Cite as: Tisovska, P.: Description of the overset mesh approach in ESI version of OpenFOAM. In
Proceedings of CFD with OpenSource Software, 2019, Edited by Nilsson. H.,
http://dx.doi.org/10.17196/0S_CFD#YEAR_2019

CFD wiTH OPENSOURCE SOFTWARE

A COURSE AT CHALMERS UNIVERSITY OF TECHNOLOGY
TAUGHT BY HAKAN NILSSON

Description of the overset mesh approach
in ESI version of OpenFOAM

Developed for OpenFOAM v1906
Requires: overPimpleDyMFoam

Author: b S
TiSOVSKA PETRA c eer Tevlewes y:
Technical University of Liberec ONSTANTIN SULA

MUYE GE

petra.tisovska@gmail.com

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone
through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no
responsibility for the contents.

December 22, 2019

Learning outcomes

The main requirements of a tutorial is that it should teach the four points: How to use it, The
theory of it, How it is implemented, and How to modify it. Therefore the list of learning outcomes
is organized with those headers.

The reader will learn:

How to use it:
e description of how to run a tutorial case simpleRotor with overPimpleDyMFoam
e modification of this case for moving overset mesh
o different approaches for mesh generation
The theory of it:
e the principle of overset is described
e the inverse distance interpolation scheme is analyzed
How it is implemented:

e differences between of simpleFoam and overSimpleFoam are described from overset point of
view

e the structure of the chapter 3 follows the process of implementation of the overSimpleFoam
solver

e the implementation of the interpolation scheme is analyzed
How to modify it:

e the complete procedure of modifying a function in the current library is described according
to OpenFOAM principles

e the modification of stencilWeights function is given

e neighbors of original donors are added into account for weights computation

Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

e to run standard document tutorials like damBreak tutorial and to understand the meaning of
files in this tutorial

e to understand the blockMesh utility

e to have a a basic knowledge of the finite volume method and how the discretization process
works

e to have basic understanding of object oriented programming.

Contents

Introduction

1 Tutorials for overset mesh

1.1 The simpleRotor tutorial
1.1.1 Mesh generation L
1.1.2 Folder zero
1.1.3 Folder constant L
1.1.4 Folder system L
1.1.5 Running thecase

1.2 Overset mesh generation L L L
1.2.1 Simplemesh
1.2.2 Merged meshes
1.2.3 Special cases

1.3 Modification of twoSimpleRotors

2 Theory

2.1 Inverse distance e e e

2.1.1 Logarithm inverse distance

3 Overset library

3.1 Structure of the library L
3.2 Overset and simpleFoam solver
3.2.1 overSimpleFoam.C oo
3.2.2 createUpdatedDynamicFvMesh. H
3.2.3 createFields. H
3.2.4 createOversetFields. H,
3.2.5 UEqn.H oo o e
3.2.6 pEgn.H oo
3.3 Selected parts of the overset library 0o oo
3.3.1 Class cellCellStencil
3.3.2 Class cellCellStencilObject
3.3.3 File createCellMask.H
3.3.4 File createlnterpolatedCells. H
3.3.5 Function updateAddressing
3.3.6 Function interpolateFields oo o
3.3.7 Function interpolate Lo
3.3.8 Function celllnterpolationMap
3.3.9 Function update
3.3.10 Function markPatchesAsHoles
3.3.11 Function overlaps
3.3.12 Function markDonors L o
3.3.13 Function createStencil
3.3.14 Function stencilWeights oo

—_
[anBNo BEN I =]

11
11
12
12
13
14
16

18
20
21

CONTENTS CONTENTS
3.3.15 Function globalCellCells 36

3.3.16 Function celllnterpolationWeights 36

3.3.17 Function interpolationCells 0L 36

3.3.18 Function celllnterpolationWeight 36

4 Modification of inverse distance 37
4.1 Logarithmic distance L 37
4.1.1 Incorporation into OpenFOAM 37

4.1.2 Check before modification oL 39

4.1.3 Modification to logarithmInverseDistance 39

4.2 Neighbors inverse distance L L L L oo 40
4.2.1 Incorporation into OpenFOAM 41

4.2.2 Check before modification oo 42

4.2.3 Adding the extension into code oL 43
Bibliography 45

Introduction

The overset mesh approach is an implementation which uses disconnected meshes in OpenFOAM.
It can be also called chimera framework. The CFD solution on the system of meshes requires
interpolation between the overlapped regions of the meshes, which do not require connectivity. The
overset grid approach can be highly useful in cases, when a rigid body moves in the fluid domain
and when the displacements are too high to be captured by mesh deformation. It can also be
used for mesh optimization or for simplified mesh generation. Its main disadvantage is extension of
computational costs. Benefits of overset are described in more detail in chapter 2.

This project report explores the overset grid approach implemented in OpenFOAM v1906 and is
divided into four parts. The first chapter contains the description of all different approaches used in
tutorials, which are available in OpenFOAM v1906. The simpleRotor tutorial is described in detail.
The different ways to generate overset mesh are given and described in detail. The last part of the
chapter describes a modification of one of the tutorials.

The second chapter explains the principle of the overset method. The theory of this framework is
based on program code in OpenFOAM. This chapter also includes the theory of the inverseDistance
interpolation scheme. The description of program code is given in the third chapter, which also
compares the differences between the simpleFoam and overSimpleFoam solvers.

The last chapter proposes a modification of the library and it gives the step-by-step tutorial.
It is based on OpenFOAM principle that the user should not interfere with original files. The
modification extends the inverseDistance interpolation scheme. The interpolated value computation
is extended to neighbours of neighbours, instead of original form, which takes to the computation
just the neighbours of given cell.

Chapter 1

Tutorials for overset mesh

This chapter is divided into three sections. The first section is about tutorial provided in OpenFOAM
v1906 simpleRotor. The second section is about different ways to generate and use overset mesh.
The last section is modification of one tutorial case.

Recommendation: For better understanding it is recommended to copy the tutorial that is
described to your user directory and see the files that are described below. After the description of
one tutorial it is recommended to run it and see results in paraFoam. In case of uncerternity how
to run it correctly, the commands are listed in relevant Allrun or Allrun.pre script.

1.1 The simpleRotor tutorial

This tutorial is a two-dimensional case with moving overset mesh, which is run by solver overPim-
pleDyMFoam. In tutorial, the Allrun, Allrun.pre and Allclear scripts are provided. The commands
of Allrun and Allrun.pre scripts is described in following sections. If you want to run the tutorial,
you should copy it to your user directory by executing

0Fv1906
cp -r $FOAM_TUTORIALS/incompressible/overPimpleDyMFoam/simpleRotor $FOAM_RUN/

and run it by a command
./Allrun

The rotor is rotating in domain and creates fluid motion. The dimensions are shown in figure 1.1a
and the movent is implied in figure 1.1b. The fluid is colored blue and the rotor is red.

4.5

[10 |

(a) Domain dimensions (b) Rotor motion

Figure 1.1: Schematic view of simpleRotor tutorial case

1.1. THE SIMPLEROTOR TUTORIAL CHAPTER 1. TUTORIALS FOR OVERSET MESH

1.1.1 Mesh generation

In this section the generation of mesh with overmesh region is described. All commands described
here can be found in Allrun.pre script. Figure 1.2 shows mesh after running

cd $FOAM_RUN/simpleRotor
blockMesh

The blockMesh file is set up to create two overlapped blocks — fluid region and overset mesh. No
rotor part is introduced yet.

Figure 1.2: Overlapped mesh after blockMesh command

The next step is to run command
topoSet

It has two functions. The first part of topoSet file is

{
name c0;
type cellSet;
action new;
source regionToCell;
insidePoints ((0.001 0.001 0.001));
}
{
name cl;
type cellSet;
action new;
source cellToCell;
set c0;
}
{
name cl;

1.1. THE SIMPLEROTOR TUTORIAL CHAPTER 1. TUTORIALS FOR OVERSET MESH

type cellSet;
action invert;

3

The purpose of this part is to divide the mesh into two parts: cO and cl. The c0 is the mesh in
background. The c1 is the mesh around the rotor. Another step is to establish the space, where the
rotor is supposed to be. The box is created in the second part of topoSet file.

{
name box;
type cellSet;
action new;
source cellToCell;

set cl;
}
{
name box;
type cellSet;
action subset;
source boxToCell;
box (0.0025 0.0045 -100) (0.0075 0.0055 100);
}
{
name box;
type cellSet;
action invert;
}

When the box is establish, the utility subsetMesh is used
subsetMesh box -patch hole -overwrite

This command creates a new patch from the region box with name hole and the old mesh is over-
written. After the creation of patch for the rotor, the topoSet command is run again to set the zones
c0 and cl. Figure 1.3 shows the outcome from this settings.

The zero folder is restored from 0.orig. It can be done by command in Allrun.pre script
restoreODir or without the script by

cp -r O.orig O

The last command in Allrun.pre script is setFields. In this case the command is used for setting
zones for overset. The ID of zone c0 is zero and the ID for zone cl is 1. These values will be
described in chapter 2.

1.1.2 Folder zero

In this section the main focus is on zonelD and pointDisplacement. The knowledge of standard files
with boundary condition such as k, epsilon, nut, nuTilda, U, p is assumed.

The file pointDisplacement specifies the conditions for points movement for each boundary. In
this case, this file tells the solver that there should be no moving except for hole and oveset patch
type. The type of the condition specified here is zeroGradient.

The file zonelD defines the type oveset for overset patch and zeroGradient for each of other
boundaries. Above this declaration, the file containts include statement

#includeEtc "caseDicts/setConstraintTypes"

1.1. THE SIMPLEROTOR TUTORIAL CHAPTER 1. TUTORIALS FOR OVERSET MESH

hole in ¢1

c0 (zone 0)

Figure 1.3: The zones of mesh distinguished by color

The reason for using this include statement is to shorten the zonelD file. This included file has
following contain.

cyclic;

cyclicAMI;

cyclicACMI;

value $internalField;

cyclicSlip;

empty;

cyclic
{

type
b
cyclicAMI
{

type
b
cyclicACMI
{

type
b
cyclicSlip
{

type
b
empty
{

type
b

nonuniformTransformCyclic

{
type

nonuniformTransformCyclic;

1.1. THE SIMPLEROTOR TUTORIAL

CHAPTER 1.

TUTORIALS FOR OVERSET MESH

}
processor
{
type processor;
value $internalField;
b
processorCyclic
{
type processorCyclic;
value $internalField;
}
symmetryPlane
{
type symmetryPlane;
b
symmetry
{
type symmetry;
}
wedge
{
type wedge;
}
overset
{
type overset;
}

This file is changed by running the setFields command. The zone ID is assigned to each of internal
cells according the settings in setFieldsDict file.

1.1.3 Folder constant

The turbulenceProperties defines the type of flow, in this case the laminar option is chosen. The file
RASProperties is intended for turbulence model specification. With the laminar flow option, this

file is not used.

The transportProperties specifies physical properties of fluid and transport model. The coeffi-
cients mentioned in this file are described in table 1.1.

Symbol ‘ name

DT
nu

diffusion coefficient

viscosity

Table 1.1: Constants of transport properties file

The newtonian model is selected by

transportModel Newtonian;

10

1.1. THE SIMPLEROTOR TUTORIAL CHAPTER 1. TUTORIALS FOR OVERSET MESH

The user of the tutorial can choose different transport models for whose the coefficients are provided
as

CrossPowerLawCoeffs
BirdCarreauCoeffs

The Newtonian model assumes that viscosity is constant. The other models estimate the viscosity
as infinity value plus correction, which is affected by coefficients provided by user.

The file dynamicMeshDict is discussed in detail in this section. Its main purpose is to determine
the mesh motion. In this case the solver multiSolidBodyMotionSolver is selected. This solver tells
the overPimpleDyMFoam solver how to move with the selected zone. In this case the zone named
movingZone is supposed to rotate by defined parameters: origin, axis and omega. The name of the
zone is set in the blockMeshDict file.

The file with the same name and purpose can be found in tutorial cases for pimpleDyMFoam.
These types of motion can be described: rotation about an axis, linear movement, combination of
both, oscillating linear or rotational motion and finally motion described by tabular data.

Different solvers for motion can also be selected. For example the solver sixDoFRigidBodyMotion.

1.1.4 Folder system

Most of contents of this file is already mentioned in section 1.1.1 because they are assigned with mesh
generation. The remaining files are: controlDict, decomposeParDict, fvSchemes and fvSolution. The
controlDict control the whole simulation. The decomposeParDict is used for running the simulation
in parallel.

The file fvSolution is used for setting up the numerical parameters of the simulation. There
is nothing specific for the overset mesh approach. The file fvSchemes has to be set interpolation
schemes for overset, in this case it is the inverseDistance scheme.

1.1.5 Running the case

The final step is to run the case with command

cd $FOAM_RUN/simpleRotor
overPimpleDyMFoam

After running the results can be displayed in Paraview by executing the command paraFoam.

11

1.2. OVERSET MESH GENERATION CHAPTER 1. TUTORIALS FOR OVERSET MESH

1.2 Different approaches of mesh generation for overset mesh

In this section, the possibilities how to generate overset meshes is discussed. A different tutorial
cases are explored. The solver using overset mesh can be recognised by the fact that it is name
starting with over. The solvers can be found with terminal command

find $FOAM_SOLVERS -iname "overx*"
The ones existing in OpenFOAM v1906 are listed below.
e compressible — overRhoPimpleDyMFoam
e compressible — overRhoSimpleFoam
e basic — overLaplacianDyMFoam
e basic — overPotentialFoam
e multiphase — overInterDyMFoam
e incompressible — overSimpleFoam
e incompressible — overPimpleDyMFoam
e heatTransfer — overBuoyantPimpleDyMFoam

To be able to run these solvers, the case must have at least one patch of type overset. It is strongly
recommended that the overset patch is introduced first. The outcome of the interpolation is an
assymetric matrix. The solver in fvSolution has to be adjusted. All asymmetric solvers except
from GAMG are supported. In practice a good choice is the smooth (guide-solvers-smooth-smooth)
solver with symGaussSeidel smoother for transport equations (U, k, etc.) and PBiCGStab with
DILU preconditioner for elliptic equations (p, yPsi).

The approaches used for creating the mesh are divided into three parts: simple mesh, merged
meshes and special cases. The tutorial cases are listed and the methods are described in detail in
each section bellow.

1.2.1 Simple mesh

The blockMesh utility alone is used for creation of the mesh. In blockMeshDict user can found
two blocks that are overlapping each other. This method is used for simpleRotor tutorial which is
described in detail in section 1.1.

The same setup for the mesh (except dimensions — size of the computational domain) is used for
another two cases: heatTransfer and movingBox. The main difference here is that the prescribed
movement of the hole is linear and the case is solved by different solver. The name, solver and the
path are displayed in table 1.2.

Case ‘ solver ‘ path
simpleRotor | pimpleDyMFoam $FOAM_TUTORIALS/incompressible/overPimpleDyMFoam/
heatTransfer | overLaplacianDyMFoam $FOAM_TUTORIALS/basic/overLaplacianDyMFoam

movingBox overBuoyantPimpleDyMFoam | $FOAM_TUTORIALS/heatTransfer/overBuoyantPimpleDyMFoam

Table 1.2: Basic information about tutorial cases for simple mesh

A slight modification of simpleRotor mesh can be found in cases named twoSimpleRotor. According
to the name, a second rotor is added into the mesh. This task is accomplished in the exact same
way as the first rotor was added, so in blockMeshDict the second movingZone is added. The hole
defined in topoSet is extended by second coordinates and the second oversetMesh zone is defined by
c2 cell set. The cases where this method is applied are listed in table 1.3.

12

1.2. OVERSET MESH GENERATION CHAPTER 1. TUTORIALS FOR OVERSET MESH

Case | solver | path

twoSimpleRotors | overRhoPimpleDyMFoam | $FOAM_TUTORIALS/compressible/overRhoPimpleDyMFoam
twoSimpleRotors | overInterDyMFoam $FOAM_TUTORIALS/multiphase/overInterDyMFoam/
twoSimpleRotors | overPimpleDyMFoam $FOAM_TUTORIALS/incompressible/overPimpleDyMFoam

Table 1.3: Basic information about tutorial cases twoSimpleRotors

1.2.2 Merged meshes

Another way to create overset mesh is to use OpenFOAM utility mergeMeshes. This approach is
used in case cylinder, which can be found for following solvers listed in table 1.4.

Case ‘ solver ‘ path

hotCylinder | overRhoSimpleFoam | $FOAM_TUTORIALS/compressible/overRhoSimpleFoam/
cylinder overPotentialFoam $FOAM_TUTORIALS/basic/overPotentialFoam/

cylinder overPimpleDyMFoam | $FOAM_TUTORIALS/incompressible/overPimpleDyMFoam/

Table 1.4: Basic information about tutorial cases cylinder

The case folder contains two another case folders: cylinderMesh, cylinderAndBackground plus Allrun
and Allclean scripts. First the mesh around cylinder is created, so the folder cylinderMesh is entered.
No zero folder is present because this is just for creating the mesh around the cylinder.

The creation of the mesh is not governed by blockMeshDict. The cylinder is predefined surface
saved in constant/triSurface. It can be displayed in paraview and it is shown in figure 1.4a. The
mesh is created by command extrudeMesh and the result is displayed in figure 1.4b.

(a) Cylinder surface (b) Mesh around cylinder

Figure 1.4: Cylinder surface and mesh created around it
The shortened file extrudeMeshDict for command extrudeMesh with only the necessary commands

is printed below. If any change is needed to be made by the user, the whole file can be found in the
tutorial case with all the options.

constructFrom surface;

surface "constant/triSurface/cylinder.vtk";

13

1.2. OVERSET MESH GENERATION CHAPTER 1. TUTORIALS FOR OVERSET MESH

// Flip surface normals before usage. Valid only for extrude from surface or

// patch.
flipNormals false;

//- Linear extrusion in point-normal direction

extrudeModel linearNormal;
nLayers 10;
expansionRatio 1.02;

linearNormalCoeffs
{

thickness 0.7;
}

mergeFaces false;

// Merge small edges. Fraction of bounding box.
mergeTol O;

This file specifies that the surface is cylinder.vtk and its location in file structure. The extrude
model should be linearNormal, which mean that the extrudion should be made in normal vector
direction. The linearNormal model really simplifies number of parameters that have to be specified.
Parameter nLayers stands for number of elements along the normal vector. The thickness affects
the length of mesh in normal vector direction.

The last task in the cylinderMesh file is to name the patches. This is made by

createPatch -overwrite

The file createPatchDict is specified. The extrudeMesh named the patches sides, originalPatch and
otherSide. The createPatchDict rename this patches as overset (before otherSide), walls (before
originalPatch) and frontAndBack (before sides).

The tutorial continues in second file of the case cylinderAndBackground. The mesh of background
is created by blockMesh. The two meshes are merged by

mergeMeshes . ../cylinderMesh -overwrite

which merges both meshes and overwrites the existing mesh in current folder. The overset mesh is
created and the zones ID are determined in the same way as was described for simpleRotor tutorial
1.1.

1.2.3 Special cases

In this section special cases from mesh perspective will be described. The list of them is provided
in table 1.5.

Case ‘ solver ‘ path

boatAndPropeller | overInterDyMFoam | $FOAM_TUTORIALS/multiphase/overInterDyMFoam/
floatingBody overInterDyMFoam | $FOAM_TUTORIALS/multiphase/overInterDyMFoam/
aeroFoil overSimpleFoam $FOAM_TUTORIALS/incompressible/overSimpleFoam/

Table 1.5: Basic information about tutorial cases with complex mesh settings

14

1.2. OVERSET MESH GENERATION CHAPTER 1. TUTORIALS FOR OVERSET MESH

The case boatAndPropeller is just an extension of simpleRotor tutorial, but it is 3D case and
it is expensive in terms of memory and computational time. The princip for overset mesh is the
same. One mesh is created by blockMesh. The mesh is divided into 4 parts: background, hullBox,
propeller and rudder. The overset is set for each of the part except background mesh.

After the creation of the mesh, the refineMesh is used on each of the overset mesh. The name of
cellSet in refineMeshDict stays the same, the cellSet name is set by topoSet, so in Allrun.pre script,
these two utilities are called multiple times with different files. After the refinement is done, the
topoSet is used for setting the zones for overset, which was already explained.

The floatingBody is a 3D case. Its structure is similar to the cylinder case, which is described in
section 1.2.2. The last tutorial is aerofoil. This case uses snappyHexMesh, whose description is not
in focus of this project, so it is not described here.

The structure of this case is similar to the cylinder 1.2.2, but it is a litle bit complicated. The
case contains four folders listed in order for running.

e aeroFoil snappyHexMesh

e aeroFoil overset

e background_snappyHexMesh
e background_overset

In the first folder, the three dimensional mesh with aeroFoil is created. In aeroFoil overset folder,
the command extrudeMesh creates a mesh from source patch named symFront. And the names of
patches are overwriten by createPatch. This mesh is displayed in figure 1.5a.

The same trick is repeated with background mesh, which is displayed in figure 1.5b. The meshes
are merged together.

1 0 1 2 3 a 5
2 2
15 15
1 1
X
05 0 05 1 15 2 05]
EEESEEEEEaEEEES
e o 0 0 Vi
: ESEES
S 02 05 05
ovme]
02
T] a5 15
e
e o4
e e e e e 2 2
0 05 1 15 2
X a 0 1 2 3 a 5
(a) Aerofoil mesh (b) Background mesh

Figure 1.5: SnappyHexMesh for aerofoil and background before merge

These special cases are various extensions (three dimensions, refinements of mesh or snappyHexMesh
utillity) but the principle of overset was the same as for the discussed cases.

Comment: Tips and tricks

For overset to work, the user has to set up the zone ID. That is accomplished in tutorials by
topoSet and setFields utilities, so these two files are neded. This ID is automatically set up by
running checkMesh. This can save some time, but it does not have to work in each case.

15

1.3. MODIFICATION OF TWOSIMPLERQHARIER 1. TUTORIALS FOR OVERSET MESH

1.3 Modification of twoSimpleRotors

The tutorial twoSimpleRotors is modified to be more general. The concept of one blockMesh for all
mesh parts is transformed into separate files for each mesh, that is used for cylinder tutorial case.
The case is copied into user folder by executing

cp -r $FOAM_TUTORIALS/incompressible/overPimpleDyMFoam/twoSimpleRotors/ $FOAM_RUN
The case folder after modification is (can be obtained by command tree)

-— Allclean
-—- Allrun
-- background

|
| |
| |l -k
| | -- nut
| | --p
| | -- pointDisplacement
| | -1
| | -- zonelD
| -- Allclean
| -- Allrun
| -- Allrun.pre
| -- constant
| | -- dynamicMeshDict
| | —-- transportProperties
| | -- turbulenceProperties
| -- system
| -- blockMeshDict
| -- controlDict
| -- decomposeParDict
| -— fvSchemes
| -- fvSolution
| -- setFieldsDict
| -- topoSetDict
—-— rotorOne
| -- Allclean
| -- Allrun.pre
| -- constant
| -- system
| -- controlDict
| -- blockMeshDict
—-- rotorTwo

-- Allrun.pre

—-— constant

-- system

-— blockMeshDict
-— controlDict

In comparison with original twoSimpleRotors, the folders background, rotorOne and rotorTwo are
created. The background folder is the main forlder and the computation is executed here. The
folders rotorOne and rotorTwo are similar, so just rotorOne is discussed here. The Allrun.pre script
containts one command runApplication blockMesh. The only purpose of this command is to
create meshes. The blockMeshDict was modified to create just one block — the overset one.

After the meshes are created for overset rotors, the background folder is entered. The blockMesh
here was also adjusted to create just the background mesh. The Allrun.pre script was modified as

16

1.3. MODIFICATION OF TWOSIMPLERQHARIER 1. TUTORIALS FOR OVERSET MESH

runApplication blockMesh
#merge meshes
runApplication -s 1 mergeMeshes . ../rotorOne/ -overwrite

runApplication -s 2 mergeMeshes . ../rotorTwo/ -overwrite

Select cellSets
runApplication -s 1 topoSet

runApplication subsetMesh box -patch hole -overwrite

Select cellSets
runApplication -s 2 topoSet

restoreODir

Use cellSets to write zonelD
runApplication setFields

The case can be run from case folder by command ./Allrun and can be cleaned up by ./Allclean.

17

Chapter 2

Theory

The overset framework in OpenFOAM is a generic implementation for the use of disconnected (also
called Chimera) meshes. Both static and dynamic meshes are suported. The meshes (background
and overset) are not connected. The overset approach is particularly useful for cases with mesh
motion and interactions. It avoids the problems and instabilities associated with deforming meshes,
but according to Houzeaux [1] it can be also used in following cases such as

Simplified mesh generation: It could be easier to generate not a whole mesh, but split the do-
main into more parts that are simpler for meshing. In this way more suitable elements can be
used, for example rectangles instead of triangles.

Local refinement: The example for this application is given in overSimpleFoam tutorial, where
the mesh around cylinder is refined and the background mesh is simply generated from one
block (see 1.2.2).

Moving parts: This application is clearly visible in the twoSimpleRotor tutorial, where two meshes
move independently. Rotation of a single rotor could be simulated using the Arbitrary mesh
interface (AMI) functionality, but the interaction of two rotors could be otherwise done only
by remeshing.

Optimization: This could be used for moving various parts of mesh without the need of remeshing
the domain.

The basic principle of the overset method is to solve the governing partial differential equations on
both the background mesh and the overset mesh. Within the background domain, the elements
corresponding to the interior of the overset domain are marked as holes and removed from the
computational domain. The values on the boundary of the overset domain are then interpolated to
the background mesh. Similar procedure is realized for the overset domain.

As a result, in each timestep, each cell of the background and overset mesh is marked as one of
the following types

Calculated: For this type of cells, the equations are solved.

Interpolated: The values in these cells are computed by interpolation from the nearest elements
of the second domain (background elements for the overset elements, and vice versa).

Holes: No solution is computed here.

The type of mesh (zone ID — background or overset) is specified in case folder, usually by running
topoSet and setFields utility. The whole domain is divided into the three parts mentioned above,
one of them, the holes, does not have to be used. The zones for the simpleRotor tutorial (see 1.1)
are displayed in figures 2.2a and 2.2b. For better orientation, the separate meshes are displayed in
figures 2.1a for the background mesh and 2.1b for overset mesh.

18

CHAPTER 2. THEORY

X AxE
0 0001 0002 0003 0004 0005 0006 0007 D008 000 001
0.01 001

0.009 0.009

0.008 0.008

0007 0007

0.006 0.006

Y ASH05 0.006Ax5

0.004 0.004

0.003 0.003

0002 0,002

0.001 0.001

0 0
0 0001 0002 0003 0004 0005 0006 0007 0008 000 001
X AxE

(a) Background mesh (b) Overset mesh

Figure 2.1: Meshes for simple rotor tutorial case

Interpolated

cells of the Interpolated
background cells of the
mesh overset mesh

(a) Hole (red cells) and interpolated cells (white (b) Hole (red cells) and interpolated cells (white cells)
cells) defined for background mesh defined for overset mesh

Figure 2.2: Display of interpolation cells (white) for simpleRotor tutorial

The zones are distinguished by color. The zone zero is blue and it is meant to be calculated. The
red zone is for holes and it differs for each mesh. Each mesh contains interpolation cells. The cells
around the rotor (the hole in overset mesh) belong to the background mesh and their donors are
from overset mesh. It can be seen that the cells are oriented in way of background mesh orientation.
The white cells in the end of mesh for the rotor belong to the overset mesh and their donors are
found in the background mesh. The meshes are independent and the values are influenced through
the interpolation cells only.

The task of finding and assigning the right cells to right types is a technical issue. The interpo-
lation can be realized by various interpolation schemes

e cellVolumeWeight
e inverseDistance
e leastSquares

e trackingInverseDistance

19

2.1. INVERSE DISTANCE CHAPTER 2. THEORY

The principles of inverseDistance are described in section 2.1.

2.1 Inverse distance

The acceptor cells are the ones that are interpolated. Their donors are calculated cells which provide
the correct values that are interpolated into acceptors cells. Donors are determined from the nearest
cells by mesh indices. Then they are checked for better (closest) donors. For one acceptor the
donor is determined as its closest neighbour. The values from donors are interpolated into the
acceptor element. This interpolation can be found in in the markDonors() function, which uses
the betterDonors() function to check if the current cell is better donor for target than the the one
already set.

The weights for interpolation are determined from distances of cell centers (this is explained in
subsection stencilWeights 3.3.14). The situation for one acceptor is displayed in figure 2.3.

ds

?_/_/-».

Figure 2.3: Distance of cell centers for determination of the weights, the red cell is acceptor and the black
ones are donors

To determine the weights the sum S of of their inverse distances is needed

"1
SZ;@’ (2.1)

where n is number of donors and d; is the distance between their centers and center of aceptor. Then
the weights w; are

(2.2)

Finally, the interpolated value is obtained for one cell by sum over all neighbours

where ¢ is the field that is interpolated, for example the pressure.

20

2.1. INVERSE DISTANCE CHAPTER 2. THEORY

2.1.1 Logarithm inverse distance

The inverse distance interpolation scheme is changed in section 4.1.3. The weights computation
is amended. According to theory of differential equations which can be found in Evans [2] the
fundamental solution of laplace differential equation for two dimensional case is logarithm.

21

Chapter 3

Description of the overset library

This chapter is divided into two main parts. The first part of the chapter documents the differ-
ences between the implementation of the standard simpleFoam solver, and its overset variant called
overSimpleFoam. The second part focuses on detailed description of used functions in overSimple-
Foam with interpolation scheme inverseDistance. For better orientation in report text, the reader is
advised to follow the contents of discussed files.

The overset method in OpenFOAM is implemented in an implicit, fully parallel way. The inter-
polation (from donor to acceptor) is inserted as an adapted discretisation on the donor cells, such
that the resulting matrix can be solved using the standard linear solvers.

The overset method is implemented in OpenFOAM as a library. The source code can be found
in folder $FOAM_SRC/overset.

3.1 Structure of the library

The overset library contains 9 directories.
o cellCellStencil
e dynamicOversetFvMesh
o fvMeshPrimitiveLduAddressing
e include
e lduPrimitiveProcessorInterface
e oversetAdjustPhi
e oversetPolyPatch
e regionsToCell

o Make

The Make folder contains information for the compiler. It specifies the name of the library and
connects all header files used in the library. All of the other directories contain header and source
files.

3.2 Overset and simpleFoam solver

In this section the differences in implementation between simpleFoam and overSimpleFoam are
discussed. The code can be compared by executing following commands in OFv1906 environment.

cd $FOAM_APP/solvers/incompressible/simpleFoam/
diff -y simpleFoam.C overSimpleFoam/overSimpleFoam.C

22

3.2. OVERSET AND SIMPLEFOAM SOLVER CHAPTER 3. OVERSET LIBRARY

3.2.1 overSimpleFoam.C

The main difference for this file is in the include statements. Before main function beginning, the
following statements are added.

e #include "dynamicFvMesh.H"
e #include "cellCellStencilObject.H"

e #include "localMin.H"

#include "interpolationCellPoint.H"

#include "fvMeshSubset.H"

e #include "transform.H"
e #include "oversetAdjustPhi.H"

Because the statements are added before declaration of the main function, they do nothing. They
just contain declarations of functions that are used in further code. Brief description of header
functions that do not directly belong into overset library is provided below.

The dynamicFvMesh.H is added because the simpleFoam can not be used on dynamic meshes
and the mesh for overset can be dynamic. The localMin.H belongs into finiteVolume family and it is
interpolation scheme for faces. It returns a field of values for each of faces. The value is the smallest
value from either neighbor or owner cell. The header file interpolationCellPoint.H has one function:
interpolate. This function takes cell center and point (vertex) value and and decomposes them into
tetrahedron and does the linear interpolation within them. The fvMeshSubset.H is associated with
dymanicMesh. Given the original mesh and the list of selected cells, it creates the mesh consisting
only of the desired cells, with the mapping list for points, faces, and cells. The last header file
transform.H contains transformation operations for 3D tensors.

Compared to the include statements of the standard simpleFoam solver, the overSimpleFoam
implementation has following extra entries:

e #include "setRootCaseLists.H"

#include "createUpdatedDynamicFvMesh.H" (subsection 3.2.2)

#include "createFields.H" (subsection 3.2.3)
e #include "createOversetFields.H" (subsection 3.2.4)
e #include "createFvOptions.H"

The files setRootCaseLists.H and createFvOptions.H have no close connection to the overset library,
so they are not described in this report. The simple loop itself looks the same for simpleFoam as for
overSimpleForm. The differences are hidden inside files for solving equations: UEqn.H and pEqn.H.
These files are described in separate subsections 3.2.5 and 3.2.6.

3.2.2 createUpdatedDynamicFvMesh.H

This file creates the dynamic mesh with initial mesh to mesh mapping. The IOobject meshPtr is
created. The pointer mesh is introduced and assigned to meshPtr. The mapping is done by single
function mesh.update (). The function update for dynamicFvMesh is discussed in detail.

The update is declared in dynamicFvMesh.H as

virtual bool update() = 0;

This means that it is a member function, so it is supposed to be defined in derived classes. The
classes that contain the definition of this function are implemented in

23

3.2. OVERSET AND SIMPLEFOAM SOLVER CHAPTER 3. OVERSET LIBRARY

e topoChangerFvMesh

e dynamicOversetFvMesh

e dynamicRefineFvMesh

e movingConeTopoFvMesh

e mixerFvMesh

e linearValveFvMesh

o linearValveLayersFvMesh

e dynamicMotionSolverFvMesh

e dynamiclnkJetFvMesh

o staticFvMesh

e rawTopoChangerFvMesh

e dynamicMultiMotionSolverFvMesh
e dynamicMotionSolverTopoFvMesh
e dynamicMotionSolverListFvMesh

In this case the derived class is dynamicMotionSolverFvMesh. This class contains the function
update and it is virtual as well (it has the same definition). From this class the derived class is
dynamicOversetFvMesh. The correct implementation for the update function is chosen by user in
the dictionary constant/dynamicMeshDict by entering the dynamicFvMesh solver as dynamicOver-
setFvMesh.

The update function is defined in dynamicOversetFvmesh.C at line 588, which can be found in
file

$FOAM_SRC/overset/dynamicOversetFvMesh/dynamicOversetFvMesh.C
Its purpose is to call two functions
e updateAddressing();
e interpolateFields();

which are part of the overset library. The first function calculates the extended addressing for
lduMatrix. Some extra faces has to be added due to the overset. And the corrections for parallel
computing are made. The second function creates the interpolation for appropriate fields for selected
cells. If these operations are done correctly, the bool true is returned. Special section is devoted to
detailed descriptions of implementations of important functions from the oveset library. This two
functions can be found in sections 3.3.5 and 3.3.6.

3.2.3 createFields.H

The difference between these files can be obtained by

cd $FOAM_APP/solvers/incompressible/simpleFoam/
diff -y createFields.H overSimpleFoam/createFields.H

The only difference is include statement for createFvOptions.H file. For the overSimpleFoam solver,
this file is included in the overSimpleFoam.C file. The reason is that fields for overset must be
introduced before the fvOptions are created.

24

3.2. OVERSET AND SIMPLEFOAM SOLVER CHAPTER 3. OVERSET LIBRARY

3.2.4 createOversetFields.H

This file has no partner in simpleFoam to be compared with. In the beginning of the file the variable
nonlnt, type wordHashSet, is created and set. The type meant that the variable nonlnt is an
associative container that contains set of unique objects of type Key. The nonlnt variable contains
the name of fields that are not supposed to be interpolated anywhere in the computational process.
The definition is shown below.

{
wordHashSet& nonInt =
const_cast<wordHashSet&>(Stencil: :New(mesh) .nonInterpolatedFields());

nonInt.insert ("HbyA");
nonInt.insert("grad(p)");
nonInt.insert("surfaceIntegrate(phi)");
nonlnt.insert("surfaceIntegrate (phiHbyA)");
nonlInt.insert("cellMask");
nonInt.insert("cellDisplacement");
nonInt.insert("interpolatedCells");
nonInt.insert("cellInterpolationWeight");

}

The file continues with two include statements

#include "createCellMask.H"
#include "createlInterpolatedCells.H"

These two files are part of the overset library. They are specified in detail in subsection 3.3.3 and
3.3.4. In short they create scalar fields for hole and interpolated cells and they also set their values.
The end of the file consists of these lines:

bool adjustFringe
(simple.dict().lookupOrDefault("oversetAdjustPhi", false));
bool massFluxInterpolation
(simple.dict().lookupOrDefault("massFluxInterpolation", false));

The purpose of them is to define the way how specific functions are supposed to be handled. In the
case folder, the user can choose from various ways or let them be handled by default settings. These
two variables are used in file pEqn.H which is described in subsection 3.2.6.

3.2.5 UEqn.H

The comparison of the two files can be made by following commands.

cd $FOAM_APP/solvers/incompressible/simpleFoam/
diff -y UEqn.H overSimpleFoam/UEgn.H

Two changes are made in UEqn.H file for overSimpleFoam. The right part of velocity equation is
multiplied by cellMask

solve(UEqn == -cellMask*fvc::grad(p));

The field cellMask has value one for each mesh cell except the hole. So if the hole is present the
right part of the equation is equal zero. The second change is that the correction for velocity field
fvOptions.correct(U); is made independent of the usage of the momentum predictor.

25

3.3. SELECTED PARTS OF THE OVERSET LIBRARY CHAPTER 3. OVERSET LIBRARY

3.2.6 pEqgn.H
The comparison of the two files can be made by following commands.

cd $FOAM_APP/solvers/incompressible/simpleFoam/
diff -y pEqn.H overSimpleFoam/pEqn.H

The first step is to create a mask for the faces from the cellMask interpolation.
surfaceScalarField faceMask(localMin<scalar>(mesh).interpolate(cellMask));

The field of diagonal coefficients of the matrix resulting from the discretisation of the momentum
equation rAU is introduced. The surface scalar field rAUf which was interpolated from rAU is
multiplied by faceMask. The principle is the same as for previous case — to introduce the hole faces
into system.

volScalarField rAU(1.0/UEqn.AQ));
surfaceScalarField rAUf("rAUf", faceMask*fvc::interpolate(rAU));

The same principle is applied for HbyA (matrix H divided by A), but of course it is multiplied by
cellMask field. The file interpolatedFaces.H is located in overPimpleDyMFoam code file. This file is
not used during overSimpleFoam simulation because the field specified in file createOversetFields.H
(subsection 3.2.4) is set to ”false”. The same goes for adjustFringe, which turns off the special
setting for adjusting phi by oversetAdjustPhi(phiHbyA, U);.

Non-orthogonal pressure corrector loop is the same for both solvers. The last difference is in
momentum corrector, where the part of computation of velocity field is also multiplied by cellMask.

U = HbyA - rAUxcellMask*gradP;

3.3 Selected parts of the overset library

This section is devoted to description of selected parts of the overset library. The described content
is used for the inverse distance interpolation scheme and the call of triggering function update() is
made in overSimpleFoam.

First the addressing is set, so for example cellStencil private variable contains a list of neighbors
for each cell that is supposed to be interpolated. This neighbors have the same index as the cell
they belong to. For each field that is supposed to be interpolated, the function interpolate is called.
This function also corrects the boundary condition and calls the functioncelllnterpolationMap which
calls function update.

The function update takes care of the final interpolation and calls another function. Its purpose
is to declare valid donors, set interpolated, calculated and hole cells. It also calls globalCellCells
and stencilWeights function. The first one sets valid donors for each acceptor and the second one
creates the weights. The weights are used in function interpolate to finalize the calculation.

3.3.1 Class cellCellStencil

This class is determined for calculation of interpolation stencils. The definition and declaration is
located in $FOAM_SRC/overset/cellCellStencil/cellCellStencil/.

The class has public and protected variables. The public are two enumerated types. They are
a data type used in computer programming to map a set of names to numeric values. Enumerated
data type variables can only have values that are previously declared. First one is patchCellType
and the possibilities are

OTHER value 0: everywhere except boundary and overset boundary
PATCH value 1: defines uncouplet boundary
OVERSET value 2: defines overset boundary

26

3.3. SELECTED PARTS OF THE OVERSET LIBRARY CHAPTER 3. OVERSET LIBRARY

The second public variable cellType can have one of the following values
CALCULATED value 0: normal computation on this cells
INTERPOLATED value 1: interpolation is needed
HOLE value 2: the hole is present

The protected data are related to the cellType variable defined in public section, the reference to
mesh is also created and set of fields that should not be interpolated, which is type of wordHashSet.
Two constructors are introduced. The first one creates cellCellStencil from fvMesh. The second
does the same and returns the pointer for the object. The function declared as

virtual const labelUList& cellTypes() const = 0;
which is a virtual function whose purpose is to return the cell type list. The data type label is
integer of size 64 or 32, the size is specified by preprocessor macro WM_LABEL_SIZE.

3.3.2 Class cellCellStencilObject

The definition and declaration is located in $FOAM_SRC/overset/cellCellStencil/cellCellStencil/.
First the class declares new data type: Stencil.

class cellCellStencilObject;
typedef MeshObject

<
fvMesh,
Foam: :MoveableMeshObject,
cellCellStencilObject

> Stencil;

The Stencil is a mesh object, who consists of fvMesh, MoveableMeshObject and cellCellStencilOb-
ject. This class inherits from class Stencil and class cellCellStencil. A pointer is declared as a private
variable stencilPtr_.

Construction of the cellCellStencilObject is introduced. The mesh is needed for creation. The
pointer for the object is returned from creation of cellCellStencil and the pointer is assigned to the
private pointer created before. During the construction of the object, the interpolation method is
set by looking up the phrase ”oversetInterpolation” in system dictionary.

After the constructor and destructor are introduced, list of virtual functions follows. For example:
update, movePoints, cellSTencil and so on.

Each of this virtual functions are implemented in class that inherits from this one. As example
the different implementation of function update() can be found in classes: inverseDistance, cel-
IVolumeWeight and trackinglnverseDistance. The reason is that all updates of stencil are made
differently for each of the approaches.

3.3.3 File createCellMask.H

This file can be found in $FOAM_SRC/overset/include together with createlnterpolatedCells.H
(3.3.4). The field cellMask is created as IOobject. The field is dimensionless scalar and its purpose
is to define the hole mesh for interpolations. This file also contains include statement

#include "setCellMask.H"

The file setCellMask.H is also part of the include folder. It sets all the cell in cellMask scalar field
to zero value if the cellType of the cell in question is defined as HOLE.

27

3.3. SELECTED PARTS OF THE OVERSET LIBRARY CHAPTER 3. OVERSET LIBRARY

3.3.4 File createlnterpolatedCells.H

This file can be found in $FOAM_SRC/overset/include together with createCellMask.H (3.3.3). The
field interpolatedCells is created as IOobject. The field is dimensionless scalar and its purpose is to
define the mesh cells for interpolations. This file also contains include statement

#include "setInterpolatedCells.H"

The file setInterpolatedCells.H is also part of the include folder. It sets all the cell in interpolatedCells
scalar field to zero value if the cellType of the cell in question is defined as INTERPOLATED.

3.3.5 Function updateAddressing

The function declaration is in file dynamicOversetFvMesh.H. The definition can be found in file
dynamicOversetFvMesh.C, lines 44 — 357. The location of this two files is as follows.

$FOAM_SRC/overset/dynamicOversetFvMesh

The purpose of this function is to set addressing for parallel and local computation, to hand out the
interfaces between processors and to find out if one processor cares about the same face as other
processor. The function updateAddressing takes no arguments and returns bool. The first line

const cellCellStencilObject& overlap = Stencil::New(*this);

creates or addresses existing mesh object Stencil to have a pointer named overlap. The data type
of Stencil is meshObject, the data type is derived from templated abstract base-class. The Stencil
is defined in file cellCellStencilObject.H (see 3.3.2). The variable overlap is supposed to be type
cellCellStencilObject.

The label list named stencil is created by calling function cellStencil with no argument. This
function is part of cellCellStencilObject.

const labelListList& stencil = overlap.cellStencil();
The function cellStencil() is part of inverseDistanceCellCellStencil.H and its definition is at line 313.

virtual const labellListList& cellStencil() const
{
return cellStencil_;

}

Its purpose is to return a private variable cellStencil.. This variable is a list of cells where the
neighbors for cell meant to be interpolated are listed. Index of the list is relevant to concrete cell.
The following example shows the part of the field printed out.

00

00

00

5(1382 1383 1410 1354 1381)
00

00

00

00

00

00

00

4(1395 1396 1367 1394)
4(1396 1397 1368 1395)
5(1369 1370 1397 1341 1368)
5(1370 1371 1398 1342 1369)

28

3.3. SELECTED PARTS OF THE OVERSET LIBRARY CHAPTER 3. OVERSET LIBRARY

Next variable is baseAddr and it is created by
const lduAddressing& baseAddr = dynamicMotionSolverFvMesh: :1duAddr();

It creates a variable baseAddr which contains the addressing for lduMatrix. The lduMatrix contains
three arrays with lower triangle, upper triangle and diagonal coefficients. Variables are declared.
The integer nExtraFaces is created. One dimensional arrays of integer for lowerAddr, upperAddr
are introduced. Two two integer arrays are defined with names: localFaceCells and remoteFaceCells.
The constant globalNumbering of data type globallndex is created with size of baseAddr variable.

Array globalCelllDs is constructed with size of celllnterpolationMap. This array is filled with
cells ID in global addressing. This globalCellIDs is distributed into overlap. All variables that were
declared so far are added into reverseFaceMap, which is protected data from dynamic motion solver
for fvmesh. So the addressing was extended and the new and old number of faces are printed in
debug version. The result (for simpleRotor tutorial) changes because the mesh does move.

Time = 0.000294118
extended addressing from nFaces:2968 to nFaces:3586 nExtraFaces:618
Time = 0.000630252
extended addressing from nFaces:2968 to nFaces:3594 nExtraFaces:626

The next part of this function is to hand out faces by processors. For each entry in stencil the patch
and face needs to be set. The patch is a value of patch or -1 for internal faces. The face is either an
internal face index or a patch face index.

The private variable stencilPatches_ size is set according to size of private variable stencilFaces_.
Two arrays of dynamic lists for processor owner and dynamic processor neighbor (procOwner and
dynProcNeighbour) are set. DynamicList creates one dimensional vector that resizes itself as nec-
essary to accept the new objects. The arrays are constructed with given size, such as the number of
parallel processes in run.

Now the loop is made. OpenFOAM has its own loops declared. The most used is loop over all
members of an array. In this case the loop is created over all arrays in stencil variable, the index is
named celli and it is declared by the loop itself. Auxiliary variables are made or changed.

const labellList& nbrs = stencillcellil;
stencilPatches_[celli] .setSize(nbrs.size());
stencilPatches_[celli] = -1;

The nbrs is one dimensional array with values from stencil with index celli. The size of private
variable stencilPatches_ is set according to the number of neighbors of each cell. The array is set to
have value -1, which means that it is internal face.

Inner loop is created to declare the correct value for stencilPatches_. If the face of stencil in
question are internal faces (if (stencilFaces_[celli] [nbri] == -1), the following command
are meant to be executed.

const label nbrCelli = nbrs[nbril;

label globalNbr = globalCellIDs [nbrCelli];

label proci = globalNumbering.whichProcID(globalNbr) ;

label remoteCelli = globalNumbering.toLocal(proci, globalNbr);

// Overwrite the face to be a patch face
stencilFaces_[celli] [nbri] = procOwner [proci].size();
stencilPatches_[celli] [nbri] = proci;

procOwner [proci] .append(celli);

dynProcNeighbour [proci] . append (remoteCelli) ;

The global ID of neighbour is assigned into globalNbr variable. Some work for parallel processes is
to be done. And the faces are overwritten to be a patch faces. The faces from stencil are added
according to the processor.

29

3.3. SELECTED PARTS OF THE OVERSET LIBRARY CHAPTER 3. OVERSET LIBRARY

The loop at line 135 assigns the values from matrix dynProcNeighbour into newly created matrix
(type labelListList) named procNeighbour. A command std::move is used for this assignation. The
std::move is not part of the foam namespace. This command tells the compilator that it can assign
space occupied by the dynProcNeighbour to newly created field, because the original one is not used
any longer.

Matrix mySendCells of integers is created by calling exchange function from the Pstream names-
pace. This matrix contains numbers for cells for each of the processors. The declaration is made as
follows.

labellListList mySendCells;
Pstream: :exchange<labelList, label>(procNeighbour, mySendCells);

The integer nbri is increased of one if the procOwner or mySendCells respectively to processor has
other value that zero. According the value of nbri, the size of private array remoteStencillnterfaces_
is set. So if there are one to much or more processors to handle the cell, they are find out and the
correction is set.

Next an interface is added for process if there were two processes that did handle the cell and
the processor is the first one by numbering (starting with master — process number zero). Than the
interface is added for the second process.

At line 258 the stencil patches are rerouted because the actual interface is known. The last step
is to set correct addressing for all interfaces.

3.3.6 Function interpolateFields

This function is defined in dynamicOversetFvMesh.C at lines 618 — 640. The file can be found at
following path.

$FOAM_SRC/overset/dynamicOversetFvMesh

A suppression list is introduced. All fields that are supposed not to be interpolated are added.
These fields are specified in code where solver is created and they are also specified in fvSchemes
file in case folder for user to add another fields. The specification for the solver are stored in file
createOversetFields.H. This is described in subsection 3.2.4. The last step of this function is to call
interpolation for every possible field except the suppressed ones.

interpolate<volScalarField>(suppressed) ;
interpolate<volVectorField>(suppressed) ;
interpolate<volSphericalTensorField>(suppressed) ;
interpolate<volSymmTensorField>(suppressed) ;
interpolate<volTensorField>(suppressed) ;

3.3.7 Function interpolate

The function interpolate is a templated function declared in dynamicOversetFvMesh.H at line 121.
The functionality is set in file dynamicOversetFvMeshTemplates.C at lines 86 — 111, which is located
in folder

$FOAM_SRC/overset/dynamicOversetFvMesh

The function finds out all geometric fields that are the type that was called by the function, for ex-
ample: volScalarField, volVectorField, and so on. For example for overPimpleFoam in simpleRotor
tutorial the interpolated fields are: nu, p, U, U_0 and the skipped ones are: cellMask, interpolated-
Cells and cellMask_0.

The classification according the data type is as follows:

e volScalarField:

30

3.3. SELECTED PARTS OF THE OVERSET LIBRARY CHAPTER 3. OVERSET LIBRARY

— nu
cellMask
interpolatedCells

- P
cellMask_0

e volVectorField:

-U

- U0
The interpolation function for each of these fields is called.
interpolate(f1dPtr->primitiveFieldRef ());

The fldPtr is a pointer to the field in questions and primitiveFieldRef() returns a reference to the field.
Another interpolate function is called and the boundaries of the fields which were interpolated are
corrected. The function is called at lines 77 — 82 in the same file dynamicOversetFvMeshTemplates.C.

template<class GeoField>
void Foam::dynamicOversetFvMesh: :interpolate(GeoField& psi) const
{
interpolate(psi.primitiveFieldRef());
psi.correctBoundaryConditions () ;

}

The final interpolate function is the one where the interpolation is done. It is located in the same
file (dynamicOversetF'vMeshTemplates.C) as the two interpolate functions before, but the location
is between lines 38 — 75.

First, variable overlap of type cellCellStencil and variable stencil from overlap by calling over-
lap.cellStencil() are created. This cellStencil() function was already discussed in 3.3.5.

Another variables are constructed.

const mapDistribute& map = overlap.cellInterpolationMap();

const List<scalarList>& wghts = overlap.cellInterpolationWeights();
const labelList& cellIDs = overlap.interpolationCells();

const scalarList& factor = overlap.cellInterpolationWeight();

These functions are called according the type of interpolation scheme. They are explained in detail
in following subsections: celllnterpolationMap — 3.3.8, celllnterpolationWeights — 3.3.16, interpo-
lationCells — 3.3.17 and celllnterpolationWeight — 3.3.18. After these functions are executed, the
interpolated map is set. Each cell knows if it is supposed be interpolated, calculated or if it is a
hole. Every interpolated cell (acceptor) has its donors and the donors have weights. The work is
distributed for parallel processes.

The interpolation is executed as follows for all interpolated cell named celllds with index i.

forAll(cellIDs, i)

{
label celli = cellIDs[i];

const scalarList& w = wghts[celli];
const labellList& nbrs = stencillcellil;

const scalar f = factor[cellil;

T s(pTraits<T>::zero);
forAll(nbrs, nbrI)

31

3.3. SELECTED PARTS OF THE OVERSET LIBRARY CHAPTER 3. OVERSET LIBRARY

{
s += wlnbrI]*work[nbrs[nbrI]];
}
//Pout<< "Interpolated value:" << s << endl;
//T 0ldPsi = psi[cellil;
psilcelli] = (1.0-f)#*psilcelli] + f*s;
//Pout<< "psi was:" << 0ldPsi << " now:" << psi[celli] << endl;

}

The array of type double of weights is named w, array of type integer is named nbrs and stands for
neighbors of current cell. The type double f holds zero or one. The zero is for calculated and the
one is for interpolated cells.

The variable s is sum over all neighbors. The sum contains weight for the neighbour that is
multiplied by the value of the field in questions for the relevant neighbour.

The last step from overset library is to change the field. It is done by using the factor variable.
If the field should be computed, the factor is zero and no change to the field is made. If the factor
is one and the field is supposed to be interpolated the new value is set as the s.

3.3.8 Function celllnterpolationMap

This function declaration can be found in three files:
e inverseDistanceCellCellStencil.H (line 302)
e cellVolumeWeightCellCellStencil. H (line 205)
e cellCellStencilObject.H (line 231)

In this report the inverse distance interpolation scheme is discussed, so the first declaration is
taken in account.

virtual const mapDistribute& celllnterpolationMap() const

{
if (!celllnterpolationMap_.valid())
{
const_cast<inverseDistance&>(*this) .update() ;
}
return cellInterpolationMap_();
}

The function update for inverseDistance interpolation stencil is called, this function is described in
detail in subsection 3.3.9.

3.3.9 Function update

This function is written in file inverseDistanceCellCellStencil.C from line 1740 to 2341. Its return
type is bool and it does not take any arguments. It returns false if nothing changed.

bool Foam::cellCellStencils::inverseDistance: :update()

Since this file is really long it is advised to follow the code.

After various variables are declared, the determination of zone meshes and bounding boxes is set.
Loop over all mesh parts creates new sub meshes with zone ID. Early evaluation of mesh dimension
is triggered in case there are no cells in mesh. If the submesh has any point the boundary box for
process in question is added from list. In other way the bounding box is created. The local bounding
boxes are moved per indexing for mesh.

32

3.3. SELECTED PARTS OF THE OVERSET LIBRARY CHAPTER 3. OVERSET LIBRARY

Next step is to determine patch for bounding boxes. They can be either global and provided by
user or processor-local as a copy of the mesh bounding box. It is possible for all zones to have the
same bounding box.

Variable globalDivs of data type three dimensional integer is created. It is read from file, which
is specified by user under ”searchBoxDivisions”. Variable patchDivisions is assigned with this value.
If the value is not specified by user, it is determined from mesh. If they are not defined by user, the
following process is used. First the dimension of the case is determined. The variable type vector
dim is made by calling function geometricD() from mesh as

const labelVector& dim = mesh_.geometricD();

So the dim is a vector with values 1, that indicates unconstrained direction and -1 indicating a
constrained direction.
Variable nDivs is filled with

e number of mesh cells for 1D
e square root as double from mesh cells for 2D
e cubic root as double from mesh cells for 3D

Vector v is filled with values ndivs labelVector v(nDivs, nDivs, nDivs);.

The check is done. If there are no values -1 in dim, the v is set as one. And the patchDivision
is v, which are the borders of searchBoxDivisions.

The patchParts are set with patchDivisions that are multiplied for each of direction for zone and
the boundaries are marked. The printing statement is introduced at line 1902.

Info<< type() << " : detected " << nZones << " mesh regions" << endl;
Info<< incrlIndent;
forAll(nCellsPerZone, zonel)

{
Info<< indent<< "zone:" << zonel
<< " nCells:" << nCellsPerZone[zoneI]
<< " voxels:" << patchDivisions[zoneI]
<< " bb:" << patchBb[zonel] [Pstream: :myProcNo ()]
<< endl;
}

Info<< decrIndent;

The new boundaries according to the sub meshes were marked.

One dimensional array allCellTypes with length of number of cells and values of CALCULATED
is set. So the array allCellTypes for simpleRotor tutorial is 1552 members with value 0. The second
is allStencil which is matrix of 1552 arrays with array filled with zero. The last declared is array
AllDonorID with length of number of cells in mesh minus one.

Data type globallndex is used for variable globalCells constructed with number of mesh cells.
The globalndex data type is a unique integer. A buffer pBufs is constructed for inter-processor
communications.

The loop for marking holes in allCellTypes starts at line 1930. Two for loops over meshParts
size creates srcl (source index) and tgtl (target index) integers as counter. The function markPatch-
esAsHoles is used. This function is described in subsection 3.3.10.

Donors are found. This loops starts at line 1967. The counters scrl and tgtl are used again. In
the loops, the function markDonors (subsection 3.3.12) is called.

Next part of the code sets all cell types where is overset and no HOLE to type INTERPOLATED
(require interpolation). If there are no donors, the cells can be HOLE or CALCULATED. Now it is
set to be HOLE.

At line 2058 the check is present. Variables allCellTypes and private cellTypes_ are compared. If
allCellTypes is CALCULATED and the relevant cellType_ is hole, two possibilities are presented. If

33

3.3. SELECTED PARTS OF THE OVERSET LIBRARY CHAPTER 3. OVERSET LIBRARY

the allStencil size is not zero the allCellType is reset to HOLE and the allStencil is cleared. Otherwise
the allCellType is set to INTERPOLATED. The walkFront function is called, found purpose is to
surround holes with layers of interpolated cells.

The stencil in compact notation is set for interpolated cells. The size of array for interpolation
weights is set according the mesh size and the value is 1, but it will be overwritten. The boundary
field for interpolation weights array is corrected.

The final act of the overlap function except printing some statements is to call createStencil
function. This function is described in subsection 3.3.13. Its purpose is to extend stencil to get
inverse distance weighted neighbors.

3.3.10 Function markPatchesAsHoles

This function is written in file inverseDistanceCellCellStencil.C from line 312 to 364.

This function checks if source cell patch boundary box overlaps the target patch boundary box. If
this is true, the bool function overlaps (subsection 3.3.11) is called. This function gets the information
about source cell and boundary box called cBb from target cell. If true value is returned from overlap
function, allCellTypes of this cell index is assigned as HOLE.

The rest of the function is meant for parallel computing with the same principle as the first part
dedicated to one processor or local processor computing.

3.3.11 Function overlaps

This function is written in file inverseDistanceCellCellStencil.C from line 268 to 309.

This function tests given boundary boxes, if they overlap by looping from minimal index to
maximal one. If they do overlap and the patch type of source cell is PATCH, the function returns
true, otherwise false is returned.

3.3.12 Function markDonors

This function is implemented in file inverseDistanceCellCellStencil.C from line 480 to 656.

Its purpose is to determine donors for all target cells. The addressing is calculated by function
calculate from namespace waveMethod. By this the variable tgtToScrAddr is created from target
sub mesh and source one. The loop over all target cell map is created. Variable srcCelli is equal to
the addressing with index relevant to target cell. If this variable is not equal to minus one and its
type is not HOLE the donor is found. The mesh is check for better donor. The final donor is set.

The rest of the function is meant for parallel computing with the same principle as the first part
dedicated to one processor or local processor computing.

3.3.13 Function createStencil

This function is written in file inverseDistanceCellCellStencil.C from line 1467 to 1648. Its purpose
is to extend stencil to get inverse distance weighted neighbors.

The first step is the creation of bool list with name isValidDonor, all values are set to true and
the size of the list is number of cells. Some members of this field are set to be false if the type of cell
is equal to HOLE. The HOLE can not be a valid donor. If the acceptor has been already handled,
it is marked in special array of interpolation cells size which is named doneAcceptor and its data
type is bitSet. The bitSet stores bits — elements with two states. It behaves lartely like a list and
supports variety of bit-set operations.

bitSet doneAcceptor(interpolationCells_.size());

Endless cycle while (true) is set. This cycle goes to the end of this function with exception of
function that does the map distribution once again. The setting of donorAcceptor is checked for all
interpolation cells. If the variable have not been set yet, the fields are rewrittens to delete any old
contents. Field of points is created with number of elements which is equal to construct size of cell

34

3.3. SELECTED PARTS OF THE OVERSET LIBRARY CHAPTER 3. OVERSET LIBRARY

interpolation map and the value is set for each of the point as 3D values GREAT, which are a great
values, namely le+15.

pointField samples(cellInterpolationMap().constructSize(), greatPoint);

In short the code from line 1509 to line 1534 overwrites the field named samples with values according
to

minMagSqrEqOp<point>() (samples[elemI], cc);

This function takes two arguments and returns void. It alters first parameter according the condition
in its name.

EqOp(minMagSqrEq, x = (magSqr(x) <= magSqr(y) 7 x : y))

So the smaller magnitude of sqrt is written into samples variable for the cell in question. The slot
represents the cell stencil. The other variable is cell center. The cell center is the same for one slot
(slot index). The cell stencil contains the addresses of cells, there can be any number of them and
their points are compared with the center of the cell in question.

The only way how to break the never ending loop is to fulfill this condition.

if (returnReduce(nSamples, sumOp<label>()) == 0)
{

break;
}

This function gathers data from different processors and returns the summation of the variable
nSamples. This variable is set to zero in the start of the loop and it is incremented when the
samples variable is set which was described in lines above, if the acceptor is not done yet.

The function distribute (called at line 1543) can be found at line 629 of file mapDistribute-
BaseTemplates.C. Its purpose is to distribute data and take care that multiple processes do not
write the same. All of the donors have a valid cell center and the stencil for them is constructed.

DynamicList<label> donorCells(mesh_.nCells());
forAll(samples, celll)

{
if (samples[celll] != greatPoint)
{
donorCells.append(celll);
}
}

If the samples have been changed in the beginning of this function, the donorCell array is extended
of its value. The fields globalCells, donorCells, donorCellCells and donorCellCentres are changed
in function globalCellCells (see subsection 3.3.15. Variable donorWeights is introduced as matrix of
double with size of numbers of mesh cells.

For all donor cells the function stencilWeights is called as

stencilWeights

(
samples[cellI],
donorCentres,
donorWeights[cellI]

)

and the field donorWeights is set. For details see 3.3.14. After the weights are obtained the cell
interpolation map is updated and donor cells and weights are added.

Final check is done. If the stencil is actually for the correct cell in general mesh, the private
variables cellStenci_ and celllnterpolationWeights_ are updated and this cell is set as done. The loop
repeats until all interpolation cells have its donor and weights.

35

3.3. SELECTED PARTS OF THE OVERSET LIBRARY CHAPTER 3. OVERSET LIBRARY

3.3.14 Function stencilWeights

This function is written in file inverseDistanceCellCellStencil.C from line 1433 to 1464.

This function takes three arguments: cell that is interpolated (acceptor), list of cells that are
donors and list of double which is supposed to be filled with weights. It is done just for one acceptor.
So the function is called in loop.

Loop is created over all donors in the list. Double variable d is introduced and its value is the
distance between the centroids of the donor and acceptor. If this value d is bigger then the smallest
number excepted in OpenFOAM the weight is not computed and its value is 1. Otherwise it is
computed according

weights[i] = 1.0/d;
sum += weights[il;

and finally all of the weights are divided by whole sum of all weights, which is implemented as

forAll(weights, i)
{
weights[i] /= sum;

}

3.3.15 Function globalCellCells

This function is written in file cellCellStencil.C from line 183 to 297. Its function is to create cell-cell
addressing in global numbering.

First the function determines the global cell number on other side of coupled patches. Then the
cells and all the neighbors are collected. First entry in stencil is the cell itself. Others entries are
cell neighbors.

3.3.16 Function celllnterpolationWeights

This function is written in file inverseDistanceCellCellStencil. H (lines 320 — 323) and its purpose is
to return private variable celllnterpolationWeights._.

3.3.17 Function interpolationCells

This function is written in file inverseDistanceCellCellStencil.H (lines 297 — 300) and its purpose is
to return private variable interpolationCells_.

3.3.18 Function celllnterpolationWeight

This function is written in file inverseDistanceCellCellStencil.H (lines 327 — 330) and its purpose is
to return private variable celllnterpolationWeight_.
This variable indicates the interpolation factor:

e zero for calculated

e one for interpolated

36

Chapter 4

Modification of inverse distance
interpolation scheme

This chapter will contain two modifications of the overset library. The first modification will show
how to change the weighting function in the inverse distance interpolation scheme. The second
modification will change the input data for this function. The neighbors of neighbours will be
added. This process is accompanied by checking if the more distant neighbors have already been
added.

Both modifications will be described in detail. The inclusion of this new code into openFoam
installation without the risk of destroying it will be showed.

4.1 Logarithmic distance

The purpose for this modification is to set weights for the 2D case as a logarithmic function. The
old code

weights[i] = 1.0/d;
sum += weights[i];

is replaced with

if (mesh_.nGeometricD() == 2)
{
weights[i] = -1%Foam::log(d);
}
else
{

weights[i] 1.0/4;
T

sum += weights[i];

If the case is run in two dimensions, the weights are set as a logarithmic function of the distance d,
which is the distance between cell centers of acceptor and donor. Otherwise the distance is calculated
as in the inverse distance interpolation scheme.

4.1.1 Incorporation into OpenFOAM

Because only one function is modified, it is not necessary to create a new overset library or inverseDis-
tance interpolation scheme. The easiest way is to change leastSquares interpolation schemes, because
it consists of only this one function. The least squares interpolation scheme is derived from inverse
distance by changing the weights function. This process is described step by step.

37

4.1. LOGARITHMIC DISTANCE CHAPTER 4. MODIFICATION OF INVERSE DISTANCE

First the terminal in Linux is open and the openFoam environment is loaded.
0Fv1906

The second step is to copy the leastSquare file and rename it to logarithmInverseDistance. And the
Make file is created.

ufoam

mkdir applications %DONT DO IF THE FOLDER ALREADY EXISTS

cd applications

cp -r $FO0AM_SRC/overset/cellCellStencil/leastSquares logarithmInverseDistance
mkdir logarithmInverseDistance/Make

Folder Make should contain two files: options and files. The options has following content.

EXE_INC = \
-I$(LIB_SRC)/finiteVolume/InInclude \
-I$(LIB_SRC)/overset/1lnInclude

LIB_LIBS = \
-1finiteVolume \
-loverset

The libraries that are used for the code have to be specified. It is possible to copy this file from the
overset library, in that case the overset library has to be included as well.
The second file files contains

logarithmInverseDistance.C

LIB = $(FOAM_USER_LIBBIN)/liblogarithmInverseDistance

In case of copying this file, it is really important to check if the library is compiled into FOAM_USER _LIBBIN
unlike all standard libraries, which are compiled into FOAM_LIBBIN, so the user can overwrite some
important things if he do not change this.

The files leastSquares.C and leastSquares.H should be renamed.

mv leastSquaresCellCellStencil.C logarithmInverseDistance.C
mv leastSquaresCellCellStencil.H logarithmInverseDistance.H

The structure of file logarithmInverseDistance is

logarithmInverseDistance
|--- logarithmInverseDistance.C
| -—- logarithmInverseDistance.H
| --- Make
|--- files
|--- options

The word leastSquare has to be changed inside the files by executing

sed -i 's/leastSquaresCellCellStencil.H/logarithmInverseDistance.H/g' logarithmInverseDistance.C
sed -i 's/leastSquares/logarithmInverseDistance/g' logarithmInverseDistance.C
sed -i 's/leastSquares/logarithmInverseDistance/g' logarithmInverseDistance.H

This is a good time to check if the code works for OpenFOAM case. So far no modification to
leastSquares code was made except the name.

38

4.1. LOGARITHMIC DISTANCE CHAPTER 4. MODIFICATION OF INVERSE DISTANCE

4.1.2 Check before modification

The code is compiled by wmake in logarithmInverseDistance directory. The output should be checked
for errors. The tutorial simpleRotor is copied into run folder.

cp -r $FOAM_TUTORIALS/incompressible/overPimpleDyMFoam/simpleRotor/ $FOAM_RUN/.

The case has to be slightly modified. The overset interpolation scheme in fvSchemes file has to be
changed and the user library has to be added into controlDict.

sed -i 's/inverseDistance/logarithmInverseDistance/g' $FOAM_RUN/simpleRotor/system/fvSchemes
sed -i 's/"libfvMotionSolvers.so"/"libfvMotionSolvers.so" "liblogarithmInverseDistance.so"/g'\
$FOAM_RUN/simpleRotor/system/controlDict

The case can be run now by the Allrun script. Check the log.overPimpleDyMFoam if the logarith-
mlInverseDistance was used and if the computation run without errors.

4.1.3 Modification to logarithmInverseDistance

In file logarithmInverseDistance.C the new code for function stencilWeights is

void Foam::cellCellStencils::logarithmInverseDistance::stencilWeights

(
const point& sample,
const pointList& donorCcs,
scalarList& weights

) const

{

// Inverse-distance weighting

weights.setSize(donorCcs.size());
scalar sum = 0.0;
forAll(donorCcs, i)

{
scalar d = mag(sample-donorCcs[i]);
if (d > ROOTVSMALL)
{
if (mesh_.nGeometricD() == 2)
{
weights[i] = -1*Foam::log(d);
}
else
{
weights[i] = 1.0/d;
3
sum += weights[i];
}
else
{
// Short circuit
weights = 0.0;
weights[i] = 1.0;
return;
}
¥

39

4.2. NEIGHBORS INVERSE DISTACHMAPTER 4. MODIFICATION OF INVERSE DISTANCE

forAll(weights, i)
{
weights[i] /= sum;
}
}

The declaration of the function was updated from inverseDistance to logarithmInverseDistance and
weights were changed according the code written above. Make sure to copy over the whole function
stencilWeights, not over the whole file.

After saving the file, the library should be compiled with wmake and the case can be run again.
(in case folder: ./Allclean and ./Allrun)

4.2 Neighbors inverse distance

The purpose of this modification is to extend the number of donors. In the inverse distance in-
terpolation scheme, the donors are found around the acceptor cell. This new function finds the
neighbors of donors and adds them to the original stencil as well as their cell centers. This extension
is displayed in figure 4.1. The function also checks if the neighbor was already added and in this
case it skips the neighbor.

Figure 4.1: Distance of cell centers for determination of the weights, the red cell is acceptor, the black ones
are original donors and the blue cells are newly added donors

The code of the extension is

forAll(donorCells,celll)
{

//index of donors
label someCell = donorCells[celll];
//neighbors for acceptor, finding their neighbors

40

4.2. NEIGHBORS INVERSE DISTACHMAPTER 4. MODIFICATION OF INVERSE DISTANCE

labelList neighborCells = donorCellCells[someCell];

//new field for new neighbours
labellListList nbDonorCellCells(mesh_.nCells());
//new field for cell centers of new nb
pointListList nbDonorCellCentres(mesh_.nCells());
//finds neibours of "neighborCells" and fills following arrays with cells and cell centers
globalCellCells
(

globalCells,

mesh_,

isValidDonor,

neighborCells,

nbDonorCellCells,

nbDonorCellCentres

)

for(label index = 1; index < neighborCells.size();index++)
{
label someNbCell = donorCellCells[someCell] [index];
forAll (nbDonorCellCells [someNbCell], k)
{
bool addNb = true;
forAll(donorCellCells[someCell]l, j)
{
if (donorCellCells[someCell] [j] == nbDonorCellCells[someNbCell] [k])
{
addNb = false;
}
}
if (addNb)
{
donorCellCentres [someCell] .append (nbDonorCellCentres [someNbCell] [k]) ;
donorCellCells[someCell] .append(nbDonorCellCells [someNbCell] [k]) ;

}

The first loop goes over all of the neighbors. The second loop goes over all neighbors for one acceptor
and the third checks if the neighbor is or is not in the current field. If the neighbor was not found
as a neighbor, it is added, so as its cell centers.

4.2.1 Incorporation into OpenFOAM

The process is almost the same as in subsecion 4.1.1 but with different name. So the terminal
commands are listed without description.

0Fv1906

ufoam

mkdir applications %DONT DO IF THE FOLDER ALREADY EXISTS

cd applications

cp -r $FO0AM_SRC/overset/cellCellStencil/leastSquares nbInverseDistance
mkdir nbInverseDistance/Make

Folder Make should contain two files: options and files. The options has following content.

41

4.2. NEIGHBORS INVERSE DISTACHMAPTER 4. MODIFICATION OF INVERSE DISTANCE

EXE_INC = \
-I$(LIB_SRC)/finiteVolume/1nInclude \
-I$(LIB_SRC) /overset/lnInclude

LIB_LIBS = \
-1finiteVolume \
-loverset

The second file files contains

nbInverseDistance.C

LIB = $(FOAM_USER_LIBBIN)/libnbInverseDistance
The files leastSquares.C and leastSquares.H should be renamed. In dictionary nbInverseDistance do

mv leastSquaresCellCellStencil.C nbInverseDistance.C
mv leastSquaresCellCellStencil.H nbInverseDistance.H

The structure of dictionary logarithmInverseDistance is

nbInverseDistance
| -—- nbInverseDistance.C
| -—- nbInverseDistance.H
| --- Make
|--- files
| -—- options

The word leastSquare has to be changed inside the files by executing

sed -i 's/leastSquaresCellCellStencil.H/nbInverseDistance.H/g' nbInverseDistance.C
sed -i 's/leastSquares/nbInverseDistance/g' nbInverseDistance.C
sed -i 's/leastSquares/nbInverseDistance/g' nbInverseDistance.H

Now it should work with simpleRotor case.

4.2.2 Check before modification

The check is the same as for the case before. The code is compiled by wmake in nbInverseDistance
directory. The output should be checked for errors. The tutorial simpleRotor is copied into run
folder.

cp -r $FOAM_TUTORIALS/incompressible/overPimpleDyMFoam/simpleRotor/ $FOAM_RUN/.

The case has to be slightly modified. The overset interpolation scheme in fvSchemes file has to be
changed and the user library has to be added into controlDict.

sed -i 's/inverseDistance/nbInverseDistance/g' $FOAM_RUN/simpleRotor/system/fvSchemes
sed -i 's/"libfvMotionSolvers.so"/"libfvMotionSolvers.so" "libnbInverseDistance.so"/g' \
$FOAM_RUN/simpleRotor/system/controlDict

The case can be run now by Allrun script. Check the log.overPimpleDyMFoam if the InbInverseDis-
tance was used and if the computation run without errors.

42

4.2. NEIGHBORS INVERSE DISTACHMAPTER 4. MODIFICATION OF INVERSE DISTANCE

4.2.3 Adding the extension into code

One additional change has to be done. The code has to be added in (the whole procedure is explained
below step by step, so do not add it now)

$FOAM_SRC/overset/cellCellStencil/inverseDistance/inverseDistanceCellCellStencil.C
and it should start at line 1576 after

// Get neighbours (global cell and centre) of donorCells.
labellListList donorCellCells(mesh_.nCells());
pointListList donorCellCentres(mesh_.nCells());
globalCellCells
(

globalCells,

mesh_,

isValidDonor,

donorCells,

donorCellCells,

donorCellCentres

)

To do so, the file has to be opened and the whole function createStencil (line 1467 — 1650) has to
be copied and put instead of the stencilweights function in nbInverseDistance.C.

The code above needs to be localized in nbInverseDistance.C file and the modification has to be
added. After the added code

// Determine the weights.
scalarListList donorWeights(mesh_.nCells());
forAll(donorCells, i)

should follow. The function header should change from

void Foam::cellCellStencils::inverseDistance::createStencil
to

void Foam::cellCellStencils: :nbInverseDistance::createStencil

The last modification has to be added into nbInverseDistance.H. Since the name of function had
changed, the declaration has to be changed as well. Instead of

//- Calculate 1lsq weights for single acceptor
virtual void stencilWeights

(
const point& sample,
const pointList& donorCcs,
scalarList& weights

) const;

The declaration from file inverseDistanceCellCellStencil.H must be added.
virtual void createStencil(const globalIndex&) ;

The library now have to be compiled by wmake and the functionality can be checked by running the
simpleRotor tutorial modified above.

The difference for original inverse distance interpolation scheme and the new one is displayed for
simpleRotor tutorial. The figure 4.2 shows the red line over which are magnitudes of velocity plotted.
The left contures belong to original inverse distance and the right ones are for newly implemented
scheme. The magnitudes of velocity over this lines are displayed in figure 4.3, the red one is for
original scheme, and the blue one is for newly inplemented scheme.

43

4.2. NEIGHBORS INVERSE DISTAMCY¥PTER 4. MODIFICATION OF INVERSE DISTANCE

U Magritude
ODe+D) 002 004 D06 ODS D1 002 0 O 0 D2 24801
I | E | |

Figure 4.2: The contours for simpleRotor tutorial, left one is for usage of original the inverse distance
interpolation scheme and the right one is for newly implemented nbInverseDistance, the red line is displayed
for plotting purposes

0174 — U_Magnitude
0,16+
0,15
0.14
0.1
0,12+
0,174
0.1+
0.0
0.08 \ ,
0.07

0.064

0.054

0.044

0,024

0.024

0.014

0 o0dot 0doz2 odoa 0004 0,005 0.d06 0.007 0008 0.d09 obn

Figure 4.3: The magnitudes of velocity for original inverseDistance interpolation scheme (red) and for
nbInverseDistance (blue) plotted over red line displayed in 4.2 (the cases overlap for the plotting)

44

Study questions

1. How many blockMesh files do you need to create overset meshes?

2. What is the maximum number of donors for one acceptor for structured mesh in standard
inverse distance interpolation scheme? Consider 2D cases only.

3. The private variable cellStencil_ has data type labelListList. What does it mean and what
data does this variable store?

4. The purpose of neighbors inverse distance implementation is to find new donors (neighbors of
standard donors). The function globalCellCells is used for finding the new neighbors. Why
the function that returns neighbors of given cell is not used instead?

45

Bibliography

[1] G. Houzeaux, B. Eguzkitza, R. Aubry, H. Owen, and M. Vazques. A chimera method for the
incompressible navier-stokes equations. International Journal for Numerical Methods in Fluids,

75(3):155-183, 2014.

[2] L.C. Evans and American Mathematical Society. Partial Differential Equations. Graduate studies
in mathematics. American Mathematical Society, 1998.

46

