ρ−
∫
f

dA dτ

and by splitting the time integral

=
∑
f

Uf

ϕnf
|Sf |

(
[ρ]

∫ tn+1

tn

∫
f

H dA+ ρ−
∫ tn+1

tn

∫
f

dAdτ

)

Now, using the expression of ∆Vf from Eq. (2.10), we may write

=
∑
f

Uf

(
[ρ]∆Vf + ρ−ϕnf∆t

)
(2.18)

To finish the discussion of the convective term, we need to get the face value of the convected velocity,
Uf . This is obtained by an implicit interpolation between neighbouring cell values.

Uf = ⟨U⟩n+1
C wC + ⟨U⟩mNwN (2.19)

where m denotes the latest update of the velocity field (from the inner loop) and subscripts C and
N denote the current cell and its neighbour cell, i.e. the two cells adjacent to the face. Also, wC

and wN denote the corresponding interpolation weights. We note here that this notation is crude
as the interpolation weights contain spatial factors, limiters etc. However, the details will not be
investigated further here. The main takeaway is the presence of an implicit velocity. See the work
of Deshpande et al. [13] for a more thorough explanation.

Next, we will form the auxiliary velocity field although we have not covered the discretization of
the dynamic pressure gradient and the gravitational force. Both terms have a similar discretization
hence will be covered together when we get to the dynamic pressure equation.

The auxiliary velocity

In order to get a representation of the auxiliary velocity field, we initially combine the discretization
of the transient term and the convection term and then, after some manipulations of these terms,
we add the contribution of the gravitational force. Consider the left hand side of the discretized
momentum equation

⟨ρ⟩n+1
C ⟨U∗⟩C − ⟨ρU⟩nC

∆t
|VC |+

∑
f

Uf

(
[ρ]

∆Vf
∆t

+ ρ−ϕnf

)
= ...

Note here that we have used the superscript, ∗, to denote the auxiliary velocity; not the velocity for
the next time step. Furthermore, the terms in the parenthesis of the second term above deviates
slightly from the one obtained in Eq. (2.18). This is due to the analytic time integration in Eq.
(2.18) and an Euler time integration in the equation above. Then we use the expression of the
velocity on the face in Eq. (2.19), we get

⟨ρ⟩n+1
C ⟨U∗⟩C − ⟨ρU⟩nC

∆t
|VC |+

∑
f

(
⟨U⟩∗CwC + ⟨U⟩mNwN

)(
[ρ]

∆Vf
∆t

+ ρ−ϕnf

)
= ...
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followed by moving the explicit terms to the right hand side

⟨U∗⟩C

 ⟨ρ⟩n+1
C

∆t
|VC |+

∑
f

wC

(
[ρ]

∆Vf
∆t

+ ρ−ϕnf

) =

−
∑
f

(
[ρ]

∆Vf
∆t

+ ρ−ϕnf

)
wN ⟨U⟩nN +

⟨ρU⟩mC
∆t

|VC |+ ...

and introducing a more compact notation

aC⟨U∗⟩C =
∑
f

aN ⟨U⟩mN + eC + ... (2.20)

where

aC =
⟨ρ⟩n+1

C

∆t
|VC |+

∑
f

wC

(
[ρ]

∆Vf
∆t

+ ρ−ϕnf

)

aN = −
(
[ρ]

∆Vf
∆t

+ ρ−ϕnf

)
wN

eC =
⟨ρU⟩nC
∆t

|VC |

For convenience we introduce the H operator

H (⟨U⟩mN ) =
∑
f

aN ⟨U⟩mN + eC (2.21)

hence we may write Eq. (2.20) as

aC⟨U∗⟩C = H (⟨U⟩mN ) + ...

Then by adding the gravitational force, the auxiliary velocity field may be written as

⟨U∗⟩C =
H (⟨U⟩mN )

aC
−

⟨(g · x)∇ρ⟩n+1
C

aC

i.e. without the effect of the pressure gradient. Note that the gravitational force takes value at the
new time step, as we assume that an advection of the interface already has been made. Furthermore,
we note that the gravitational force has not been discretized yet. The discretization will be elaborated
in the following section.

The pressure correction

With a representation of the auxiliary velocity, we can move towards computing the dynamic pressure
thus also computing a divergence-free velocity field. This is done in the inner loop of the algorithm.
Here we construct and solve the pressure equation (line 8 and 9 of Algorithm 1) and update the
velocity field (line 10 of Algorithm 1).

Let us start by writing the incompressibility condition in integral form∫
C

∇ ·U dV = 0

In order to have a divergence free velocity field, it should then satisfy∫
C

∇ ·Um+1 dV =
∑
f

∫
f

Um+1 · n dA

=
∑
f

ϕm+1
f = 0
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2.2. Numerical solution procedure Chapter 2. Theory

where m highlights the update of the velocity is done in the inner loop and we, again, have used the
divergence theorem and assumed polygonal cells. The question is now, how to represent the face
fluxes.

We start by using a mean value approximation of the face integral

ϕm+1
f =

∫
f

Um+1 · ndA ≈ Um+1
f · Sf

where Sf , as earlier, is the surface area vector pointing in the normal direction of the face and with
a magnitude equal the face area. In order to find an expression for the mean value on the face,
Um+1

f , we will consider the cell valued velocity field of the next time step. We will represent it as a
combination of the auxiliary velocity and the pressure gradient

⟨U⟩m+1
C = ⟨U∗⟩C −

⟨∇pd⟩n+1
C

aC

=
H (⟨U⟩mN )

aC
−

⟨(g · x)∇ρ⟩n+1
C

aC
−

⟨∇pd⟩n+1
C

aC

such that the corresponding face value can be found as

Um+1
f =

(
H (⟨U⟩mN )

aC

)
f

−
(

1

aC

)
f

(
(g · x)∇ρ

)n+1

f
−
(

1

aC

)
f

(
∇pd

)n+1

f

and the face flux becomes

ϕm+1
f ≈ Um+1

f · Sf

=

(
H (⟨U⟩mN )

aC

)
f

· Sf −
(

1

aC

)
f

(
(g · x)∇ρ · Sf

)n+1

f
−
(

1

aC

)
f

(
∇pd · Sf

)n+1

f

(2.22)

where
(

H(⟨U⟩mN )
aC

)
f
and

(
1
aC

)
f
are found using interpolation of neighbouring cells, e.g. linear inter-

polation. The discretization of the gravitational force and the pressure gradient, on the faces, will
be discussed shortly. First, let us note that the incompressibility condition now becomes∑

f

ϕm+1
f = 0

⇔∑
f

(
1

aC

)
f

(
∇pd · Sf

)n+1

f
=
∑
f

(
H (⟨U⟩mN )

aC

)
f

· Sf −
(

1

aC

)
f

(
(g · x)∇ρ · Sf

)n+1

f

i.e. an equation yielding a dynamic pressure that ensures a velocity field satisfying the incompress-
ibility constraint. Remark here that the H operator gets updated using the updated velocity field
each time we construct the pressure equation (line 8 of Algorithm 1).

In order to solve the pressure equation, we need to discretize the pressure gradient and the
gravitational force at the faces. The pressure gradient will be discretized using linear approximation

(
∇pd · Sf

)n+1

f
≈

(pd)
n+1
N − (pd)

n+1
C

|dCN |
|Sf |

where (pd)C and (pd)N denotes cell values of the pressure and dCN denotes the distance vector
between the corresponding cell centers. The gravitational force will be discretized in a similar
manner. First, we use a mean value approximation for the inner product(

(g · x)∇ρ · Sf

)n+1

f
≈ (g · xf )

(
∇ρ · Sf

)n+1

f
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where xf denotes the position of the face center. The discretization of the face gradient will be
similar as before hence

(g · xf )
(
∇ρ · Sf

)n+1

f
≈ (g · xf )

ρn+1
N − ρn+1

C

|dCN |
|Sf | (2.23)

From this, the discrete pressure equation reads

∑
f

(
1

aC

)
f

(
(pd)

n+1
N − (pd)

n+1
C

|dCN |

)
|Sf | =

∑
f

(
H (⟨U⟩mN )

aC

)
f

· Sf −
(

1

aC

)
f

(
(g · xf )

ρn+1
N − ρn+1

C

|dCN |

)
|Sf |

(2.24)

After computing the discrete pressure field, we update the discrete velocity field as

⟨Um+1⟩C =
H(Um)

aC
+

1

aC
R
(
ζn+1
f

)
(2.25)

where ζn+1
f denotes the face fluxes consisting of the discretized gravitational force and the discretized

pressure gradient, i.e.

ζn+1
f = −

(
(g · x)∇ρ · Sf

)n+1

f
−
(
∇pd · Sf

)n+1

f

and R is a linear reconstruction operator that reconstructs cell values from face fluxes, and is defined
as

⟨ψ⟩C ≈ R(ψf ) ≡

∑
f

SfS
T
f

|Sf |

−1∑
f

Sf

|Sf |
ψf

 (2.26)

with ψf denoting all the fluxes at the faces of the cell and SfS
T
f being the outer product of the

surface area vectors. Consult the work of Aguerra et al. [14] for a nice motivation and discussion of
the reconstruction operator found in OpenFOAM.

With this, Eq. (2.25) ends the inner loop (line 10 of Algorithm 1). If several outer loops are
used, we would repeat the advection of the interface using the updated velocity field and repeat the
inner loop with a new pressure equation. When the outer loop then terminates, we are finished with
one time iteration and ready to move on in the time loop.
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Chapter 3

Implementation details

Let us consider how we may recognize the theory in the implementation of the interIsoFoam

solver. We will have a focus on how we create the object holding the gravity vector and how we
compute the inner product between the gravity vector and the face centers. We will look into the
isoAdvector algorithm with a focus on the reconstruction of the interface using the reconstruction
scheme, plicRDF. This will be followed by the pressure-velocity coupling (the PIMPLE loop) of the
interIsoFoam solver. Here we will state where and how the inner product between the gravity
vector and the face centers is used.

Note here that the chapter includes several code snippets. These will always include a title
redirecting the reader to the actual file. Depending on the uniqueness of the file name in the
OpenFOAM code library, the actual title may include the full path or only the name of the file.

3.1 The interIsoFoam solver

Assuming we have sourced the OpenFOAM environmental variables, the source code of the
interIsoFoam solver can be found at

$FOAM_SOLVERS/multiphase/interIsoFoam/interIsoFoam.C

This chapter will take this particular file as a starting point. From here we will move into various
classes and functions that will help us describe the implementation details of the theory from the
previous chapter.

Going into the file, interIsoFoam.C, the first thing we notice, is the inclusion of a lot header
files. These are all included prior to the main function of the file.

interIsoFoam.C

 #include "fvCFD.H"

 #include "dynamicFvMesh.H"

 #include "isoAdvection.H"

 #include "EulerDdtScheme.H"

 #include "localEulerDdtScheme.H"

 #include "CrankNicolsonDdtScheme.H"

 #include "subCycle.H"

 #include "immiscibleIncompressibleTwoPhaseMixture.H"

 #include "turbulentTransportModel.H"

 #include "pimpleControl.H"

 #include "fvOptions.H"

 #include "CorrectPhi.H"

 #include "fvcSmooth.H"

 #include "dynamicRefineFvMesh.H"

All these includes will simply introduce the needed classes for the solver. One to mention here is
the isoAdvector class; declared in isoAdvection.H.
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3.1. The interIsoFoam solver Chapter 3. Implementation details

Then, in the main function, we initially read

interIsoFoam.C

 int main(int argc, char *argv[])

 {

 argList::addNote

 (

 "Solver for two incompressible, isothermal immiscible fluids"

 " using isoAdvector phase-fraction based interface capturing.\n"

 "With optional mesh motion and mesh topology changes including"

 " adaptive re-meshing.\n"

 "The solver is derived from interFoam"

 );



 #include "postProcess.H"



 #include "addCheckCaseOptions.H"

 #include "setRootCaseLists.H"

 #include "createTime.H"

 #include "createDynamicFvMesh.H"

 #include "initContinuityErrs.H"

 #include "createDyMControls.H"

 #include "createFields.H"

 #include "initCorrectPhi.H"

 #include "createUfIfPresent.H"



 turbulence->validate();



 #include "CourantNo.H"

 #include "setInitialDeltaT.H"

That is, we start by adding the postProcess option to the solver, creating relevant object of the vari-
ous classes and initialize the time step size using the initial Courant number. One important step here
is the creation of the objects related to the computational fields. This is done in the createFields.H
file. Here we initialize the dynamic pressure, pd, the velocity field, U, the face fluxes, ϕ and the
volume fractions, α. One other important object, also initialized in createFields.H, will be the
gravity vector. In createFields.H we read

$FOAM SOLVERS/multiphase/interIsoFoam/createFields.H

 #include "readGravitationalAcceleration.H"

 #include "readhRef.H"

 #include "gh.H"

We will not show the details of the file readGravitationalAcceleration.H, but note that this file
reads the gravity vector specified in the constant folder and allows the user to modify the gravity
vector during run time. We will skip the readhRef.H file as it has no interest for us and can be
neglected. The next file, gh.H, is important to us. This is where we evaluate the inner product,
(g · x), found in the gravitational force. In gh.H we read

gh.H

 Info<< "Calculating field g.h\n" << endl;

 dimensionedScalar ghRef

 (

 mag(g.value()) > SMALL

 ? g & (cmptMag(g.value())/mag(g.value()))*hRef

 : dimensionedScalar("ghRef", g.dimensions()*dimLength, 0)

 );

 volScalarField gh("gh", (g & mesh.C()) - ghRef);

 surfaceScalarField ghf("ghf", (g & mesh.Cf()) - ghRef);

If we ignore hRef (set it equal to 0), we observe that we create a volScalarField, gh and a
surfaceScalarField, ghf. The volScalarField, gh takes, in each cell, the value

g & mesh.C()
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and the surfaceScalarField, ghf takes, at each face, the value

g & mesh.Cf()

i.e. the inner product between the gravity vector and the cell centers and the inner product between
the gravity vector and face centers, respectively. That is, we have an approximation of the inner
product, present in the gravitational force (see Eq. (2.5)), in the cells and on the faces. We need the
face approximation when creating the pressure equation and the cell approximation is used when
we compute the total pressure from the dynamic pressure.

3.1.1 The advection step

With the construction and use of the gravity vector, we will return to the last line of the
createFields.H file

$FOAM SOLVERS/multiphse/interIsoFoam/createFields.H

 isoAdvection advector(alpha1, phi, U);

i.e. the construction of an isoAdvection object called advector. This object is used for advecting
the volume fraction (the interface) using the isoAdvector algorithm.

Now, leaving the createFields.H file and return to the source file of the interIsoFoam solver,
we read

interIsoFoam.C

 Info<< "\nStarting time loop\n" << endl;



 while (runTime.run())

 {

 #include "readDyMControls.H"

 #include "CourantNo.H"

 #include "alphaCourantNo.H"

 #include "setDeltaT.H"



 ++runTime;



 Info<< "Time = " << runTime.timeName() << nl << endl;



 // --- Pressure-velocity PIMPLE corrector loop

 while (pimple.loop())

 {

We see that we move into the time loop of the PIMPLE algorithm. Each time step will begin with
computing the maximum and mean Courant number for the entire domain, Courant.H and near the
interface, alphaCourantNo.H. This information will be used to compute the size of next time step
in setDeltaT. Afterwards, we move into the PIMPLE loop.

The initial part of the PIMPLE loop handles the case of a moving mesh. We will skip these
details and move into the part of the implementation where the advection of the interface takes
place. In interIsoFoam.C we read

interIsoFoam.C

 #include "alphaControls.H"

 #include "alphaEqnSubCycle.H"

We will not explicitly state the details of these header files, but state the outcome of these files.
In alphaControls.H, we will create a constant reference to the alpha.water dictionary found in
fvSolution. From this dictionary we will read the number of sub cycles used. In alphaEqnSubCycle.H
we handle the case of several sub cycles in each time step. However, the main take away from this
file is, regardless of having sub cycles, that we will include the header file alphaEqn.H, where the
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actual advection of the interface occurs. In alphaEqn.H we, again, omit details concerned with a
moving mesh and read the following line

$FOAM SOLVERS/multiphase/interIsoFoam/alphaEqn.H

 advector.advect(Sp, Su);

To understand what the member function, advect(Sp, Su) does, we recall from createFields.H

that advector is an object of the class isoAdvection. In isoAdvection.H we read the declaration
of the member function

isoAdvection.H

 template < class SpType, class SuType >

 void advect(const SpType& Sp, const SuType& Su);

Thus the member function is declared as a templated function with SpType and SuType as templated
parameters. Although these terms will not be further investigated here, we note that they are used
to include linear and constant source terms.

The definition of the advect function is found in isoAdvectionTemplates.H. The initial part is
shown here

isoAdvectionTemplates.H

 template<class SpType, class SuType>

 void Foam::isoAdvection::advect(const SpType& Sp, const SuType& Su)

 {

 DebugInFunction << endl;



 scalar advectionStartTime = mesh_.time().elapsedCpuTime();



 scalar rDeltaT = 1/mesh_.time().deltaTValue();



 // reconstruct the interface

 surf_->reconstruct();

Here we have a scalar for the current CPU time and a scalar for the reciprocal of the time step size.
This is followed by a reconstruction of the interface, i.e. the interface area normals and the interface
centers. The reconstruction is made by the member data called surf . Before continuing with the
advection of the interface, i.e. the isoAdvector algorithm, we will go into details of how we create the
surf member data and how we reconstruct the interface using the plicRDF reconstruction scheme.

The surf object is created in the isoAdvection.H file

isoAdvection.H

 //- Pointer to reconstruction scheme

 autoPtr<reconstructionSchemes> surf_;

saying that we create an object of the templated class autoPtr with the templated parameter as
reconstructionSchemes. The objects of the autoPtr class are so called smart pointers, which
ensures that the memory associated to the pointer is automatically deallocated at the end of the
solver. See e.g. the work of Marić et al. [15] for more thorough discription and examples. The main
take away for us here, is that we create a (smart) pointer to an object of the reconstructionSchemes
class. The surf object is initialized in the constructor of the isoAdvection class. In isoAdvection.C
we read

isoAdvection.C

 surf_(reconstructionSchemes::New(alpha1_, phi_, U_, dict_))

i.e. the surf object gets initialized using the selector, New, of the reconstructionSchemes class
where dict will be the dictionary of the volume fraction field, e.g. alpha.water, found in the
fvSolution file.
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Assuming that we have specified the plicRDF reconstruction scheme in the dictionary, the selector
calls the constructor of the plicRDF class, which is a subclass of the reconstructionSchemes class.
Frist thing to note is that this constructor will initialize important member data of the base class.
In reconstructionSchemes.H we have the following member data

reconstructionSchemes.H

 //- Interface area normals

 volVectorField normal_;



 //- Interface centres

 volVectorField centre_;

i.e. the interface area normal and interface center member data, which will be objects of the type
volVectorField thus taking vector values in each cell. These objects will be initialized to zero and
will be written to the time directories when specified by the user. The constructor of the plicRDF

class will also initialize the RDF object, which will be written to the time directories as well, and
the tolerances used in the reconstruction. The tolerances will also be read form the alpha.water

dictionary.

3.1.1.1 The reconstruction step

With an introduction to the surf object, let us discuss the reconstruct() member function. With
surf being a (smart) pointer of the type reconstructionSchemes, we should search reconstructionSchemes.H
for implementation of the reconstruct() function. In reconstructionSchemes.H we read

reconstructionSchemes.H

 //- Reconstruct the interface

 virtual void reconstruct(bool forceUpdate = true) = 0;

i.e. reconstruct() is a pure virtual function with the boolean forceUpdate set to true by default.
With the function being a pure virtual function, it makes reconstructionSchemes an abstract
class and we should look for the implementation of the reconstruct() member function in its sub
classes. Let us again stay with the assumption of using the plicRDF reconstruction scheme, thus the
pointer, surf will point to an object of the plicRDF class. This means that the member function
reconstruct() should be implemented in the plicRDF class. In plicRDF.C we find the definition
of the reconstruct() member function. The initial part reads

plicRDF.C

 void Foam::reconstruction::plicRDF::reconstruct(bool forceUpdate)

 {

 const bool uptodate = alreadyReconstructed(forceUpdate);



 if (uptodate && !forceUpdate)

 {

 return;

 }



 if (mesh_.topoChanging())

 {

 // Introduced resizing to cope with changing meshes

 if (interfaceCell_.size() != mesh_.nCells())

 {

 interfaceCell_.resize(mesh_.nCells());

 }

 }

 interfaceCell_ = false;



 // Sets interfaceCell_ and interfaceNormal

 setInitNormals(interpolateNormal_);
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saying that, initially, we call the function, alreadyReconstructed, which is inherited from the base
class hence its definition is found in reconstructionSchemes.C. It simply checks if the reconstrution
step is needed or not. The following if-statement says that, if the reconstruction is up to date and
we will not force an update, we will end the reconstruction step before we have begun. Next,
in lines 383-390, we have some lines regarding mesh changes, which we will leave here as it is.
This is followed by setting the list of booleans, interfaceCell to false; meaning that no cells
are marked as interface cell. Last line here is the call to the function setInitNormals with the
argument interpolateNormal . This argument is a boolean read from the alpha.water dictionary
in the constructor of the plicRDF class. The setInitNormals will, with the argument set to true,
initializing the interface area normals using the interface area normals from the previous time step.
Also this function will update the list interFaceCell to return true for interface cells.

The reconstruct() function is then followed by

plicRDF.C

 centre_ = dimensionedVector("centre", dimLength, Zero);

 normal_ = dimensionedVector("normal", dimArea, Zero);



 // nextToInterface is update on setInitNormals

 const boolList& nextToInterface_ = RDF_.nextToInterface();



 labelHashSet tooCoarse;



 for (int iter=0; iter<iteration_; ++iter)

 {

The main thing here is setting centre and normal to zero in every cell and then the beginning
of a for-loop that runs with the number of iterations set to iteration , specified by the user in
fvSolution and read in the constructor of the plicRDF class. This loop will handle the iterative
procedure of updating the interface normal and interface center of the interface cells (line 5 of
Algorithm 1). The first part of the for-loop reads

plicRDF.C

 forAll(interfaceLabels_, i)

 {

 const label celli = interfaceLabels_[i];

 if (mag(interfaceNormal_[i]) == 0)

 {

 continue;

 }

 sIterPLIC_.vofCutCell

 (

 celli,

 alpha1_[celli],

 isoFaceTol_,

 100,

 interfaceNormal_[i]

 );



 if (sIterPLIC_.cellStatus() == 0)

 {

 normal_[celli] = sIterPLIC_.surfaceArea();

 centre_[celli] = sIterPLIC_.surfaceCentre();

 if (mag(normal_[celli]) == 0)

 {

 normal_[celli] = Zero;

 centre_[celli] = Zero;

 }

 }

 else

 {

 normal_[celli] = Zero;

 centre_[celli] = Zero;

 }
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 }

 }

which resembles a forAll loop, which loops over all interface cells. The first thing, in this loop,
we draw attention to is the lines 413-420. Here we use the vofCutCell member function of the
sIterPLIC object, which is initialized in the plicRDF constructor. This function will place the
interface center along the interface normal such that the interface will cut the interface cell in
correspondence with the volume fraction. Revisit the left of Figure 2.2 for a visualization. In the
next part of the loop, lines 422-436, we will set the member data normal and center as the
interface area normals (line 424) and the interface center (line 425), respectively.

The next part of the for loop of the reconstruct() function, we will show, will be the update
of the reconstructed distance function (RDF). From the body of the reconstruct() function, we
read

plicRDF.C

 RDF_.constructRDF

 (

 nextToInterface_,

 centre_,

 normal_,

 exchangeFields_,

 false

 );

 RDF_.updateContactAngle(alpha1_, U_, nHatb);

 gradSurf(RDF_);

 calcResidual(residual, avgAngle);

What we will note here is the update of the RDF (lines 449-456) and the calculation of its gradient
(line 458). The gradient will be calculated using gradSurf from the plicRDF class, which boils down
to a least square gradient. The RDF is constructed using the constructRDF member function of the
reconstructedDistanceFunction class. Its definition is found in reconstructedDistanceFunction.C.
As we will see, the function distinguishes between two cases; one for interface cells and one for non-
interface cells which are point neighbours to interface cells. We will here go through the main parts
of the implementation. In the body of the function, constructRDF, we read

reconstructedDistanceFunction.C

 forAll(nextToInterface,celli)

 {

 if (nextToInterface[celli])

 {

 if (mag(normal[celli]) != 0) // interface cell

 {

 vector n = -normal[celli]/mag(normal[celli]);

 scalar dist = (centre[celli] - mesh_.C()[celli]) & n;

 reconDistFunc[celli] = dist;

 }

where nextTointerface is a list containing interface cells and their point neighbours (not neccesarily
interface cells). The first case, we handle, is the case of an interface cell, where we recognize interface
cells with a non-zero magnitude of the interface area normal. In the above code, we see that the
RDF value, reconDistFunc, of interface cells will be computed as the normal distance between the
interface center and the cell center, i.e. similarly to Eq. (2.15), using the interface normal. In the
second case, for the non-interface cells, we have the following code

reconstructedDistanceFunction.C

 else // nextToInterfaceCell or level == 1 cell

 {

 scalar averageDist = 0;

 scalar avgWeight = 0;

 const point p = mesh_.C()[celli];
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 forAll(stencil[celli], i)

 {

 const label gblIdx = stencil[celli][i];

 vector n = -distribute.getValue(normal, mapNormal, gblIdx);

 if (mag(n) != 0)

 {

 n /= mag(n);

 vector c = distribute.getValue(centre,mapCentres,gblIdx);

 vector distanceToIntSeg = (c - p);

 scalar distToSurf = distanceToIntSeg & (n);

 scalar weight = 0;



 if (mag(distanceToIntSeg) != 0)

 {

 distanceToIntSeg /= mag(distanceToIntSeg);

 weight = sqr(mag(distanceToIntSeg & n));

 }

 else // exactly on the center

 {

 weight = 1;

 }

 averageDist += distToSurf * weight;

 avgWeight += weight;

 }

 }



 if (avgWeight != 0)

 {

 reconDistFunc[celli] = averageDist / avgWeight;

 }

 }

We will look a bit closer to the forAll loop (lines 283-307), where we run through the stencil of the
current cell. Note that the stencil is all point neighbours of the current cell. If a neighbouring cell
has an interface area normal with magnitude different from zero (line 287), we will compute the nor-
mal distance from the cell center of the non-interface cell to the interface center of the neighbouring
interface cells using Eq. (2.15). This distance is called distToSurf above and is found in line 292.
As mentioned in the theory part, the RDF value of non-interface cells will be computed through a
weighted sum. The computation of the corresponding weights are also seen above (lines 297-298)
and are given the name weight. Here distanceToIntSeg corresponds to the vector (xi − xS,j) of
Eq. (2.16). We see that this vector is normalized, dotted with the interface unit normal and then
squared in the end. The contribution of the weights and the computed distances for the cells will
be collected in averageDist and avgWeight (lines 304-305) such that the RDF value in the cell can
be computed using Eq. (2.14) and saved in reconDistFunc[celli] in line 311.

We recall that the reconstruction of the interface is an iterative procedure. That is, we recalculate
the interface center and interface normal iteratively. The process will stop after a number of iterations
or when the normals will not change significantly between iterations. We will not elaborate on these
details and therefore we will leave the reconstruction step here and return to the advection step,
which we left when we ran into surf ->reconstruct() in the member function, advect of the class
isoAdvection.

3.1.1.2 The isoAdvection Step

From this small detour in the plicRDF implementation, let us recall that the isoAdvector algorithm
is about evaluating the double integral in Eq. (2.9) using the reconstructed interface in the cells.

After the reconstruction step, in the advect function of the isoAdvection class, we have the
following code

isoAdvectionTemplates.H
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 // Initialising dVf with upwind values

 // i.e. phi[facei]*alpha1[upwindCell[facei]]*dt

 dVf_ = upwind<scalar>(mesh_, phi_).flux(alpha1_)*mesh_.time().deltaT();



 // Do the isoAdvection on surface cells

 timeIntegratedFlux();

Before we move into the actual commands, we will note here that the object, dVf , is of the type
surfaceScalarField and declared in isoAdvection.H.

The first command, we see in the code above, is the initialization of the dVf values using
the upwind values of the volume fractions. That is, the expression in Eq. (2.10) will initially be
approximated as

∆Vf ≈
ϕnf
|Sf |

∫ tn+1

tn

∫
f

H dA dτ ≈
ϕnf
|Sf |

∫ tn+1

tn

αn,up
C (t) dτ ≈

ϕnf
|Sf |

αn,up
C ∆t

where αn,up
C denotes the volume fraction of the upwind cell for the face from the previous time step.

The second command, in the above code, is the call to a function called timeIntegratedFlux.
This is a private member function of the isoAdvection class and it is defined in isoAdvection.C.
This function is all about evaluating the double integral, ∆Vf , properly; i.e. evaluate it analytically
using the reconstructed interface. Although, this function is the corner stone of the isoAdvector
algorithm, we will skip the implementation details as it is not our main concern here.

With the evaluation of ∆Vf at all the downwind faces of the interface cells, we are ready to do
the actual advection (line 6 of Algorithm 1). In the advect function we read

isoAdvectionTemplates.H

 // Advect the free surface

 alpha1_.primitiveFieldRef() =

 (

 alpha1_.oldTime().primitiveField()*rDeltaT

 + Su.field()

 - fvc::surfaceIntegrate(dVf_)().primitiveField()*rDeltaT

 )/(rDeltaT - Sp.field());

First let us ignore the Su and Sp values as they relate to additional source terms and they are not
interesting for us here. Next thing we notice is the fvc::surfaceIntegrate function. This will
simply sum over the face values and add them to the corresponding cell values. Hence the above
code reduces to

αC(t+∆t) = αC(t)−
1

|VC |
∑
f

∆Vf

similarly to the expression in Eq. (2.17) in the Theory chapter.
This completes the advection step. Hereafter, we compute the updated density and return to

the interIsoFoam.C source file where we will begin the pressure-velocity coupling.

3.1.2 Pressure-Velocity coupling

Before going in to the construction of the various equations in the pressure-velocity coupling, we
remember the following important detail in interIsoFoam.C

interIsoFoam.C

 // --- Pressure-velocity PIMPLE corrector loop

 while (pimple.loop())

 {

which marks the outer loop of the PIMPLE algorithm. We have gone through the first part of the
PIMPLE loop, the update of the volume fraction, and now we will go into the last part, the pressure
velocity coupling. In interIsoFoam.C we read
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interIsoFoam.C

 #include "UEqn.H"



 // --- Pressure corrector loop

 while (pimple.correct())

 {

 #include "pEqn.H"

 }



 if (pimple.turbCorr())

 {

 turbulence->correct();

 }

 }

That is, in the outer loop, we include the UEqn.H-file. This is followed by the pressure corrector loop
(the inner loop of Algorithm 1), where we include the pEqn.H-file. In the last part of the outer loop,
we will correct for turbulence, if specified.

Both the UEqn.H file and the pEqn.H file are found in the folder of the interFoam solver. In the
initial part of UEqn.H we construct the UEqn object

$FOAM SOLERS/multiphase/interFoam/UEqn.H

 fvVectorMatrix UEqn

 (

 fvm::ddt(rho, U) + fvm::div(rhoPhi, U)

 + MRF.DDt(rho, U)

 + turbulence->divDevRhoReff(rho, U)

 ==

 fvOptions(rho, U)

 );

We see that UEqn is an object of the fvVectorMatrix class, which is a type definition of
fvMatrix<vector> i.e. an object of the fvMatrix class with vector as template parameter. Due
to the assumption of inviscid fluids, we will only mention the time derivative, fvm::ddt(rho, U)

and the nonlinear convection term, fvm:div(rhoPhi, U), which we recognize as the left hand side
of the momentum equation in Eq. (2.5). Let us spend some time at the argument, rhoPhi. This is
one of the places where the interIsoFoam deviates from the interFoam solver. The object rhoPhi
is an object of the type surfaceScalarField and is computed in the alphaEqn.H file. Here we read

$FOAM SOLVERS/multiphase/interIsoFoam/alphaEqn.H

 #include "rhofs.H"

 rhoPhi = advector.getRhoPhi(rho1f, rho2f);

saying that we should consult the function, getRhoPhi of the isoAdvection class. In here we have

isoAdvection.H

 tmp<surfaceScalarField> getRhoPhi

 (

 const dimensionedScalar rho1,

 const dimensionedScalar rho2

 ) const

 {

 return tmp<surfaceScalarField>

 (

 new surfaceScalarField

 (

 "rhoPhi",

 (rho1 - rho2)*dVf_/mesh_.time().deltaT() + rho2*phi_

 )

 );

 }
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This expression is somewhat similar to the one in Eq. (2.18). If we rewrite the expression in Eq.
(2.18) as ∑

f

Uf

(
[ρ]∆Vf + ρ−ϕnf∆t

)
= ∆t

∑
f

Uf

(
[ρ]∆Vf
∆t

+ ρ−ϕnf

)
the expression in the parentheses of the right hand side above will correspond to the one returned
in getRhoPhi.

Then, if we return to the construction of UEqn object in the UEqn.H file, we note that the pressure
gradient and the gravitational force is missing from the equation. These terms will be added later;
in a momentum predictor step, where velocity is predicted using the old pressure values, and in
the pressure equation, where we compute a pressure, that ensures a divergence free velocity field.
We will skip the momentum predictor step, which is found in the UEqn.H file, and then move into
creating and solving the pressure equation. This happens in the pEqn.H file, which reads

$FOAM SOLVERS/multiphase/interFoam/pEqn.H

 if (correctPhi)

 {

 rAU.ref() = 1.0/UEqn.A();

 }

 else

 {

 rAU = 1.0/UEqn.A();

 }



 surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU()));

 volVectorField HbyA(constrainHbyA(rAU()*UEqn.H(), U, p_rgh));

 surfaceScalarField phiHbyA

 (

 "phiHbyA",

 fvc::flux(HbyA)

 + MRF.zeroFilter(fvc::interpolate(rho*rAU())*fvc::ddtCorr(U, phi, Uf))

 );

The first part is the assignment of the rAU object (a volScalarField) using the UEqn object. This
assignment will correspond to the reciprocal of the implicit coefficients for the velocities (1/aC)
in Eq. (2.20). As mentioned in the Theory chapter, we need these coefficients in the pressure
equation; i.e. they should be evaluated on the faces. Due to this, we create the surfaceScalarField
object, rAUf, which is a simple interpolation of the rAU object. The type of interpolation should
be specified in the fvSchemes dictionary. The interpolation is followed by the construction of the
object, HbyA, which corresponds to the H operator, defined in Eq. (2.21), divided by the implicit
coefficients of the velocities, i.e. we recognize this term as H (⟨U⟩m) /aC . With this operator we

create surfaceScalarField, phiHbyA, corresponding to
(

H(⟨U⟩n)
aC

)
f
· Sf , which is computed using

the fvc::flux function. Although not explicitly shown here, the fvc::flux function will handle
the interpolation to the faces and the inner product with the face area vector, Sf . This completes
the first part of the right hand side of the pressure equation, Eq. (2.24). The last part of the right
hand side is the gravitational force. From pEqn.H we read

$FOAM SOLVERS/multiphase/interFoam/pEqn.H

 surfaceScalarField phig

 (

 (

 mixture.surfaceTensionForce()

 - ghf*fvc::snGrad(rho)

 )*rAUf*mesh.magSf()

 );



 phiHbyA += phig;

Here we construct the object, phig, which is composed of the surface tension (neglected here) and
the gravitational force. The gravitational force is computed in line 32 and consists of ghf and
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fvc::snGrad(rho). We have discussed ghf earlier as the inner product between the gravity vector
and the face center. The second part, fvc::snGrad(rho), will compute the difference between the

cells neighbouring the face i.e.
ρn+1
N −ρn+1

C

|dCN | . Last we multiply by rAUf and the magnitude of the face

area vector, magSf. Combining everything, we have computed(
1

aC

)
f

(g · xf )
ρn+1
N − ρn+1

C

|dCN |
|Sf |

The last line, we see in the above code snippet, is that we add the contribution of gravity to phiHbyA,
i.e. we complete the right hand side of the pressure equation.

With this, we are ready construct the pressure equation. In pEqn.H we read the following

$FOAM SOLVERS/multiphase/interFoam/pEqn.H

 while (pimple.correctNonOrthogonal())

 {

 fvScalarMatrix p_rghEqn

 (

 fvm::laplacian(rAUf, p_rgh) == fvc::div(phiHbyA)

 );



 p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));



 p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.finalInnerIter())));



 if (pimple.finalNonOrthogonalIter())

 {

 phi = phiHbyA - p_rghEqn.flux();



 p_rgh.relax();



 U = HbyA + rAU()*fvc::reconstruct((phig - p_rghEqn.flux())/rAUf);

 U.correctBoundaryConditions();

 fvOptions.correct(U);

 }

 }

First we note the while loop, which is used for an explicit correction if a non-orthogonal mesh is used.
We use an uniform Cartesian mesh, hence we will leave this here. What is more important for us, is
the construction of the p rghEqn object in lines 43-46. It is an object of the type fvScalarMatrix and
is constructed using fvm::laplacian(rAUf, p rgh) on the left hand side and fvc::div(phiHbyA)

on the right hand side. We recognize this as the discrete pressure equation in Eq. (2.24). After
the construction of the p rghEqn object, we set the reference (dynamic) pressure followed by solving
the equation, i.e. obtain a dynamic pressure in each cell of the mesh. With the assumption of
no non-orthogonal corrections, we will enter the if statement above. That is, we update the face
fluxes, phi, as in Eq. (2.22), and compute the velocity in each cell, as in Eq. (2.25), using the
reconstruction operator, fvc::reconstruct.

This finalizes the inner loop of the algorithm. If more outer loops will follow, we will return to
the advection of the interface (using the updated velocities), the construction of the UEqn.H object
and again the inner loop.

3.2 Summary

We have now covered the theory and the implementation of the interIsoFoam solver. Within one
iteration we have seen how we update the volume fraction using the isoAdvector algorithm and a
reconstruction of the interface using the plicRDF algorithm. This was followed by how we couple
the pressure and the velocity in order to ensure a divergence free velocity field.

To summarize and give an broader overview of the interIsoFoam solver, a flow chart of the
processes in the solver is seen in Figure 3.1. Note here that several assumptions have been made in
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this chart. That is, we have left out important aspects in order to make room for the topics discussed
here. We have for instance skipped any aspects of mesh motion, the non-orthogonal correction loop
and any turbulence computations. Likewise, we have made an assumption of the use of the plicRDF
reconstruction scheme, no momentum predictor step and no sub cycles within each time step. Also,
the flow chart contains dashed arrows. These are used to point to the subprocesses of the associated
process.
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Figure 3.1: Flow chart visualizing the processes in the interIsoFoam solver
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Chapter 4

Run a case using interIsoFoam

We will here specify how to use the interIsoFoam solver. We set up a hydrostatic test case in 2D
which we call the tilted box. The tilted box contains two incompressible, inviscid fluids at rest. See
Figure 4.1 for a visualization of the initial volume fractions resembling two fluids at rest with an
planar interface between them. This case is chosen, as it illustrates an issue with the interIsoFoam
solver. In the tilted box, the dynamic pressure should balance the gravitational forces thus leading
to a zero velocity field. However, as shown later in Chapter 6, the interIsoFoam solver fails to
retain this balance leading to spurious velocities at the interface.

The following will describe the tutorial briefly. That is, we will not show the content of all the
files. Consult Appendix A to view the actual files used to set up and run the case.

With the fluids being inviscid, we will set the viscosity of each fluid equal to 0 in the
transportProperties file found in the constant directory. Here we also set the density of each
fluid and set the surface tension coefficient. We will use a density ratio of 1:1000 and set the surface
tension coefficient to zero.

The gravity vector is specified in the g file of the constant folder. We have set the gravity vector
to point in the negative z-direction with a magnitude of 9.81 m/s2.

The simulation is laminar thus set in the turbulenceProperties file.
For the mesh we use a simple Cartesian uniform mesh utilizing the blockMesh utility. We

construct a unit cube centered at (x, y, z) = (0.5, 0, 0.5). The mesh will contain one block, which,
as the problem is in 2D, is resolved only in the x- and z-direction. With this initial mesh, the cube
will be tilted using the utility transformPoints. We will specify the option yawPitchRoll and then
rotate the cube 30 degrees around the y axis.

The boundaries of the box will be considered as walls. For the velocity field we will em-
ploy slip boundary condition. For the volume fraction, here called alpha.water, we will use the
zeroGradient boundary condition and for the dynamic pressure we use the fixedFluxPressure

boundary condition with a value set to zero.
The initial velocity and dynamic pressure will be set to zero everywhere. The volume fraction

will also, initially, be set to zero but as we consider an interfacial flow (between two phases), we
should initialize the interface, i.e. the two phases. In OpenFOAM we have two utilities that may
handle this initialization: setFields and setAlphaField. With these we divide the domain into
sub domains in various ways; e.g. the inside/outside of a cylinder or box or with the use of a plane.
In our case, the volume fractions should reflect the presence of an planar interface between the
two steady fluids thus we use a plane. We will use the setAlphaField utility as it allows volume
fractions between 0 and 1. The setFields utility only sets the volume fractions to 0 or 1; depending
on the position of the cell center. The setAlphaField utility needs a setAlphafieldDict file in
the system folder. It will, in our case, look like

system/setAlphafieldDict

 field alpha.water;

 type plane;
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 normal (0 0 -1);

 origin (0 0 0.405);

That is, we apply the utility to the alpha.water field where we have specified the type to a plane.
This type needs two additional settings. A normal, which points towards the reference field and
sets the direction of the plane, and an origin, which sets the position of the plane. With this,
we have a well-defined plane from which we may distinguish between the two fluids; everything in
the normal direction will be considered as the reference fluid, e.g. the water phase. Then cells
completely beneath the plane will be set to 1 and cells which are cut by the plane will have volume
fraction set according to the cut. In Figure 4.1 we see the initial volume fraction after the use of the
setAlphaField utility. Notice how some volume fraction are in between 0 and 1.

Figure 4.1: Initialization of the volume fractions using the setAlphaField utility

Next, we will look into the interIsoFoam solver settings. These should be specified in the sub
dictionary, alpha.*1, of the solver dictionary found in the fvsolution file. Here we read

system/fvSolution

 solvers

 {

 alpha.water

 {

 isoFaceTol 1e-8;

 surfCellTol 1e-8;

 snapTol 1e-12;

 clip true;

 reconstructionScheme plicRDF;

 nAlphaSubCycles 1;

 cAlpha 1;

 }

What we notice is that we have the possibilities to specify the tolerances used by the solver. One
is surfCellTol, which specifies a tolerance for when a cell is considered as an interface cell, see
Eq. (2.11). Also, we have isoFaceTol, which is used in the construction of the interfaces. As the
interfaces is constructed in accordance to the volume fraction, the isoFaceTol tolerance will specify
the corresponding precision in which we cut the cells. Both these tolerances have a default value
of 1e-8. We also see the snapTol parameter and the clip parameter. The second specifies if we
will apply brute force clipping of the volume fraction. That is, we will force the volume fractions to
satisfy

0 ≤ α ≤ 1

1here * would indicate the name of reference phase, e.g. water
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Then, if brute force clipping is used, we use the snapTol in this clipping. Next, we notice the
reconstrutionScheme parameter, which specifies which method we use for reconstructing the in-
terface in interface cells. Here we have set it to plicRDF. This is followed by the nAlphaSubCycles
parameter which sets the number of sub cycles within each time step. This is here set to 1, i.e. no
sub cycles. Last we have cAlpha. This is actually not used by the interIsoFoam solver, but must
be specified as it is read by the interfaceProperties constructor.

With the solver settings described, we will elaborate on a corresponding Allrun script; i.e. a
script that describe the commands needed to run the case. It reads

Allrun

 #!/bin/sh

 cd ${0%/*} || exit 1 # Run from this directory



 . $WM_PROJECT_DIR/bin/tools/RunFunctions



 runApplication blockMesh

 restore0Dir

 cp 0/alpha.org 0/alpha.water



 runApplication transformPoints -yawPitchRoll '(0 30 0)'

 runApplication setAlphaField



 runApplication $(getApplication)

From the above we see that in order to run the hydrostatic test case, we will

1. run the blockMesh utility

2. copy the 0.orig folder to the 0 folder

3. rename the alpha file

4. rotate the mesh using the transformPoints utility

5. set the alpha values using the setAlphaField utility

6. run the case using the application found in the controlDict file: here interIsoFoam
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Chapter 5

Modification of the interIsoFoam

solver

This chapter will describe how we modify the interIsoFoam solver by changing the discretization
of the gravitational force. The modification will be done through the interFlow solver of the
TwoPhaseFlow library which resembles the interIsoFoam solver. We will initially describe how
to compile the TwoPhaseFlow library and how to add the extension, gravityRecon, to it. With
this extension we may use the location of the interface when computing the inner product of the
gravitational force thus leading to a well-balanced solver.

The most important part of this chapter, will be an analysis highlighting the need for a proper
estimation of the inner product found in the gravitational force, i.e. (g · x). We will see, in the
hydrostatic case, how the current implementation creates spurious velocities as it can not balance
the dynamic pressure with the gravitational force. From this we will elaborate on the theory of
the gravityRecon model, which uses ideas from the plicRDF reconstruction scheme to estimate the
interface position properly. This interface position will then be used to evaluate the inner product
of the gravitational force.

This will be followed by the implementation of the interFlow solver and the gravityRecon

model. We see the generic behaviour of the interFlow solver and how gravityRecon computes the
interface position using the information from the isoAdvector algorithm.

We last elaborate on how to use the interFlow solver of the TwoPhaseFlow library. This solver
is similar to the interIsoFoam solver but more generic as it offers an easy way to implement new
models and test them.

5.1 Compiling TwoPhaseFlow and set up the extension

First let us look into the library, TwoPhaseFlow. It can be found here: https://github.com/

DLR-RY/TwoPhaseFlow. We remark that the library is developed in OpenFOAM-v1812 hence this
version is needed.

The library can be fetched from the archive accompanying this report or cloned using the repos-
itory with the address given above. We have here provided a guide for cloning the repository. First
we should clone the TwoPhaseFlow library from the GitHub repository

git clone https://github.com/DLR-RY/TwoPhaseFlow

Then we should add gravityRecon to the library. That is, we should collect the files, gravityRecon.H
and gravityRecon.C (see Appendix C for these files) in a common folder, called gravityRecon.
This folder should then be placed in the dynamic library, SurfaceForces in the src folder of
TwoPhaseFlow

mv gravityRecon TwoPhaseFlow/src/surfaceForces/accelerationForce/
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Next, we need to let the dynamic library, surfaceForces, be aware of the source code of gravityRecon.
We do this by editing the Make/files file located in the SurfaceForces folder. Before the last line
of the Make/files file, containing LIB = $(FOAM USER LIBBIN)/libsurfaceForces, we should add
the following line

accelerationForce/gravityRecon/gravityRecon.C

Last, we may then compile the library by executing the Allwmake script in the TwoPhaseFlow-folder.

TwoPhaseFlow/Allwmake

and we are ready to use the interFlow solver with the gravityRecon extension. How to use and
set up the solver, will be shown later in Chapter 5.4.

5.2 Theory

In the following, we will consider the motivation behind the need for a new discretization of the
gravitational force in interIsoFoam. We will initially describe the hydrostatic test case which will
include an analytic expression for the dynamic pressure in a control volume.

Consider the hydrostatic case of two steady, incompressible fluids at rest in a box. We will
assume a horizontal interface located at the height z = zΓ. The distance from the interface to the
top of the box, where a reference pressure will be specified, will be denoted by h− and the distance
from the interface to the bottom of the box, is denoted by h+, see Figure 5.1. The dynamic pressure
can then be found analytically to be

pd = p0 + ρ−gh− +

{
ρ−gzΓ , z > zΓ

ρ+gzΓ , z < zΓ

That is, it will be piecewise constant with a sharp jump, with the size of the density difference, at
the interface. By letting p0 = −ρ−gh− and consider an average value in a control volume covering
the interface, we can determine

⟨pd⟩C =
1

|VC |

∫
C

pd dV

=
1

|VC |

(∫
C−

ρ−gzΓ dV +

∫
C+

ρ+gzΓ dV

)
=

1

|VC |

(
ρ−gzΓ

∫
C−

dV + ρ+gzΓ

∫
C+

dV

)
=

1

|VC |
(
ρ−gzΓ|VC− |+ ρ+gzΓ|VC+ |

)
= ρ−gzΓ

|VC− |
|VC |

+ ρ+gzΓ
|VC+ |
|VC |

where C+ and C− denote the part of the volume filled with the heavy fluid and the light fluid,
respectively. Also, |VC+ | and |VC− | denote the corresponding volumes. We may recognize |VC+ |/|VC |
as the part of the volume filled with the heavy fluid, i.e. the volume fraction defined in Eq. (2.8)

|VC+ |
|VC |

= αC

similarly we have
|VC− |
|VC |

= 1− αC
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This yields a general expression for the average dynamic pressure in the control volume

⟨pd⟩C = ρ−gzΓ(1− αC) + ρ+gzΓαC

= [ρ]gzΓαC + ρ−gzΓ
(5.1)

Regarding the velocity field, it will be zero at every point in space and time, i.e.

U ≡ 0

This means that conservation of momentum in the hydrostatic case would be

∂(ρU)

∂t
= −∇pd − (g · x)∇ρ = 0

or in words, in order to keep the momentum constant, the dynamic pressure gradient should be
balanced by the gravitational force.

Figure 5.1: Sketch of a box containing two steady fluids at rest

5.2.1 Issue with the current implementation

We recall from Chapter 2.2, that the interIsoFoam solver couples pressure and velocity using the
PIMPLE algorithm; i.e. we compute the discrete pressure equation from Eq. (2.24) and correct the
velocity using Eq. (2.25). Assuming an initial velocity field of zero, U0 = 0, the discrete velocity
field would be computed as

⟨Un+1⟩C =
1

aC
R
(
ζn+1
f

)
since H(U0) = 0. Thus, in order to obtain a zero velocity field in the next time step, we should
have

⟨Un+1⟩C = 0 ⇔ R
(
ζn+1
f

)
= 0

⇔
∑
f

Sfζ
n+1
f = 0
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using the expression of the reconstruction operator in Eq. (2.26). Symbolically, we may then write
the last equation as ∑

f

Sf

(
−
(
(g · x)∇ρ · Sf

)n+1

f
−
(
∇pd · Sf

)n+1

f

)
= 0

⇔∑
f

Sf

(
∇pd · Sf

)n+1

f
+
∑
f

Sf

(
(g · x)∇ρ · Sf

)n+1

f
= 0

⇔

R
((

∇pd · Sf

)n+1

f

)
+R

((
(g · x)∇ρ · Sf

)n+1

f

)
= 0 (5.2)

saying that the reconstruction of the pressure gradient should equal the negative reconstruction of the
gravitational force. This establishes a condition for obtaining a zero velocity field in the hydrostatic
case. The question is then, which dynamic pressure do we compute in the discrete pressure equation?

In the hydrostatic case, the discrete pressure equation would reduce to∑
f

(
1

aC

)
f

(
⟨pd⟩n+1

N − ⟨pd⟩n+1
C

|dCN |

)
|Sf | = −

∑
f

(
1

aC

)
f

(
(g · xf )

⟨ρ⟩n+1
N − ⟨ρ⟩n+1

C

|dCN |

)
|Sf | (5.3)

Then, using the expression of the density field in Eq. (2.4), we observe that the cell values of the
densities can be written as

⟨ρ⟩n+1
C =

1

|VC |

∫
C

[ρ]Hn+1 + ρ− dV

= [ρ]
|V n+1

C+ |
|VC |

+ ρ−

= [ρ]αn+1
C + ρ−

and if we use this expression in the discretization of the flux of the gravitational force at the faces,
we get

(g · xf )
⟨ρ⟩n+1

N − ⟨ρ⟩n+1
C

|dCN |
|Sf | = (g · xf )

[ρ]αn+1
N + ρ− − [ρ]αn+1

C − ρ−

|dCN |
|Sf |

= [ρ](g · xf )

(
αn+1
N − αn+1

C

|dCN |

)
|Sf |

= −[ρ]gzf

(
αn+1
N − αn+1

C

|dCN |

)
|Sf |

where we have evaluated the inner product in the last equality; with zf denoting the z-coordinate
(the height) of the face center. That is, the discrete pressure equation, Eq. (5.3), can be written as∑

f

(
1

aC

)
f

(
⟨pd⟩n+1

N − ⟨pd⟩n+1
C

|dCN |

)
|Sf | =

∑
f

(
1

aC

)
f

[ρ]gzf

(
αn+1
N − αn+1

C

|dCN |

)
|Sf | (5.4)

Now, the pressure we seek, in each cell, is the analytic one shown in Eq. (5.1). With this analytic
expression, the discretization of the flux of the dynamic pressure gradient at a face becomes(

⟨pd⟩n+1
N − ⟨pd⟩n+1

C

|dCN |

)
|Sf | =

(
[ρ]gzΓα

n+1
N + ρ−gzΓ − [ρ]gzΓα

n+1
C − ρ−gzΓ

|dCN |

)
|Sf |

= [ρ]gzΓ

(
αn+1
N − αn+1

C

|dCN |

)
|Sf |
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Inserting this into the left hand side of Eq. (5.3) yields∑
f

(
1

aC

)
f

(
⟨pd⟩n+1

N − ⟨pd⟩n+1
C

|dCN |

)
|Sf | =

∑
f

(
1

aC

)
f

[ρ]gzΓ

(
αn+1
N − αn+1

C

|dCN |

)
|Sf | (5.5)

which would resemble a pressure equation that would produce the true, analytic dynamic pressure
in each cell.

Let us compare the right hand side of Eq. (5.5) with the right hand side of Eq. (5.4). We observe
that they are quite similar with one major difference; namely the evaluation of the inner product,
(g · x) = −gz. What Eq. (5.5) tells us is that to retrieve the true, analytic dynamic pressure, we
should evaluate the inner product using the interface height, zΓ, i.e. we should have

(g · x) = −gzΓ

What we observe in the current discrete pressure equation, Eq. (5.4), is that we use

(g · x) = −gzf

This tells us that the current pressure equation is constructed incorrectly thus it can not compute
the true analytic pressure; simply because we estimate the inner product using the location of the
face centers and not the true height of the interface.

This analysis does not say, that the current discrete pressure equation creates a dynamic pres-
sure that fails to satisfy the condition in Eq. (5.2) (although we observe this particular problem
in practice through simulations). The above analysis tells us only how to obtain the true, analytic
dynamic pressure. But what if we had the true dynamic pressure? And also evaluated the inner
product, (g · x), using the interface position?

Before answering this, let us do some preliminary derivations. We recall that the true dynamic
pressure yielded (

∇pd · Sf

)n+1

f
≈
(
⟨pd⟩n+1

N − ⟨pd⟩n+1
C

|dCN |

)
|Sf |

= [ρ]gzΓ

(
αn+1
N − αn+1

C

|dCN |

)
|Sf |

hence the corresponding reconstruction becomes

R
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∇pd · Sf
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f

)
=
∑
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Sf

(
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f

=
∑
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C
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)
|Sf |

(5.6)

Similarly, using the position of the interface, we have(
(g · x)∇ρ · Sf

)n+1

f
≈ (g · xΓ)
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N + ρ− − [ρ]αn+1

C − ρ−
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)
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yielding the following reconstruction

R
((

(g · x)∇ρ · Sf

)n+1

f

)
=
∑
f

Sf

(
(g · x)∇ρ · Sf

)n+1

f

= −
∑
f

Sf [ρ]gzΓ

(
αn+1
N − αn+1

C

|dCN |

)
|Sf |

(5.7)
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Now, placing Eq. (5.6) and Eq. (5.7) in the condition for obtaining a zero velocity field, Eq. (5.2),
we observe

R
((

∇pd · Sf

)n+1

f

)
+R

((
(g · x)∇ρ · Sf

)n+1

f

)
=
∑
f

Sf [ρ]gzΓ

(
αn+1
N − αn+1

C

|dCN |

)
|Sf |

−
∑
f

Sf [ρ]gzΓ

(
αn+1
N − αn+1

C

|dCN |

)
|Sf |

= 0

Saying that with the true, analytic dynamic pressure and an evaluation of the inner product at the
interface, we, in the hydrostatic case, satisfy the zero velocity condition in Eq. (5.2) thus obtain a
zero velocity field.

The conclusion from this analysis is two fold. First, evaluating the inner product of the gravita-
tional force at the true interface, would yield the true dynamic pressure. Second, with the analytic
dynamic pressure and the position of the interface, we would satisfy the condition in Eq. (5.2) hence
obtain a zero velocity as desired.

Last, let us point out that using the interface position makes sense as the gravitational force can
be considered as a Dirac delta function, as pointed out in Eq. (2.6), hence it extracts the position
of the interface. That is, (g · x) should be evaluated at the interface - not the face center.

5.2.2 Estimation of the interface height using isoAdvector

Note that in the above derivation, we have assumed a constant interface height thus the result may
not hold in the general case. However, the analysis tells us that the current discretization of the
gravitational force is wrong. The question is now how to estimate the location of the interface in
our implementation.

The following approach is inspired by the free software, Basilisk which is a software intended
for solving flow problems, also multiphase problems, and is developed by Popinet et al. [16]. Here,
the authors estimate the interface position in each cell, let us call it xΓ, and then they evaluate the
inner product in each interface cell, (g · xΓ). For the face values they use an average value, if the
face is neighboured by two interface cells.

We will use a similar approach. That is, we will compute the interface location in each cell
and then use those values to estimate the inner product, (g · x). The current proposal, called
gravityRecon, has some similarities to the creation of the RDF in the plicRDF reconstruction
scheme used in the interIsoFoam solver. First we need a position of the interface in a cell and here
we, as in the plicRDF scheme, will distinguish between interface cells and non-interface cells being
point neighbours to interface cell. For the interface cells, we will compute the interface position as
the point on the interface that is closest to the cell center. That is, we will compute the interface
position in cell i as

xΓ,i = xi − n̂S,i

(
(xi − xS,i) · n̂S,i

)
(5.8)

where we remember xi as the center of the cell, n̂S,i as the interface unit normal and xS,i as the
interface center. Note the inner product, (xi − xS,i) · n̂S,i, as the RDF value from Eq. (2.15). That
is, we substract the RDF value (in the interface normal direction) from the cell center in order to
compute the interface position of the cell. A visualisation of the computation can be seen in Figure
5.2a. Here we have visualized the interface center, xS,i, interface unit normal, n̂S,i, the cell center,
the vector, n̂S,i

(
(xi − xS,i) · n̂S,i

)
and the interface position for the cell, xΓ,i.

As mentioned in the description of the plicRDF scheme, non-interface cells may have several
point neighbours that are interface cells. In order to determine an interface position for such a cell,
we will consider a weighted sum as in the plicRDF scheme. For such cells, the interface position will
be calculated as

xΓ,i =

∑
j wijx̃Γ,ij∑

j wij
(5.9)
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(a) Interface cell (b) Non-interface cell

Figure 5.2: Illustration of how to compute the interface position using cell center, interface center
and interface normal

where we have a contribution from the neighbouring interface cells

x̃Γ,ij = xi − n̂S,j

(
(xi − xS,j) · n̂S,j

)
(5.10)

and weights similar to the weights for the RDF value

wij =
|n̂S,j · (xi − xS,j) |2

|xi − xS,j |2
(5.11)

The interface position from the neighbouring cells is visualized in Figure 5.2b.
With the interface position set for all relevant cells, we may then evaluate the inner product, for

the cells, as (g · xΓ,i). Remember, for the pressure equation, we should also evaluate this product
on the faces of the cells. This will be handled by interpolation from the two adjacent cells.

5.3 Implementation

With the theory covered, let us move into the implementation detials. The current proposal is im-
plemented as an extension to the TwoPhaseFlow library implemented in OpenFOAM-v1812. We
will begin with a short introduction to the relevant aspects of the library.

The TwoPhaseFlow library can be considered as a numerical modelling framework where imple-
mentation of new methods are simplified. It offers three solvers: One for two isothermal phases,
called interFlow, one for two compressible non-isothermal phases, called compressibleInterFlow

and last multiRegionPhaseChangeFlow which handles two compressible non-isothermal phases and
computes the mass transfer at the interface. We will use the interFlow solver hence our attention
will be devoted here.

The interFlow solver is similar, if not equal, to the interIsoFoam solver in practice. It is
composed of two base models; the Volume of Fluid Model and the Surface Force Model. The Volume
of Fluid Model handles the advection of the volume fractions. For advection schemes it offers the
MULES advection scheme, known from the interFoam solver, and the isoAdvector algorithm, known
from the interIsoFoam solver. Besides from advection of the volume fractions, the isoAdvector

algorithm offers a reconstruction of the interface through an interface center and an interface normal
defined in each interface cell. Current reconstruction schemes of the TwoPhaseFlow library are the
gradAlpha, isoAlpha, isoSurface and plicRDF. The Surface Force Model focuses on the forces
arising at the interface and is divided into three sub models: The Acceleration Model, which computes
the acceleration due to gravity, the Delta Function Model, which computes the Dirac Delta function
and last the Surface Tension Force Model, which handles computation of the curvature and the
surface tension coefficient. As we have neglected the surface tension, we will skip these details. The
Acceleration Model is interesting for us as it handles the computation of the gravitational force

(g · x)∇ρ

43



5.3. Implementation Chapter 5. Modification of the interIsoFoam solver

Curently, the TwoPhaseFlow library offers one way of handling this force, which is similar to the
one found in the interIsoFoam, see Eq. (2.23).

In the following we will introduce the implementation details of the interFlow solver and the
new Acceleration Model, gravityRecon, which ensures a hydrostatic balance between the dynamic
pressure and the gravitational force.

5.3.1 The interFlow solver

Initially, we will go through some details of the interFlow solver but we will remark that the solver
is, more or less, identical to the interIsoFoam solver, which is already, to some extend, covered in
this report.

Note here that the code snippets, shown in the following, contain titles that direct the reader to
the location of the files in the TwoPhaseFlow library.

As in the interIsoFoam solver, we utilize the PIMPLE loop, where we, in each PIMPLE iteration,
advect the interface (the volume fractions) and then do the pressure-velocity coupling through the
two files, UEqn.H and pEqn.H. Before moving into the pressure-velocity coupling, we will highlight
the first difference between the interIsoFoam solver and the interFlow solver. In interFlow.C we
read

TwoPhaseFlow/solver/interFlow/interFlow.C

 #include "alphaControls.H"

 #include "alphaEqnSubCycle.H"



 mixture.correct();



 surfForces.correct();

That is, after the advection step (alphaEqnSubCycle.H) and the call to mixture.correct(), we use
the member function, correct() of the object, surfForces. Let us spend some time to understand
this object. We initialize surfForces in the createFields.H file of the interFlow solver

TwoPhaseFlow/solver/interFlow/createFields.H

 surfaceForces surfForces(alpha1,phi,U,transportProperties);

i.e. it is an object of the class surfaceForces and constructed using the volume fraction, the face
fluxes, the velocity field and the transportProperties file. The surfaceForces class is found to
be the base class for handling forces on the interface. The acceleration force (due to gravity) and
the surface tension force will then be implemented as sub classes of this class. We will look into the
acceleration force and leave out the surface tension force. First, let us look into the surfaceForces
class. It contains some important member data. In surfaceForces.H we read

TwoPhaseFlow/src/surfaceForces/surfaceForces.H

 dictionary surfaceForcesCoeffs_;



 //- reference to volume fraction field

 const volScalarField& alpha1_;



 const fvMesh& mesh_;





 autoPtr<surfaceTensionForceModel> surfTenForceModel_;



 autoPtr<accelerationModel> accModel_;

where we will mention the dictionary, surfaceForcesCoeffs (line 64), which is used for handling
run time modifications, and the (smart) pointer accModel (line 74) with the template parameter
accelerationModel. These data are initialized in the constructor of the class, which is defined in
surfaceForces.C and reads
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TwoPhaseFlow/src/surfaceForces/surfaceForces.C

 Foam::surfaceForces::surfaceForces

 (

 const volScalarField& alpha1,

 const surfaceScalarField& phi,

 const volVectorField& U,

 const dictionary& dict

 )

 :

 surfaceForcesCoeffs_(dict.subDict("surfaceForces")),

 alpha1_(alpha1),

 mesh_(alpha1.mesh()),

 surfTenForceModel_(nullptr),

 accModel_(nullptr)

 {

 surfTenForceModel_ = surfaceTensionForceModel::New(surfaceForcesCoeffs_,alpha1,phi,U);

 accModel_ = accelerationModel::New(surfaceForcesCoeffs_,alpha1.mesh());

 }

First, let us elaborate on the initialization of the surfaceForcesCoeffs in line 102. We ini-
tialize this object as the subdictionary of the object dict (the transportProperties file) called
surfaceForces, i.e. it will point to the surfaceForces dictionary found in the transportProperties
file. Second, we mention the initialization of the accModel object using the selector, New of the
accelerationModel class. This selector takes the dictionary surfaceForcesCoeffs and the com-
putational mesh as arguments. Before moving into the selector, let us recall that the accelerationModel
class is found to be a subclass of the surfaceForces class and contains the following important
member data

TwoPhaseFlow/src/surfaceForces/accelerationForce/accelerationModel.H

 surfaceScalarField accf_; // ghf

 volScalarField acc_; // gh

which will hold the value of the inner product, (g · x), for the faces and for the cells, respectively.
Now, let us return to the selector of the accelerationModel class. In accelerationModels.C

we read

TwoPhaseFlow/src/surfaceForces/accelerationForce/accelerationModels.C

 word accelerationModelTypeName

 (

 dict.lookup("accelerationModel")

 );

Here dict will refer to surfaceForcesCoeffs (the transportProperties file) thus we use the
key, accelerationModel, specified in the surfaceForces subdictionary found here. This key will
specify which sub class of the accelerationModel class we use hence which constructor, the selector
should return. This is where the new implementation, gravityRecon, will be placed; i.e. as a sub
class of the accelerationModel class. If we specified accelerationModel to be gravityRecon in
the surfaceForces dictionary, the New selector of the accelerationModel class will simply return
the constructor of the gravityRecon class. This gives us an idea of how to use the gravityRecon

model but also that the surfaceForces dictionary is important to the interFlow solver.

With some details of the surfForces object, let us return to the member function, correct().
We remember that we found surfForces to be an object of the type surfaceForces. In
surfaceForces.H we declare and define the correct() function as

TwoPhaseFlow/src/surfaceForces/surfaceForces.H

 void correct()

 {

 surfTenForceModel_->correct();

 accModel_->correct();

45



5.3. Implementation Chapter 5. Modification of the interIsoFoam solver

 }

Thus it calls the correct() functions of the (smart) pointers surfTenForceModel and accModel .
With the assumption that accModel was constructed using the gravityRecon constructor, we
should move into the gravityRecon class to find the implementation of the correct() function.

5.3.1.1 The gravityRecon class

The gravityRecon class is declared as a sub class of the accelerationModel class in gravityRecon.H.
The correct() function is not found in the gravityRecon class but inherited from the
accelerationModel class. It is defined and declared in accelerationModel.H as

TwoPhaseFlow/src/surfaceForces/accelerationForce/accelerationModel.H

 void correct()

 {

 calculateAcc();

 }

i.e. we should consult the function calculateAcc() for the outcome of correct(). In
gravityRecon.C we find the definition of the calculateAcc() function. This function will update
the data accf and acc , i.e. the inner product, (g · x), for the cells and the faces. We will show
small parts of the code that will focus on the essentials of the code. First, let us look at the following

TwoPhaseFlow/src/surfaceForces/accelerationForce/gravityRecon/gravityRecon.C

 reconstructionSchemes& surf =

 mesh.lookupObjectRef<reconstructionSchemes>("reconstructionScheme");



 surf.reconstruct(false);



 const volVectorField& faceCentre = surf.centre();

 const volVectorField& faceNormal = surf.normal();

That is, we create a reference to the reconstruction scheme, reconstruct the interface and then
extract the interface area normal and interface center. This will be followed by

TwoPhaseFlow/src/surfaceForces/accelerationForce/gravityRecon/gravityRecon.C

 forAll(surf.interfaceCell(),celli)

 {

 if(mag(faceNormal[celli]) != 0)

 {

 vector closeP = closestDist(mesh.C()[celli],-faceNormal[celli],faceCentre[celli]);

 acc_[celli] = closeP & g_.value();

 }

which will introduce a forAll loop where we run through all cells that are point neighbours with
interface cells. We then, initially, check if the cells are interface cells (it has a non-zero interface
normal). If so, we compute a vector, closeP (line 124), using the function closestDist. Before
moving into this function, we note that we, in line 125, form the inner product between the computed
vector, closeP and the gravity vector and save it in the acc member data.

The closestDist function is defined as a private function in gravityRecon.C.

TwoPhaseFlow/src/surfaceForces/accelerationForce/gravityRecon/gravityRecon.C

 Foam::vector Foam::gravityRecon::closestDist(const point p, const vector n ,const vector centre)

 {

 vector normal = n/mag(n);

 return p - normal*((p - centre) & normal);

 }

What we observe here is that the closestDist function returns the interface position of Eq. (5.8).
The function uses a cell center, p, an interface normal, n and an interface center, centre. So, with
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the use of closestDist, we see that acc [celli] simply contains the inner product between the
interface position and the gravity vector for an interface cell.

Next, we will move into the case of an non-interface cell. In the calculateAcc() function we
then read

TwoPhaseFlow/src/surfaceForces/accelerationForce/gravityRecon/gravityRecon.C

 else if(nextToInterface[celli])

 {

 // the to the interface

 vector averageSurfP = vector::zero;

 scalar avgWeight = 0;

 const point p = mesh.C()[celli];



 forAll(stencil[celli],i)

 {

Here we, initially, prepare some measures; a zero vector, averageSurfP, a zero scalar, avgWeight
and the cell center of the current non-interface cell. This will be followed by a forAll loop, where
we will loop through all point neighbours of the non-interface cell. The loop reads

TwoPhaseFlow/src/surfaceForces/accelerationForce/gravityRecon/gravityRecon.C

 const label& gblIdx = stencil[celli][i];

 vector n = -exchangeFields.getValue(faceNormal,mapNormal,gblIdx);

 if (mag(n) != 0)

 {

 n /= mag(n);

 vector c =

 exchangeFields.getValue(faceCentre,mapCentres,gblIdx);

 vector distanceToIntSeg = (c - p);

 vector closeP = closestDist(p,n,c);

 scalar weight = 0;



 if (mag(distanceToIntSeg) != 0)

 {

 distanceToIntSeg /= mag(distanceToIntSeg);

 weight = sqr(mag(distanceToIntSeg & n));

 }

 else // exactly on the center

 {

 weight = 1;

 }

 averageSurfP += closeP * weight;

 avgWeight += weight;

 }

 }

where we get the global index of the point neighbour cell, gblIdx in line 136, and retrieve its interface
normal in line 137. This is followed by an if statement (line 138) checking if the magnitude of the
interface normal is non-zero. If so, we will normalize the normal and retrieve the interface center,
called c at lines 141-142. We will then compute distanceToIntSeg in line 143, which is the distance
between the cell center and the interface center. This is followed by the contribution to the interface
position, from the neighbouring cell, using the closestDist function in line 144, which resembles
Eq. (5.10). Next, in lines 147-155 we compute the weights, called weight, which follow Eq. (5.11).
Last we sum using averageSurfP and avgWeight (lines 156-157), which will denote the numerator
and denominator, respectively, of the weighted sum of Eq. (5.9).

Afterwards, we leave the loop and read

TwoPhaseFlow/src/surfaceForces/accelerationForce/gravityRecon/gravityRecon.C

 if (avgWeight != 0)

 {

 averageSurfP /= avgWeight;

 acc_[celli] = averageSurfP & g_.value();

 }
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saying that we compute the weighted interface position for the non-interface cell and then compute
the corresponding inner product, (g · xΓ,i) in line 164. With the completion of the above loop, we
have provided the relevant cells with a value for the inner product, (g · xΓ,i).

The last part of calculateAcc() reads

TwoPhaseFlow/src/surfaceForces/accelerationForce/gravityRecon/gravityRecon.C

 acc_.correctBoundaryConditions();

 accf_ = fvc::interpolate(acc_);

where we understand that we handle the value of the inner product at the boundaries and then use
interpolation from adjacent cells to compute the face values of the inner product.

Summing the above, we have computed the interface positions using the information from isoAd-
vector. This is used to updated the computation of the inner product for the relevant cells and the
relevant faces.

5.3.1.2 Pressure-velocity coupling

We remember that everything started with the call to the correct() function of the surfForces

object in the interFlow.C file. What follows of the interFlow.C file is the pressure-velocity coupling
using the files UEqn.H and pEqn.H. These two files are, compared to the interIsoFoam solver,
modified in the same way for the interFlow solver. Due to this, the details will be given for one of
the files only, the pEqn.H file. The main, if not the only, difference is found when we calculate the
surface forces in the object called phig. In pEqn.H we read

TwoPhaseFlow/solver/interFlow/pEqn.H

 surfaceScalarField phig

 (

 (

 // mixture.surfaceTensionForce()

 surfForces.surfaceTensionForce()

 //- ghf*fvc::snGrad(rho)

 + surfForces.accelerationForce()

 )*rAUf*mesh.magSf()

 );

Here we observe that the original code, still visible as comments, is replaced by two calls to mem-
ber functions of the object surfForces. The first, surfaceTensionForce(), is related to surface
tension forces and the second, accelerationForce(), to acceleration forces (due to gravity). In
surfaceForces.C we read

TwoPhaseFlow/src/surfaceForces/surfaceForces.C

 Foam::tmp<Foam::surfaceScalarField> Foam::surfaceForces::accelerationForce()

 {

 return accModel_->accelerationForce();

 }

i.e. the accelerationForce() function returns the member function accelerationForce() of the
(smart) pointer accModel , which we found to be of the type accelerationModel. In accelerationModel.H
we then read

TwoPhaseFlow/src/surfaceForces/accelerationForce/accelerationModel.C

 virtual tmp<surfaceScalarField> accelerationForce() = 0;

thus accelerationForce() is a pure virtual function hence it should be defined in the sub classes
of the accelerationModel class. The definition of the member function accelerationForce() in
the gravityRecon class is found in gravityRecon.C. Here we read

TwoPhaseFlow/src/surfaceForces/accelerationForce/gravityRecon/gravityRecon.C
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 Foam::tmp<Foam::surfaceScalarField> Foam::gravityRecon::accelerationForce()

 {

 const fvMesh& mesh = acc_.mesh();

 const volScalarField& rho = mesh.lookupObject<volScalarField>("rho");

 return -accf()*fvc::snGrad(rho);

 }

That is, we initially get a reference to the computational mesh which we use to look up the den-
sity field, rho. Then we return (the negative of) the member function, accf() multiplied by
fvc::snGrad(rho). The member function, accf() is defined and declared in accelerationModel.H

as

TwoPhaseFlow/src/surfaceForces/accelerationForce/accelerationModel.H

 const surfaceScalarField& accf() const

 {

 return accf_;

 }

i.e. it returns the accf member data thus the computation of the inner product, (g · x), for the
faces, which we updated using the surfForces.correct() call.

Returning back to the pEqn.H file, we now know that surfForces.accelerationForce() returns
-accf *fvc::snGrad(rho), which we recognize as

−(g · xΓ,f )
⟨ρ⟩n+1

N − ⟨ρ⟩n+1
C

|dCN |

with (g · xΓ,f ) being the interpolated inner product on the face.

This completes the implementation part of the gravityRecon model, which simply computes the
inner product, (g ·x) using an estimate of the interface position. The motivation for this was the fact
that the gradient of the density field was considered as a Dirac delta function which extracted the
interface position. This should in practice ensure a balance between pressure and the gravitational
force in a hydrostatic case. Before showing if this is the case, let us describe how to use and set up
the interFlow solver of the TwoPhseFlow library.

5.4 Run a case using interFlow

We will again consider the tilted box case hence a lot will be similar to the description in Chapter 4
and therefore not repeated here. This includes the properties of the phases, the mesh creation and
the initialization of the fields. One thing we should be aware of here is the setAlphaField utility.
In order to obtain the same initialization of the volume fractions in OpenFOAM-v1812, we will use
the following setAlphaFieldDict

system/setAlphaFieldDict

 field alpha.water;

 type plane;

 direction (0 0 1);

 origin (0 0 0.405);

where the attentive reader notices that the plane still needs two additional settings but the normal
setting is called direction here and it is also pointing in the opposite direction. That is, in
OpenFOAM-v1812, it will be the volumes in the opposite direction of the normal, that will be
set as the reference fluid.

Regarding the interFlow solver, one major difference will be the dictionary called surfaceForces
present in the transportProperties file of the constant folder. Here we should, as also noted in
the previous section, specify which models we use. In transportProperties we have then added
the following
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constant/transportProperties

 surfaceForces

 {

 sigma 0.00;

 surfaceTensionForceModel gradAlpha;

 accelerationModel gravityRecon;

 deltaFunctionModel alphaCSF;

 gravity ( 0 0 -9.81 );

 }

Here we specify the surface tension coefficient, sigma, which we set to zero as we neglect surface
tension. Next, we have set the surfaceTensionForceModel to gradAlpha. This is followed by
the accelerationModel, which specifies which model we use when handling the gravitational force.
Here we have set it to gravityRecon. We note here that, currently, the TwoPhaseFlow library offers
an acceleration model called gravity, which is similar to the one in interIsoFoam. We should also
specify how to handle the Dirac delta function by setting the deltaFunctionModel parameter. This
is set to alphaCSF, which reduces to the approximation

nΓδΓ ≈ ∇α

Finally, we specify the gravity vector using the parameter, gravity. The take away message here
is that using the above dictionary, we can easily change between the models used by the solver, e.g.
how we discretize the gravitational force.

Last thing, we have to set, is the interFlow solver settings. These are set in the alpha.water

dictionary in fvSolution. Here we read

constant/transportProperties

 solvers

 {

 alpha.water

 {

 isoFaceTol 1e-8;

 surfCellTol 1e-8;

 snapTol 1e-12;

 clip true;

 reconstructionScheme plicRDF;

 nAlphaSubCycles 1;

 cAlpha 1;



 advectionScheme isoAdvection;

 }

We notice that it is similar to the settings for the interIsoFoam solver. One additional parameter
is advectionSchemes, which is used to specify how we should advect the volume fractions. Here we
set it to isoAdvection.
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Results

We will here devote some space to show results using the original interIsoFoam solver and also
the interFlow solver of the TwoPhaseFlow library. The interFlow solver will use the extension,
gravityRecon, that utilizes the interface information from the isoAdvector algorithm, in order to
estimate the inner product, (g · x), more accurately.

We will here return to the hydrostatic test case of Chapter 4, the tilted box. That is, we initially
have the volume fractions depicted in Figure 6.1a. The velocity field will initially be set to zero and,
in the ideal case, it should remain zero (to machine precision) throughout the simulation.

First let us consider the interIsoFoam solver. The case set-up is similar to the one described in
Chapter 4 hence it will not be described again. See Appendix A for all the case files.

The magnitude of the velocity after one single time step is visualized in Figure 6.1b. The
visualization is done in ParaView [17] using log scale coloring. Here we observe magnitudes which
are significantly different from zero; the largest are of the order 10−1 m/s. What we can deduce
from here, and the analysis in Chapter 5.2.1, is that we are not able to compute a dynamic pressure
that will balance the gravitational force hence leading to the correct velocity of zero.

As adressed in Chapter 5.2.1 we should obtain a zero velocity field with the use of the true
interface position. Therefore, let us consider the same simulation with the interFlow solver of the
TwoPhaseFlow library with the gravityRecon extension. The set-up is similar to the one described
in Chapter 5.4 hence omitted here. Again, see Appendix B for the full case set up.

Similar as before, we will visualize the velocity magnitudes after one time step. The magnitudes
are visible in Figure 6.1c; again using the log scale coloring of ParaView. Here we observe velocities
with magnitude that are significantly reduced compared to the interIsoFoam solver. The largest
magnitudes are of the order 10−5 m/s. From here we deduce that introducing an estimate of the
interface position will significantly reduce the numerical errors in the hydrostatic case. That is, we
ensure a dynamic pressure that balances the gravitational force here.

It is still a question whether or not, it reduces the errors in more general cases. Last result, we
will show, is a simulation of the progression of a stream function wave. This was shown in Chapter
1 using the interIsoFoam solver and repeated in Figure 6.2 for convenience. The same simulation
has been run using the interFlow solver with the gravityRecon extension. It is shown in Figure
6.3. If we compare the two figures, we observe that we have removed the spurious currents found at
the interface using the interIsoFoam solver. This tells us that we, using the hydrostatic case, have
created a numerical scheme which reduced the error created in the gravitational force and seems
useful for more general cases as well.
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(a) Initial volume fraction of the tilted box case

(b) Magnitude of velocity after 1 timestep of the size
∆t = 0.001 using the interIsoFoam solver

(c) Magnitude of velocity after 1 timestep of the
size ∆t = 0.001 using the interFlow solver with
gravityRecon

Figure 6.1: Results from the tilted box case
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Figure 6.2: Simulation of a stream function wave using interIsoFoam. On top we have the volume
fraction and below we have the velocity magnitude where the α = 0.5 contour have been coloured
in white. Notice how the spurious currents are present just above the interface.

Figure 6.3: Simulation of a stream function wave using interFlow solver with the gravityRecon

extension. On top we have the volume fraction and below we have the velocity magnitude where
the α = 0.5 contour have been coloured in white. Notice how velocity behaves more reasonable.
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Study questions

1. How do you use the interIsoFoam solver in OpenFOAM?

2. How do we solve the governing equations of interfacial flows in interIsoFoam?

3. How do we ensure a balance between the pressure and the gravitational force in the hydrostatic
case?

4. How do we use the interFlow solver?

5. What is the difference between the interIsoFoam and the interFlow solver?

6. How do we add an extension to the TwoPhaseFlow library?
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Appendix A

The tilted box case using the
interIsoFoam solver

We have here collected the code for setting up the tutorial for the tilted box case using the
interIsoFoam solver. The appendix is divided into subsections devoted to the Allrun and Allclean

scripts and each of the folders found in the tutorial; namely the constant folder, the system folder
and the 0.orig folder, which hold the initial and boundary condition for the fields.

A.1 The Allrun and Allclean scripts

A.1.1 Allrun

 #!/bin/sh

 cd ${0%/*} || exit 1 # Run from this directory



 . $WM_PROJECT_DIR/bin/tools/RunFunctions



 runApplication blockMesh

 restore0Dir

 cp 0/alpha.org 0/alpha.water



 runApplication transformPoints -yawPitchRoll '(0 30 0)'

 runApplication setAlphaField



 runApplication $(getApplication)

A.1.2 Allclean

 #!/bin/sh

 cd ${0%/*} || exit 1 # Run from this directory



 . $WM_PROJECT_DIR/bin/tools/CleanFunctions



 cleanCase0

A.2 The constant folder

A.2.1 g
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 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class uniformDimensionedVectorField;

 location "constant";

 object g;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 dimensions [0 1 -2 0 0 0 0];

 value ( 0 0 -9.81 );





 // ************************************************************************* //

A.2.2 transportProperties

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object transportProperties;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 phases (water air);



 water

 {

 transportModel Newtonian;

 nu nu [ 0 2 -1 0 0 0 0 ] 0;

 rho rho [ 1 -3 0 0 0 0 0 ] 1000;

 }



 air

 {

 transportModel Newtonian;

 nu nu [ 0 2 -1 0 0 0 0 ] 0;

 rho rho [ 1 -3 0 0 0 0 0 ] 1;



 }



 sigma sigma [ 1 0 -2 0 0 0 0 ] 0.00;







 // ************************************************************************* //
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A.2.3 turbulenceProperties

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object turbulenceProperties;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 simulationType laminar;





 // ************************************************************************* //

A.3 The system folder

A.3.1 blockMeshDict

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 object blockMeshDict;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 scale 1;



 vertices

 (

 (0 -0.5 0)

 (1 -0.5 0)

 (1 0.5 0)

 (0 0.5 0)

 (0 -0.5 1)

 (1 -0.5 1)

 (1 0.5 1)

 (0 0.5 1)

 );



 blocks

 (

 hex (0 1 2 3 4 5 6 7) (100 1 100) simpleGrading (1 1 1)

 );



 edges
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 (

 );



 boundary

 (

 left

 {

 type patch;

 faces

 (

 (0 4 7 3)

 );

 }

 right

 {

 type patch;

 faces

 (

 (1 2 6 5)

 );

 }

 top

 {

 type patch;

 faces

 (

 (4 5 6 7)

 );

 }

 bottom

 {

 type patch;

 faces

 (

 (0 3 2 1)

 );

 }

 front

 {

 type empty;

 faces

 (

 (0 1 5 4)

 );

 }

 back

 {

 type empty;

 faces

 (

 (2 3 7 6)

 );

 }

 );



 mergePatchPairs

 (

 );



 // ************************************************************************* //

A.3.2 controlDict

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
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 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object controlDict;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 application interIsoFoam;



 startFrom startTime;



 startTime 0;



 stopAt endTime;



 endTime 0.01;



 deltaT 0.001;



 writeControl timeStep;



 writeInterval 1;



 purgeWrite 0;



 writeFormat ascii;



 writePrecision 6;



 writeCompression off;



 timeFormat general;



 timePrecision 6;



 runTimeModifiable yes;



 adjustTimeStep no;



 maxCo 0.2;

 maxAlphaCo 0.2;

 maxCapillaryNum 1e8;



 // ************************************************************************* //

A.3.3 fvSchemes

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;
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 location "system";

 object fvSchemes;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 ddtSchemes

 {

 default Euler;

 }



 gradSchemes

 {

 default Gauss linear;

 }



 divSchemes

 {

 div(rhoPhi,U) Gauss limitedLinearV 1;

 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

 }



 laplacianSchemes

 {

 default Gauss linear corrected;

 }



 interpolationSchemes

 {

 default linear;

 }



 snGradSchemes

 {

 default corrected;

 }



 fluxRequired

 {

 default no;

 pd;

 pcorr;

 alpha1;

 }





 // ************************************************************************* //

A.3.4 fvSolution

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSolution;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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 solvers

 {

 alpha.water

 {

 isoFaceTol 1e-8;

 surfCellTol 1e-8;

 snapTol 1e-12;

 clip true;

 reconstructionScheme plicRDF;

 nAlphaSubCycles 1;

 cAlpha 1;

 }



 pcorrFinal

 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-10;

 relTol 0;

 }



 p_rgh

 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-07;

 relTol 0.05;

 }



 p_rghFinal

 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-07;

 relTol 0;

 }



 U

 {

 solver PBiCG;

 preconditioner DILU;

 tolerance 1e-06;

 relTol 0;

 }



 UFinal

 {

 solver PBiCG;

 preconditioner DILU;

 tolerance 1e-07;

 relTol 0;

 }

 }



 PIMPLE

 {

 momentumPredictor no;

 nOuterCorrectors 1;

 nCorrectors 3;

 nNonOrthogonalCorrectors 0;

 pRefCell 0;

 pRefValue 0;

 }





 // ************************************************************************* //
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A.3.5 setAlphaFieldDict

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object setAlphaFieldDict;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 field alpha.water;

 type plane;

 normal (0 0 -1);

 origin (0 0 0.405);



 // ************************************************************************* //

A.4 The 0.orig folder

A.4.1 U

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 location "0";

 object U;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 dimensions [0 1 -1 0 0 0 0];



 internalField uniform (0 0 0);



 boundaryField

 {

 "(left|right|top|bottom)"

 {

 type slip;

 }



 "(front|back)"

 {

 type empty;

 }

 }
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 // ************************************************************************* //

A.4.2 alpha.org

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 object alpha;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 dimensions [0 0 0 0 0 0 0];



 internalField uniform 0;



 boundaryField

 {

 "(left|right|top|bottom)"

 {

 type zeroGradient;

 }

 "(front|back)"

 {

 type empty;

 }

 }



 // ************************************************************************* //

A.4.3 p rgh

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 object p_rgh;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 dimensions [1 -1 -2 0 0 0 0];



 internalField uniform 0;



 boundaryField

 {

 "(left|right|top|bottom)"
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 {

 type fixedFluxPressure;

 value uniform 0;

 }



 "(front|back)"

 {

 type empty;

 }

 }



 // ************************************************************************* //
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Appendix B

The tilted box case using the
interFlow solver

We have here collected the code for setting up the tutorial for the tilted box case using the interFlow
solver of the TwoPhaseFlow library. The appendix is divided into subsections devoted to the Allrun
and Allclean scripts and each of the folders found in the tutorial; namely the constant folder, the
system folder and the 0.orig folder, which hold the initial and boundary condition for the fields.

B.1 The Allrun and Allclean scripts

B.1.1 Allrun

 #!/bin/sh

 cd ${0%/*} || exit 1 # Run from this directory



 . $WM_PROJECT_DIR/bin/tools/RunFunctions

 application=$(sed -ne "s/^application\s*\(.*\);/\1/p" system/controlDict)



 runApplication blockMesh

 restore0Dir

 cp 0/alpha.org 0/alpha.water



 runApplication transformPoints -yawPitchRoll '(0 30 0)'

 runApplication setAlphaField



 runApplication $(getApplication)

B.1.2 Allclean

 #!/bin/sh

 cd ${0%/*} || exit 1 # Run from this directory



 . $WM_PROJECT_DIR/bin/tools/CleanFunctions



 cleanCase0

B.2 The constant folder

B.2.1 g
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 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class uniformDimensionedVectorField;

 location "constant";

 object g;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 dimensions [0 1 -2 0 0 0 0];

 value ( 0 0 -9.81 );





 // ************************************************************************* //

B.2.2 transportProperties

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object transportProperties;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 phases (water air);



 water

 {

 transportModel Newtonian;

 nu nu [ 0 2 -1 0 0 0 0 ] 0;

 rho rho [ 1 -3 0 0 0 0 0 ] 1000;

 }



 air

 {

 transportModel Newtonian;

 nu nu [ 0 2 -1 0 0 0 0 ] 0;

 rho rho [ 1 -3 0 0 0 0 0 ] 1;



 }



 sigma sigma [ 1 0 -2 0 0 0 0 ] 0.00;



 surfaceForces

 {

 sigma 0.00;

 surfaceTensionForceModel gradAlpha;
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 accelerationModel gravityRecon;

 deltaFunctionModel alphaCSF;

 gravity ( 0 0 -9.81 );

 }





 // ************************************************************************* //

B.2.3 turbulenceProperties

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object turbulenceProperties;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 simulationType laminar;





 // ************************************************************************* //

B.3 The system folder

B.3.1 blockMeshDict

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 object blockMeshDict;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 convertToMeters 1;



 vertices

 (

 (0 -0.5 0)

 (1 -0.5 0)

 (1 0.5 0)

 (0 0.5 0)

 (0 -0.5 1)

 (1 -0.5 1)
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 (1 0.5 1)

 (0 0.5 1)

 );



 blocks

 (

 hex (0 1 2 3 4 5 6 7) (20 1 20) simpleGrading (1 1 1)

 );



 edges

 (

 );



 boundary

 (

 left

 {

 type patch;

 faces

 (

 (0 4 7 3)

 );

 }

 right

 {

 type patch;

 faces

 (

 (1 2 6 5)

 );

 }

 top

 {

 type patch;

 faces

 (

 (4 5 6 7)

 );

 }

 bottom

 {

 type patch;

 faces

 (

 (0 3 2 1)

 );

 }

 front

 {

 type empty;

 faces

 (

 (0 1 5 4)

 );

 }

 back

 {

 type empty;

 faces

 (

 (2 3 7 6)

 );

 }

 );



 mergePatchPairs

 (

 );
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 // ************************************************************************* //

B.3.2 controlDict

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object controlDict;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 application interFlow;



 startFrom startTime;



 startTime 0;



 stopAt endTime;



 endTime 0.01;



 deltaT 0.001;



 writeControl timeStep;



 writeInterval 1;



 purgeWrite 0;



 writeFormat ascii;



 writePrecision 6;



 writeCompression off;



 timeFormat general;



 timePrecision 6;



 runTimeModifiable yes;



 adjustTimeStep no;



 maxCo 0.2;

 maxAlphaCo 0.2;

 maxCapillaryNum 1e8;



 maxDeltaT 1;



 // ************************************************************************* //

B.3.3 fvSchemes
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 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSchemes;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 ddtSchemes

 {

 default Euler;

 }



 gradSchemes

 {

 default Gauss linear;

 }



 divSchemes

 {

 div(rhoPhi,U) Gauss limitedLinearV 1;

 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

 }



 laplacianSchemes

 {

 default Gauss linear corrected;

 }



 interpolationSchemes

 {

 default linear;

 }



 snGradSchemes

 {

 default corrected;

 }



 fluxRequired

 {

 default no;

 pd;

 pcorr;

 alpha1;

 }





 // ************************************************************************* //

B.3.4 fvSolution

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |
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 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSolution;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 solvers

 {

 alpha.water

 {

 isoFaceTol 1e-8;

 surfCellTol 1e-8;

 snapTol 1e-12;

 clip true;

 reconstructionScheme plicRDF;

 nAlphaSubCycles 1;

 cAlpha 1;



 advectionScheme isoAdvection;

 }



 pcorrFinal

 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-10;

 relTol 0;

 }



 p_rgh

 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-07;

 relTol 0.05;

 }



 p_rghFinal

 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-07;

 relTol 0;

 }



 U

 {

 solver PBiCG;

 preconditioner DILU;

 tolerance 1e-06;

 relTol 0;

 }



 UFinal

 {

 solver PBiCG;

 preconditioner DILU;

 tolerance 1e-07;

 relTol 0;

 }

 }
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 PIMPLE

 {

 momentumPredictor no;

 nOuterCorrectors 1;

 nCorrectors 3;

 nNonOrthogonalCorrectors 0;

 pRefCell 0;

 pRefValue 0;

 }





 // ************************************************************************* //

B.3.5 setAlphaFieldDict

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object setAlphaFieldDict;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 field alpha.water;

 type plane;

 direction (0 0 1);

 origin (0 0 0.405);



 // ************************************************************************* //

B.4 The 0.orig folder

B.4.1 U

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volVectorField;

 location "0";

 object U;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 dimensions [0 1 -1 0 0 0 0];
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 internalField uniform (0 0 0);



 boundaryField

 {

 "(left|right|top|bottom)"

 {

 type slip;

 }

 /*

 atmosphere

 {

 type pressureInletOutletVelocity;

 value uniform (0 0 0);

 }

 */

 "(front|back)"

 {

 type empty;

 }

 }





 // ************************************************************************* //

B.4.2 alpha.org

 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 object alpha;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 dimensions [0 0 0 0 0 0 0];



 internalField uniform 0;



 boundaryField

 {

 "(left|right|top|bottom)"

 {

 type zeroGradient;

 }

 "(front|back)"

 {

 type empty;

 }

 }



 // ************************************************************************* //

B.4.3 p rgh
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 /*--------------------------------*- C++ -*----------------------------------*\

 | ========= | |

 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

 | \\ / O peration | Version: 2.2.0 |

 | \\ / A nd | Web: www.OpenFOAM.org |

 | \\/ M anipulation | |

 \*---------------------------------------------------------------------------*/

 FoamFile

 {

 version 2.0;

 format ascii;

 class volScalarField;

 object p_rgh;

 }

 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 dimensions [1 -1 -2 0 0 0 0];



 internalField uniform 0;



 boundaryField

 {

 "(left|right|top|bottom)"

 {

 type fixedFluxPressure;

 value uniform 0;

 }

 /*

 atmosphere

 {

 type totalPressure;

 p0 uniform 0;

 U U;

 phi phi;

 rho rho;

 psi none;

 gamma 1;

 value uniform 0;

 }

 */

 "(front|back)"

 {

 type empty;

 }

 }



 // ************************************************************************* //
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The gravityRecon acceleration
model

We have here collected the code for the acceleration model gravityRecon added to the TwoPhase-
Flow library. It consists of two files; the gravityRecon.H file and the gravityRecon.C file. We note
here that the files should be collected in a common folder, called gravityRecon, and added to the
acceleration models of the TeoPhaseFlow library. That is, place the gravityRecon folder at

TwoPhaseFlow/src/surfaceForces/accelerationForce/gravityRecon

C.1 gravityRecon.H

 /*---------------------------------------------------------------------------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration |

 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation

 \\/ M anipulation |

 -------------------------------------------------------------------------------

 License

 This file is part of OpenFOAM.



 OpenFOAM is free software: you can redistribute it and/or modify it

 under the terms of the GNU General Public License as published by

 the Free Software Foundation, either version 3 of the License, or

 (at your option) any later version.



 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

 for more details.



 You should have received a copy of the GNU General Public License

 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.



 Class

 Foam::gravityRecon



 Description



 SourceFiles

 gravityRecon.C

 newPhaseChangeModel.C



 \*---------------------------------------------------------------------------*/
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 #ifndef gravityRecon_H

 #define gravityRecon_H



 #include "typeInfo.H"

 #include "volFields.H"

 #include "dimensionedScalar.H"

 #include "autoPtr.H"

 #include "zoneDistribute.H"

 #include "accelerationModel.H"

 #include "markInterfaceRegion.H"



 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 namespace Foam

 {



 /*---------------------------------------------------------------------------*\

 Class gravityRecon Declaration

 \*---------------------------------------------------------------------------*/



 class gravityRecon

 : public accelerationModel

 {



 private:



 //-

 //- Stabilisation for normalisation of the interface normal

 const dictionary& gravityDict_;

 dimensionedVector g_;



 // Private Member Functions



 //- Disallow copy construct

 gravityRecon(const gravityRecon&);



 //- Disallow default bitwise assignment

 void operator=(const gravityRecon&);



 vector closestDist(const point p, const vector n ,const vector center);





 protected:



 //- Re-calculate the acceleration

 virtual void calculateAcc();



 public:



 //- Runtime type information

 TypeName("gravityRecon");





 // Constructors



 //- Construct from components

 gravityRecon

 (

 const dictionary& dict,

 const fvMesh& mesh

 );





 //- Destructor

 virtual ~gravityRecon()

 {}



 virtual tmp<surfaceScalarField> accelerationForce();
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 };





 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 } // End namespace Foam



 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //



 #endif



 // ************************************************************************* //

C.2 gravityRecon.C

 /*---------------------------------------------------------------------------*\

 ========= |

 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

 \\ / O peration |

 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation

 \\/ M anipulation |

 -------------------------------------------------------------------------------

 License

 This file is part of OpenFOAM.



 OpenFOAM is free software: you can redistribute it and/or modify it

 under the terms of the GNU General Public License as published by

 the Free Software Foundation, either version 3 of the License, or

 (at your option) any later version.



 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

 for more details.



 You should have received a copy of the GNU General Public License

 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.



 \*---------------------------------------------------------------------------*/



 #include "gravityRecon.H"

 #include "addToRunTimeSelectionTable.H"



 #include "reconstructionSchemes.H"



 #include "plane.H"

 #include "fvc.H"



 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //



 namespace Foam

 {

 defineTypeNameAndDebug(gravityRecon, 0);

 addToRunTimeSelectionTable(accelerationModel,gravityRecon, components);

 }



 Foam::vector Foam::gravityRecon::closestDist(const point p, const vector n ,const vector centre)

 {

 vector normal = n/mag(n);

 return p - normal*((p - centre) & normal);

 }
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 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //



 Foam::gravityRecon::gravityRecon

 (

 const dictionary& dict,

 const fvMesh& mesh

 )

 :

 accelerationModel

 (

 typeName,

 dict,

 mesh

 ),

 gravityDict_(dict),

 g_

 (

 "gravity",

 dimAcceleration,

 vector(0,0,0)

 )





 {

 // calculateAcc();

 }



 // * * * * * * * * * * * * * * Public Access Member Functions * * * * * * * * * * * * * * //



 void Foam::gravityRecon::calculateAcc()

 {

 const fvMesh& mesh = acc_.mesh();

 zoneDistribute& exchangeFields = zoneDistribute::New(mesh);

 g_.value() = gravityDict_.lookup("gravity");

 dimensionedScalar hRef("hRef",dimLength, gravityDict_.lookupOrDefault("hRef",0));





 dimensionedScalar ghRef

 (

 mag(g_.value()) > SMALL

 ? g_ & (cmptMag(g_.value())/mag(g_.value()))*hRef

 : dimensionedScalar("ghRef", g_.dimensions()*dimLength, 0)

 );





 acc_ = (g_ & mesh.C()) - ghRef;

 accf_ = ((g_ & mesh.Cf()) - ghRef);



 if(mesh.foundObject<reconstructionSchemes>("reconstructionScheme"))

 {

 reconstructionSchemes& surf = mesh.lookupObjectRef<reconstructionSchemes>("

reconstructionScheme");



 surf.reconstruct(false);



 const volVectorField& faceCentre = surf.centre();

 const volVectorField& faceNormal = surf.normal();



 boolList nextToInterface(mesh.nCells(),false);

 markInterfaceRegion markIF(mesh);



 markIF.markCellsNearSurf(surf.interfaceCell(),1,nextToInterface);



 exchangeFields.setUpCommforZone(nextToInterface,true);



 Map<vector > mapCentres =

 exchangeFields.getDatafromOtherProc(nextToInterface,faceCentre);

 Map<vector > mapNormal =
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 exchangeFields.getDatafromOtherProc(nextToInterface,faceNormal);



 const labelListList& stencil = exchangeFields.getStencil();



 forAll(surf.interfaceCell(),celli)

 {

 if(mag(faceNormal[celli]) != 0)

 {

 vector closeP = closestDist(mesh.C()[celli],-faceNormal[celli],faceCentre[celli]);

 acc_[celli] = closeP & g_.value();

 }

 else if(nextToInterface[celli])

 {

 // the to the interface

 vector averageSurfP = vector::zero;

 scalar avgWeight = 0;

 const point p = mesh.C()[celli];



 forAll(stencil[celli],i)

 {

 const label& gblIdx = stencil[celli][i];

 vector n = -exchangeFields.getValue(faceNormal,mapNormal,gblIdx);

 if (mag(n) != 0)

 {

 n /= mag(n);

 vector c =

 exchangeFields.getValue(faceCentre,mapCentres,gblIdx);

 vector distanceToIntSeg = (c - p);

 vector closeP = closestDist(p,n,c);

 scalar weight = 0;



 if (mag(distanceToIntSeg) != 0)

 {

 distanceToIntSeg /= mag(distanceToIntSeg);

 weight = sqr(mag(distanceToIntSeg & n));

 }

 else // exactly on the center

 {

 weight = 1;

 }

 averageSurfP += closeP * weight;

 avgWeight += weight;

 }

 }



 if (avgWeight != 0)

 {

 averageSurfP /= avgWeight;

 acc_[celli] = averageSurfP & g_.value();

 }



 }

 else

 {

 // do nothing

 }



 }



 acc_.correctBoundaryConditions();

 accf_ = fvc::interpolate(acc_);



 }

 else

 {

 Info << "notFound" << endl;

 }
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 }



 Foam::tmp<Foam::surfaceScalarField> Foam::gravityRecon::accelerationForce()

 {

 const fvMesh& mesh = acc_.mesh();

 const volScalarField& rho = mesh.lookupObject<volScalarField>("rho");

 return -accf()*fvc::snGrad(rho);

 }









 // ************************************************************************* //

81



Index

H operator, 17

blockMesh, 34, 36

cAlpha, 35, 36
clip, 35

fixedFluxPressure, 34
fvSolution, 22, 23, 25, 35

gravityRecon, 7, 37, 38, 42, 44–46, 48–51, 53

interFlow, 7, 37, 43, 44, 48–53
interFoam, 21, 29–31
interIsoFoam, 6–10, 12, 14, 20, 22, 34–39,

42–44, 48, 50, 51, 53
isoAdvector, 6, 8, 10–12, 20, 22, 23, 27, 28, 51
isoFaceTol, 35

nAlphaSubCycles, 35, 36

PIMPLE, 8, 9, 14, 20, 22, 28, 29, 31
plicRDF, 8, 12, 13, 20, 23–27, 35, 36, 50

reconstructionScheme, 35, 36, 50
rhoPhi, 29, 30

setAlphaField, 34–36
setAlphaFieldDict, 34
setFields, 34
snapTol, 35, 36
surfCellTol, 35

transformPoints, 34
transportProperties, 34
turbulenceProperties, 34
TwoPhaseFlow, 7, 37, 38, 43, 44, 50

yawPitchRoll, 34

zeroGradient, 34

82


	Introduction
	Theory
	Governing Equations
	Numerical solution procedure
	Advection of the interface: isoAdvector
	Pressure-velocity coupling


	Implementation details
	The interIsoFoam solver
	The advection step
	The reconstruction step
	The isoAdvection Step

	Pressure-Velocity coupling

	Summary

	Run a case using interIsoFoam
	Modification of the interIsoFoam solver
	Compiling TwoPhaseFlow and set up the extension
	Theory
	Issue with the current implementation
	Estimation of the interface height using isoAdvector

	Implementation
	The interFlow solver
	The gravityRecon class
	Pressure-velocity coupling


	Run a case using interFlow

	Results
	The tilted box case using the interIsoFoam solver
	The Allrun and Allclean scripts
	Allrun
	Allclean

	The constant folder
	g
	transportProperties
	turbulenceProperties

	The system folder
	blockMeshDict
	controlDict
	fvSchemes
	fvSolution
	setAlphaFieldDict

	The 0.orig folder
	U
	alpha.org
	p_rgh


	The tilted box case using the interFlow solver
	The Allrun and Allclean scripts
	Allrun
	Allclean

	The constant folder
	g
	transportProperties
	turbulenceProperties

	The system folder
	blockMeshDict
	controlDict
	fvSchemes
	fvSolution
	setAlphaFieldDict

	The 0.orig folder
	U
	alpha.org
	p_rgh


	The gravityRecon acceleration model
	gravityRecon.H
	gravityRecon.C


