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Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• How to use the interCondensatingEvaporatingFoam solver for two-phase flow cases

The theory of it:

• The theory of volume of fluid method

• The theory of the evaporation model

• The theory of the subgrid scale term in the α-equation

How it is implemented:

• How the subgrid scale term is implemented in OpenFOAM

How to modify it:

• How to modify the interCondensatingEvaporatingFoam solver by adding a source term to
α-equation
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Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• Computational Fluid Dynamics

• Volume of Fluid method

• Basic C++ programming knowledge

• How to run standard tutorials in OpenFOAM

2



Contents

1 Introduction 4

2 Theory 5
2.1 Volume of Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Phase change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Subgrid scale term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 interCondensatingEvaporatingFoam . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Volume fraction equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Pressure correction equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.3 Energy equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.4 Phase change term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Implementation of SGS term into interCondensatingEvaporatingFoam 17

4 Test case and results 21
4.1 Test case setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 interCondensatingEvaporatingFoam . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 myInterCondensatingEvaporatingFoam . . . . . . . . . . . . . . . . . . . . . 23

3



Chapter 1

Introduction

Atomization and evaporation process in a spray system plays a dominant role in many industrial
applications, such as fuel injection in engines [1], gas turbines [2] and burners [3]. Thereby, the spray
atomization which is a very complex phenomenon has been extensively investigated numerically over
the past decades.

Focusing on the computational fluid dynamics (CFD), Large Eddy Simulation (LES) is compu-
tationally cheaper than Direct Numerical Simulation (DNS) but needs subgrid scale (SGS) models
for the unresolved multiphase turbulence dynamics while the large turbulent structures are directly
resolved. In LES framework, numerical simulations with interface capturing methods like level set
(LS) [4], volume of fluid (VOF) [5], or a combination of LS and VOF [6] have been reported in the
literature [7]. For the VOF-LES method, the presence of the interface and the resulting filtering
across the discontinuity cause additional Subgrid scale (SGS) terms in the LES formulation. With-
out accounting for the small scale instabilities and the unresolved turbulence interface interaction,
primary breakup in a-posteriori LES strongly depends on the mesh. Incorporating interfacial SGS
deformations revealed the potential of improving the prediction of jet destabilization by means of
LES. Therefore, the inclusion of SGS turbulent and interfacial effects is expected to be of crucial
importance in order to predict the correct flow behavior in multiphase LES.

The aim for this report will be to provide a detailed description of the existing multi-phase solver
interCondensatingEvaporatingFoam for predicting the phase change in OpenFOAM. Additionally,
the SGS source term will be added to the volume fraction equation so that the influence of the SGS
term on the volume fraction field will be studied.
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Chapter 2

Theory

2.1 Volume of Fluid

The flow interFoam based solver is employed that utilizes VOF phase-fraction based interface cap-
turing approach to simulate the atomization and evaporation process. A VOF-LES formulation [8]
is derived by applying a LES low pass filter combined with a Favre filter

ψ̄(x) = G ⋆ ψ(x) =

∫ ∞

−∞
ψ(y)G(x− y,x)dy, ψ̃(x) =

ρψ

ρ̄
(2.1)

where (̄) denotes LES low pass filtered quantities and (̃) denotes that term is calculated with filtered
quantities. G is a filter kernel and ψ is any field such as velocity. The continuity equation in
Favre-filtered form in this approach is given as:

∂ρ̄

∂t
+∇ · (ρ̄Ũ) = 0 (2.2)

with time t, velocity U, the density ρ is defined as ρ = αρ1 + (1− α)ρ2, ρ1 and ρ2 are the densites
of two fluids, respectively. The corresponding filtered momentum equation is expressed as:

∂(ρŨ)

∂t
+∇ · (ρ̄Ũ⊗ Ũ− µ̄D̃− σn̄κ̄δs) + p̄I = −∇ · (τρuu + τµs) + τnn + ρ̄g (2.3)

p stands for the pressure, I for unit tensor, µ = αµ1+(1−α)µ2 for the viscosities of two fluids, µ1 for
the viscosity of the fluid 1, µ2 for the viscosity of the fluid 2, D = (∇U)+(∇TU) for the deformation
rate, g for the gravitational acceleration, σ for the surface tension coefficient, n = ∇α

|∇α| for the unit

normal vector at the interface, κ = ∇ · n for the curvature and δs ≡ |∇α| for the mathematical
delta function that equals infinity at the interface and zero elsewhere. The unresolverd subgrid scale
(SGS) terms in the Eqn. 2.3 read

τρuu = ρU⊗U− ρ̄Ũ⊗ Ũ, (2.4)

τµs = µD− µ̄D̃, (2.5)

τnn = σκnδs − σκ̄n̄δs. (2.6)

The phase transport equation is stated as

∂α

∂t
+∇ · (αŨ) = 0 (2.7)

where the liquid volume fraction α is introduced to distinguish between the two phases:

α =


0 phase 2,

0 < α < 1 interface,

1 phase 1 (tracked phase).

(2.8)
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2.2. Phase change Chapter 2. Theory

2.2 Phase change

Since mass is transferred between liquid and vapor during evaporation and condensation, the right
hand side (RHS) of Eqn. 2.7 is no longer zero. Thus the volume fraction equations for liquid and
vapor are given by

∂αl

∂t
+∇ · (αlŨ) =

ṁ

ρl
(2.9)

∂αv

∂t
+∇ · (αvŨ) = − ṁ

ρv
(2.10)

where ρl denotes liquid density. ρv stands for the vapor density, ṁ = αlṁv + (1 − αl)ṁc for mass
transfer rate between the two phases, ṁv for vaporization and ṁc for condensation. By adding the
LHS and RHS of Eqn. 2.9 and Eqn. 2.10 and applying the αl + αv = 1 we get

∇ · Ũ = (
1

ρl
− 1

ρv
)ṁ (2.11)

This expresses that the mass transfer effect on the divergence of velocity is not null in general.
Then, a reorganization of the volume fraction equation is applied to couple the flux obtained through
velocity with the flux of the liquid volume equation. Adding and subtracting αl∇· Ũ from the right
hand side of Eqn. 2.9 and using Eqn. 2.11 we get

∂αl

∂t
+∇ · (αlŨ) = (

1

ρl
− αl(

1

ρ
− 1

ρv
))ṁ+ αl∇ · Ũ (2.12)

Here we define V̇ ′ = 1
ρl

− αl(
1
ρl

− 1
ρv
) and because ṁ = αlṁv + (1− αl)ṁc = αl(ṁv − ṁc) + ṁc we

get
∂αl

∂t
+∇ · (αlŨ) = V̇ ′(αl(ṁv − ṁc) + ṁc) + αl∇ · Ũ (2.13)

Then V̇v = V̇ ′ṁv and V̇c = V̇ ′ṁc and substituting them into Eqn. 2.13 and reorganizing we get

∂αl

∂t
+∇ · (αlŨ)− αl∇ · Ũ = αlV̇v − αlV̇c + V̇c (2.14)

Eqn. 2.14 is implemented in OpenFOAM (alphaEqn.H file) and the code of the equation will be
explained in detail.

Mass transfer term is calculated by Lee’s phase change model [9] which is one of the most popular
phase change models for evaporation and condensation process in which the phase change is driven
by the difference of interfacial temperature from saturated temperature. This model assumes that
the mass is transferred at constant pressure and quasi-thermo-equilibrium state. The mass transfer
rate per unit volume is calculated as

ṁc = rcαvρv
Tsat − T̃

Tsat
T̃ < Tsat(condensation) (2.15)

ṁv = rvαlρl
T̃ − Tsat
Tsat

T̃ > Tsat(vaporization) (2.16)

Where rc and rv are the empirical coefficient named the mass transfer intensity factor with the unit
of s-1, which can be interpreted as the reciprocal of the relaxation time. T̃ represents the temperature
and Tsat for saturation temperature.

The energy equation is introduced to model the effect of heat transfer. The source term in the
energy equation is the heat transferred due to mass transfer during phase change.

∂ρCpT̃

∂t
+∇ · (ρŨCpT̃ ) = ∇ · (K∇T̃ ) + ∆hvṁ (2.17)

where Cp is specific heat, K is thermal conductivity and hv is the enthalpy of vaporization.
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2.3. Subgrid scale term Chapter 2. Theory

2.3 Subgrid scale term

As stated earlier, we will add a SGS term into the volume fraction equation to study the influence
of the term on volume fraction field. Therefore, Eqn. 2.9 and Eqn. 2.10 can be written as

∂αl

∂t
+∇ · (αlŨ) =

ṁ

ρl
+ τuα (2.18)

∂αv

∂t
+∇ · (αvŨ) = − ṁ

ρv
+ τuα (2.19)

τuα is defined as
τuα = Ũ · ∇α−U · ∇α (2.20)

A functional closure model is applied to close the SGS term in the volume fraction equation by the
gradient approximation [8] in the Eqn. 2.20

τuα =
νsgs
σt,uα

∇2ᾱ, (2.21)

σt,uα is a turbulent Schmidt number, which is approximately equal to unity.
In the wall-adapting linear eddy-viscosity model (WALE) [10] which is applied in the present

report, the subgrid scale viscosity is expressed as

νsgs = (CW∆)2
(Sd

ijS
d
ij)

3/2

(D̄ijD̄ij)5/2 + (Sd
ijS

d
ij)

5/4
(2.22)

where CW is the model coefficient and Sd
ij is the traceless symmetric part of the square of the velocity

gradient tensor

Sd
ij =

1

2
(L̄2

ij + L̄2
ji)−

1

3
δijL̄

2
kk, (2.23)

where L̄2
ij = L̄ikL̄jk is the square of the velocity gradient tensor. The WALE model coefficient CW

is considered to be a true constant of CW =
√
10.6CS ≈ 0.5 and it is usually not determined by

means of a dynamic procedure. Cs stands for Smagorinsky constant.

2.4 interCondensatingEvaporatingFoam

interCondensatingEvaporatingFoam solver is a multiphase solver for two incompressible, non-
isothermal immiscible fluids with phase change using VOF phase-fraction based interface capturing
method. Since the interCondensatingEvaporatingFoam solver is similar to interFoam, here we
only discuss the most important features of the interCondensatingEvaporatingFoam. The source
code is located at

$FOAM_PROJECT_DIR/applications/solvers/multiphase/interCondensatingEvaporatingFoam

In the source code folder, there are following files:

• Make

• createFields.H

• interCondensatingEvaporatingFoam.C

• alphaCourantNo.H

• TEqn.H
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2.4. interCondensatingEvaporatingFoam Chapter 2. Theory

• pEqn.H

• temperaturePhaseChangeTwoPhaseMixtures

In the source code folder, we can not find files for calculating α and U . But if we check Make/options,
we find that the files for solving α equation, U equation and other relevant files are in other direc-
tories. We will copy these files to the interCondensatingEvaporatingFoam source code folder in
the process of modifying the solver. In createFields.H file, physical phase models are utilized to
initialize the transport properties, as shown in the following code in line 32:

Initialization of transport properties

31 // Creating e based thermo

32 autoPtr<twoPhaseMixtureEThermo> thermo

33 (

34 new twoPhaseMixtureEThermo(U, phi)

35 );

This model takes care of parsing and updating the transport properties, like temperature, internal
energy and thermal diffusivity. twoPhaseMixtureEThermo in line 32 is a subclass of basicThermo
and thermoIncompressibleTwoPhaseMixture and new member data and functions are added in this
class. Now we take a look at this class. Go into the temperaturePhaseChangeTwoPhaseMixtures

in the source code folder, there is the twoPhaseMixtureEThermo class, two files in the folder: H
file for the declaration of the twoPhaseMixtureEThermo class and C file for the definition of the
twoPhaseMixtureEThermo class. In the H file, the following code shows that the saturated temper-
ature in the phase change model is declared:

Declaration of saturation Temperature properties

63 //- Saturation Temperature

64 dimensionedScalar TSat_;

Additionally, many virtual member functions for the calculation of the thermal properties are de-
clared here, like heat capacity, thermal diffusivity and so on. For example, the thermal diffusivity
for temperature of the mixture within the H file is as follows:

Declaration of the thermal diffusivity for temperature of the mixture

248 virtual tmp<volScalarField> kappa() const;

In the C file, the definition of the thermal diffusivity for temperature of the mixture is as follows:

Definition of the thermal diffusivity for temperature of the mixture

338 Foam::tmp<Foam::volScalarField> Foam::twoPhaseMixtureEThermo::kappa() const

339 {

340 const volScalarField limitedAlpha1

341 (

342 min(max(alpha1_, scalar(0)), scalar(1))

343 );

344

345 return tmp<volScalarField>

346 (

347 new volScalarField

348 (

349 "kappa",

350 limitedAlpha1*kappa1() + (scalar(1) - limitedAlpha1)*kappa2()

351 )

352 );

353 }

In line 340, the limitedAlpha1 is built to keep the value positive and between 0 and 1. In line
350, the thermal diffusivity for temperature of the mixture Kappa is calculated from the thermal
diffusivity of phase 1 and phase 2. Besides, the correct function and read function are declared in
this class as well:
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2.4. interCondensatingEvaporatingFoam Chapter 2. Theory

Correct function and read function

292 //- Correct the thermo fields

293 virtual void correct();

294 //- Return the name of the thermo physics

295 virtual word thermoName() const;

296 //- Read properties

297 virtual bool read();

In the definition of the read function in C file, we see the phase change properties is read by this
function. In createFields.H file, the following code in line 39 takes care of the two phase mixture:

Correct function and read function

37 // Create mixture and

38 Info<< "Creating temperaturePhaseChangeTwoPhaseMixture\n" << endl;

39 autoPtr<temperaturePhaseChangeTwoPhaseMixture> mixture =

40 temperaturePhaseChangeTwoPhaseMixture::New(thermo(), mesh);

Here temperaturePhaseChangeTwoPhaseMixture is a class for the phase change model (located
in temperaturePhaseChangeTwoPhaseMixtures folder in the source code folder). There are many
pure virtual member functions for the mass transfer rate in the class. For example, mDotAlphal
function return the mass condensation and vaporisation rates.

mDotAlphal function

135 virtual Pair<tmp<volScalarField>> mDotAlphal() const = 0;

T source function for the source term in the temperature equation in TEqn.H:

T source function

146 virtual tmp<fvScalarMatrix> TSource() const = 0;

and the correct function for correcting the phase change model:

correct function

158 virtual void correct() = 0;

However, if we check temperaturePhaseChangeTwoPhaseMixtures.C file, we can not find the def-
inition of the above three functions. This is because they are pure virtual member functions and
they need to be defined by the specific phase change model, like constant model (Lee’s phase change
model) or interfaceHeatResistance model in temperaturePhaseChangeTwoPhaseMixtures folder.
We will go to the details of the constant model. After the variables, phases, and transport and
turbulence models are initiated in createFields.H file, the solution algorithm can proceed. Since
there is very little difference between interCondensatingEvaporatingFoam.C and interFoam.C,
we only explain the different parts. First of all, there are three new header files which are included
in interCondensatingEvaporatingFoam.C:

New header files

52 #include "interfaceProperties.H"

53 #include "twoPhaseMixtureEThermo.H"

54 #include "temperaturePhaseChangeTwoPhaseMixture.H"

The first file is located in $FOAM SRC/transportModels/interfaceProperties which contains the
interface properties, like the compression coefficient cAlpha, surface tension sigmaPtr and Stabilisa-
tion for normalisation of the interface normal deltaN. The second file and the third file are headers
we explained in temperaturePhaseChangeTwoPhaseMixtures folder in the source code folder. The
second different part is line 91:

T scalar field

91 volScalarField& T = thermo->T();

9



2.4. interCondensatingEvaporatingFoam Chapter 2. Theory

Here the reference of the temperature T is created as a volScalarField and T() function is called by
the thermo object. And the next different part is the following code:

divU field

107 volScalarField divU("divU", fvc::div(fvc::absolute(phi, U)));

This piece of code is to store divU from the previous mesh so that it can be mapped and used in
correctPhi to ensure the corrected phi has the same divergence. And the definition of the density is
added in line 181:

density field

181 rho = alpha1*rho1 + alpha2*rho2;

2.4.1 Volume fraction equation

The volume fraction was derived in Section 2.2, now we go to the details of the calculation of
volume fraction equation. As mentioned earlier, α equation file is not in the source code di-
rectory. After checking Make/options we find the alphaEqn.H needed for the solver is in the
interPhaseChangeFoam. The following piece of code is for the calculation of the Eqn. 2.14 we
derived in Section 2.2.

Alpha equation

17 fvScalarMatrix alpha1Eqn

18 (

19 fv::EulerDdtScheme<scalar>(mesh).fvmDdt(alpha1)

20 + fv::gaussConvectionScheme<scalar>

21 (

22 mesh,

23 phi,

24 upwind<scalar>(mesh, phi)

25 ).fvmDiv(phi, alpha1)

26 - fvm::Sp(divU, alpha1)

27 ==

28 fvm::Sp(vDotvmcAlphal, alpha1)

29 + vDotcAlphal

30 );

The definition of divU can be found in alphaEqnSubCycle.H in the source code folder:

Definition of divU

12 volScalarField divU

13 (

14 mesh.moving()

15 ? fvc::div(phi + mesh.phi())

16 : fvc::div(phi)

17 );

As we can see, divU is the divergence of U from line 16. From the following piece of code, the
vDotmcAlpha equals to vDotvAlpha - vDotcAlpha. The definition of vDotvmcAlpha, vDotvAlpha
and vDotcAlpha can be found in the alphaEqn.H file:

Definition of vDotvmcAlphal

9 volScalarField divU

10 const volScalarField& vDotcAlphal = vDotAlphal[0]();

11 const volScalarField& vDotvAlphal = vDotAlphal[1]();

12 const volScalarField vDotvmcAlphal(vDotvAlphal - vDotcAlphal);

In line 10 and 11, vDotAlpha function is defined in temperaturePhaseChangeTwoPhaseMixture.C.
Now we can take a look of this function in temperaturePhaseChangeTwoPhaseMixture.C.

10



2.4. interCondensatingEvaporatingFoam Chapter 2. Theory

Definition of vDotAlphal

69 Foam::Pair<Foam::tmp<Foam::volScalarField>>

70 Foam::temperaturePhaseChangeTwoPhaseMixture::vDotAlphal() const

71 {

72 volScalarField alphalCoeff

73 (

74 1.0/mixture_.rho1() - mixture_.alpha1()

75 *(1.0/mixture_.rho1() - 1.0/mixture_.rho2())

76 );

77

78 Pair<tmp<volScalarField>> mDotAlphal = this->mDotAlphal();

79

80 return Pair<tmp<volScalarField>>

81 (

82 alphalCoeff*mDotAlphal[0],

83 alphalCoeff*mDotAlphal[1]

84 );

85 }

In the definition of the vDotAlpha function, the alphalCoeff which is V̇ ′ in Eqn. 2.13 is defined
here as 1

ρl
− αl(

1
ρl

− 1
ρv
) from line 74 to line 75. The values returned in vDotAlpha function

are alphalCoeff*mDotAlphal[0] and alphalCoeff*mDotAlphal[1], which are V̇v = V̇ ′ṁv and
V̇c = V̇ ′ṁc in Eqn. 2.14, respectively. So far all the variables in Eqn. 2.14 have been clarified. The
mass flow rate term mDotAlphal will be explained in the phase change model.

2.4.2 Pressure correction equation

As stated in Eqn. 2.11, the divergence of velocity equals to the mass transfer term instead of 0, so
the contribution of mass transfer term is added to the pressure correction equation. We can get the
definition of the pressure correction equation in the pEqn.H in the source code file as

P equation

30 while (pimple.correctNonOrthogonal())

31 {

32 fvScalarMatrix p_rghEqn

33 (

34 fvc::div(phiHbyA)

35 - fvm::laplacian(rAUf, p_rgh)

36 ==

37 vDotv + vDotc

38 );

We will not go through the details of the two terms which are derived from continuity equation and
momentum equation on the left hand side (LHS) of the above pressure correction equation. If the
reader is interested in this, please refer to A. Asnaghi [11]. In line 37, we see that mass transfer term
( 1
ρl

− 1
ρv
)ṁ is split to vDotv ( 1

ρl
− 1

ρv
)ṁv and vDotc ( 1

ρl
− 1

ρv
)ṁc and are introduced on the right

hand side of the pressure correction equation. The definition of vDotv and vDotc can be found in
pEqn.H as well:

vDotv and vDotc

88 const volScalarField& vDotc = vDot[0]();

89 const volScalarField& vDotv = vDot[1]();

vDotc is the value of vDot[0]() and vDotv is the value of vDot[1](). Similarly, we find their
definition in temperaturePhaseChangeTwoPhaseMixture.C:

Definition of vDot function

69 Foam::Pair<Foam::tmp<Foam::volScalarField>>

70 Foam::temperaturePhaseChangeTwoPhaseMixture::vDot() const

71 {

72 dimensionedScalar pCoeff(1.0/mixture_.rho1() - 1.0/mixture_.rho2());

11



2.4. interCondensatingEvaporatingFoam Chapter 2. Theory

73 Pair<tmp<volScalarField>> mDot = this->mDot();

74

75 return Pair<tmp<volScalarField>>(pCoeff*mDot[0], pCoeff*mDot[1]);

76 }

In line 72, the pCoeff is defined here as 1
ρl

− 1
ρv
. This is the coefficient of the mass transfer term

in Eqn. 2.11. Therefore, the return values pCoeff*mDot[0] and pCoeff*mDot[1] in line 75 are
( 1
ρl
− 1

ρv
)ṁv and ( 1

ρl
− 1

ρv
)ṁc, respectively. The mDot in the return value in the mass flow rate term

will be explained in the phase change model.

2.4.3 Energy equation

The energy equation Eqn. 2.17 is defined and calculated in TEqn.H in the source code folder.

T equation

1 {

2 tmp<volScalarField> tcp(thermo->Cp());

3 const volScalarField& cp = tcp();

4

5 const dimensionedScalar Cp1 = thermo->Cp1();

6 const dimensionedScalar Cp2 = thermo->Cp2();

7

8 rhoCp = rho*cp;

9

10 kappaEff = thermo->kappa() + rho*cp*turbulence->nut()/Prt;

11

12 const surfaceScalarField rhoCpPhi

13 (

14 "rhoCpPhi",

15 rhoPhi*(Cp1 - Cp2) + phi*rho2*Cp2

16 );

17

18 fvScalarMatrix TEqn

19 (

20 fvm::ddt(rhoCp, T)

21 + fvm::div(rhoCpPhi, T)

22 - fvm::Sp(fvc::ddt(rhoCp) + fvc::div(rhoCpPhi), T)

23 - fvm::laplacian(kappaEff, T)

24 + mixture->TSource()

25 );

26

27

28 TEqn.relax();

29 TEqn.solve();

30

31 Info<< "min/max(T) = " << min(T).value() << ", "

32 << max(T).value() <<endl;

33 }

We see the definition of the energy equation from line 18 to line 25. The rhoCp of the energy equation
is defined in line 8, the rhoCpPhi is defined from line 12 to line 16 and kappaEff is defined in line
10. Similarly, the mass transfer term is also introduced to energy equation in line 24. We will go
through this source term in the next subsection in the phase change model.

2.4.4 Phase change term

So far we have explained the volume fraction equation, pressure correction equation and energy equa-
tion in the code. The mass transfer term mDotAlpha in the volume fraction equation, the mDot in the
pressure correction equation and TSource() in energy equation have not been explained. If we check
the constant folder in temperaturePhaseChangeTwoPhaseMixtures, we find their declarations and
definitions.
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The declaration of the member data and member functions of the evaporation model

45 namespace Foam

46 {

47 namespace temperaturePhaseChangeTwoPhaseMixtures

48 {

49

50 /*--------------------------------------------------------------------*\

51 Class constant

52 \*--------------------------------------------------------------------*/

53

54 class constant

55 :

56 public temperaturePhaseChangeTwoPhaseMixture

57 {

58 // Private data

59

60 //- Condensation coefficient [1/s/K]

61 dimensionedScalar coeffC_;

62

63 //- Evaporation coefficient [1/s/K]

64 dimensionedScalar coeffE_;

65

66

67 public:

68

69 //- Runtime type information

70 TypeName("constant");

71

72

73 // Constructors

74

75 //- Construct from components

76 constant

77 (

78 const thermoIncompressibleTwoPhaseMixture& mixture,

79 const fvMesh& mesh

80 );

81

82

83 //- Destructor

84 virtual ~constant() = default;

85

86

87 // Member Functions

88

89 //- Return the mass condensation and vaporisation rates as a

90 // coefficient to multiply (1 - alphal) for the condensation rate

91 // and a coefficient to multiply alphal for the vaporisation rate

92 virtual Pair<tmp<volScalarField>> mDotAlphal() const;

93

94 //- Return the mass condensation and vaporisation rates as coefficients

95 virtual Pair<tmp<volScalarField>> mDot() const;

96

97 //- Return the mass condensation and vaporisation rates as a

98 // coefficient to multiply (Tsat - T) for the condensation rate

99 // and a coefficient to multiply (T - Tsat) for the vaporisation rate

100 virtual Pair<tmp<volScalarField>> mDotDeltaT() const;

101

102 //- Source for T equarion

103 virtual tmp<fvScalarMatrix> TSource() const;

104

105 //- Correct the constant phaseChange model

106 virtual void correct();

107

108 //- Read the transportProperties dictionary and update

109 virtual bool read();

110 };

13
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111

112

113 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

114

115 } // End namespace temperaturePhaseChangeTwoPhaseMixtures

116 } // End namespace Foam

In line 61 and 64, the two coefficients coeffC for condensation and coeffE for evaporation are
declared here. But the coeffC is not rc in Eqn. 2.15 and the coeffE is not re in Eqn. 2.16.
From the comments in line 60 and 63, the unit of coeffC and coeffE is 1/s/K, thus the coeffC
represents for rc/Tsat and coeffE for re/Tsat . This is why we can not see the temperature
denominators in Eqn. 2.15 and Eqn. 2.16 from the code. We will explain this again when we go
through the definition of mass transfer term in the code. In line 92, mDotAlphal() for ṁv and ṁc in
Eqn. 2.13 is declared. mDot() for ṁv and ṁc in the pressure correction equation is declared in line
95. The source term of the temperature equation is declared in line 103. mDotDeltaT() function
is not discussed here, as this function was not used in the momentum, pressure correction and
temperature equation. Then, the correct() for the correction of phase change model and read()

for reading the the transportProperties dictionary and updating the functions are declared here.
Next, we will go through the member functions in the constant.H file. Open constant.C file, firstly
we see mDotAlphal() function:

Definition of mDotAlphal function

76 Foam::Pair<Foam::tmp<Foam::volScalarField>>

77 Foam::temperaturePhaseChangeTwoPhaseMixtures::constant::mDotAlphal() const

78 {

79 const volScalarField& T = mesh_.lookupObject<volScalarField>("T");

80

81 const twoPhaseMixtureEThermo& thermo =

82 refCast<const twoPhaseMixtureEThermo>

83 (

84 mesh_.lookupObject<basicThermo>(basicThermo::dictName)

85 );

86

87 const dimensionedScalar& TSat = thermo.TSat();

88

89 const dimensionedScalar T0(dimTemperature, Zero);

90

91 return Pair<tmp<volScalarField>>

92 (

93 coeffC_*mixture_.rho2()*max(TSat - T, T0),

94 -coeffE_*mixture_.rho1()*max(T - TSat, T0)

95 );

96 }

In line 79, the volScalarField T are constructed. From line 81 to 87, the thermo object is con-
structed to get the saturation temperature from thermophysicalProperties in constant file. In
line 89, T0 is constructed to keep the difference between TSat and T positive. The return values of
the mDotAlphal() function are the RHS of Eqn. 2.15 and Eqn. 2.16 for the phase change model
but without αv and αl. αv and αl have been multiplied in the definition of alphalCoeff in Section
2.4.1 as discussed before. Then we go through the definition of mDot() function:

Definition of mDot function

99 Foam::Pair<Foam::tmp<Foam::volScalarField>>

100 Foam::temperaturePhaseChangeTwoPhaseMixtures::constant::mDot() const

101 {

102

103 volScalarField limitedAlpha1

104 (

105 min(max(mixture_.alpha1(), scalar(0)), scalar(1))

106 );

107

108 volScalarField limitedAlpha2

14
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109 (

110 min(max(mixture_.alpha2(), scalar(0)), scalar(1))

111 );

112

113 const volScalarField& T = mesh_.lookupObject<volScalarField>("T");

114

115 const twoPhaseMixtureEThermo& thermo =

116 refCast<const twoPhaseMixtureEThermo>

117 (

118 mesh_.lookupObject<basicThermo>(basicThermo::dictName)

119 );

120

121 const dimensionedScalar& TSat = thermo.TSat();

122

123 const dimensionedScalar T0(dimTemperature, Zero);

124

125 volScalarField mDotE

126 (

127 "mDotE", coeffE_*mixture_.rho1()*limitedAlpha1*max(T - TSat, T0)

128 );

129 volScalarField mDotC

130 (

131 "mDotC", coeffC_*mixture_.rho2()*limitedAlpha2*max(TSat - T, T0)

132 );

133

134 if (mesh_.time().outputTime())

135 {

136 mDotC.write();

137 mDotE.write();

138 }

139

140 return Pair<tmp<volScalarField>>

141 (

142 tmp<volScalarField>(new volScalarField(mDotC)),

143 tmp<volScalarField>(new volScalarField(-mDotE))

144 );

145 }

mDot() function is the mass transfer term in pressure correction equation. In line 103 and 108, two
volScalarField limitedAlpha1 and limitedAlpha2 are constructed. min() and max() functions
are applied here to keep α between 0 and 1. The return values of mDot() function are mDotC and
-mDotE. In line 125 and 129, mDotE and mDotC are the mass transfer term in Eqn. 2.15 and Eqn.
2.16. Then we go through the source term in the temperature equation.

Definition of Tsource()

179 Foam::tmp<Foam::fvScalarMatrix>

180 Foam::temperaturePhaseChangeTwoPhaseMixtures::constant::TSource() const

181 {

182

183 const volScalarField& T = mesh_.lookupObject<volScalarField>("T");

184

185 tmp<fvScalarMatrix> tTSource

186 (

187 new fvScalarMatrix

188 (

189 T,

190 dimEnergy/dimTime

191 )

192 );

193

194 fvScalarMatrix& TSource = tTSource.ref();

195

196 const twoPhaseMixtureEThermo& thermo =

197 refCast<const twoPhaseMixtureEThermo>

198 (

199 mesh_.lookupObject<basicThermo>(basicThermo::dictName)
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200 );

201

202 const dimensionedScalar& TSat = thermo.TSat();

203

204 dimensionedScalar L = mixture_.Hf2() - mixture_.Hf1();

205

206 volScalarField limitedAlpha1

207 (

208 min(max(mixture_.alpha1(), scalar(0)), scalar(1))

209 );

210

211 volScalarField limitedAlpha2

212 (

213 min(max(mixture_.alpha2(), scalar(0)), scalar(1))

214 );

215

216 const volScalarField Vcoeff

217 (

218 coeffE_*mixture_.rho1()*limitedAlpha1*L*pos(T - TSat)

219 );

220 const volScalarField Ccoeff

221 (

222 coeffC_*mixture_.rho2()*limitedAlpha2*L*pos(TSat - T)

223 );

224

225 TSource =

226 fvm::Sp(Vcoeff, T) - Vcoeff*TSat

227 + fvm::Sp(Ccoeff, T) - Ccoeff*TSat;

228

229 return tTSource;

230 }

Unlike mDotAlphal() and mDotAlphal(), fvScalarMatrix is constructed for TSource(), which
means it will contribute to the coefficient of the matrix for the temperature equation. In line 204, a
dimensionedScalar L is created as the difference between the latent heat of the two phases. The
return value of Tsource() function is actually the TSource in line 225. The definition of TSource
from line 225 to line 227 shows that the Vcoeff*T and Ccoeff*T are discretized implicitly and
the Vcoeff*TSat and Ccoeff*TSat are discretized explicitly. In line 216 and line 220, we see the
mass transfer term is a little bit different from it in the volume fraction and the pressure correction
equation. The difference between the latent heat of the first phase and the second phase is multiplied.
Then, the correct() function for the correction of phase change model and read() function for
reading the coeffC and coeffE are defined:

Definition of correct() and read()

233 void Foam::temperaturePhaseChangeTwoPhaseMixtures::constant::correct()

234 {

235 }

236

237

238 bool Foam::temperaturePhaseChangeTwoPhaseMixtures::constant::read()

239 {

240 if (temperaturePhaseChangeTwoPhaseMixture::read())

241 {

242 subDict(type() + "Coeffs").readEntry("coeffC", coeffC_);

243 subDict(type() + "Coeffs").readEntry("coeffE", coeffE_);

244

245 return true;

246 }

247

248 return false;

249 }

Until now the Lee’s phase change model has been explained in detail. In the source code folder in
temperaturePhaseChangeTwoPhaseMixtures folder, there is an interfaceHeatResistance folder.
This is the other phase change model, which is not discussed in this report.
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Chapter 3

Implementation of SGS term into
interCondensatingEvaporatingFoam

The implementation of the SGS term starts by copying the interCondensatingEvaporatingFoam

solver, changing its name to myInterCondensatingEvaporatingFoam, and renaming its files and
functions accordingly. As described in Chapter 3, α-equation is solved using MULES algorithm
in alphaEqn.H. To add the source terms to α-equation, we need to modify alphaEqn.H file. This
section will provide the steps in the implementation of the SGS term named, myInterCondensating
EvaporatingFoam. Start by copying the interCondensatingEvaporatingFoam solver from the
OpenFOAM installation as myInterCondensatingEvaporatingFoam with these commands:

cd $WM_PROJECT_USER_DIR

mkdir -p applications/solvers/multiphase

cd applications/solvers/multiphase

cp -r $FOAM_SOLVERS/multiphase/interCondensatingEvaporatingFoam .

mv interCondensatingEvaporatingFoam myInterCondensatingEvaporatingFoam

cd myInterCondensatingEvaporatingFoam

mv interCondensatingEvaporatingFoam.C myInterCondensatingEvaporatingFoam.C

As mentioned before, the files for solving α equation, U equation and other relevant files are in
other directories. If we check Make/options, we find the files for solving α equation and U equa-
tion, the file(alphaControls.H) for the parameters of MULES and alphaEqnSubCycle.H are in the
interPhaseChangeFoam source code folder. setDeltaT.H and createAlphaFluxes.H files are in
the VoF folder. correctPhi.H, initCorrectPhi.H and rhofs.H are in the interFoam source code
folder. So here we firstly copy the above necessary files from other folders:

cp $FOAM_SOLVERS/multiphase/interPhaseChangeFoam/alphaEqn.H .

cp $FOAM_SOLVERS/multiphase/interPhaseChangeFoam/UEqn.H .

cp $FOAM_SOLVERS/multiphase/interPhaseChangeFoam/alphaControls.H .

cp $FOAM_SOLVERS/multiphase/interPhaseChangeFoam/alphaEqnSubCycle.H .

cp $FOAM_SOLVERS/multiphase/interFoam/correctPhi.H .

cp $FOAM_SOLVERS/multiphase/interFoam/initCorrectPhi.H .

cp $FOAM_SOLVERS/multiphase/interFoam/rhofs.H .

cp $FOAM_SOLVERS/multiphase/VoF/setDeltaT.H .

cp $FOAM_SOLVERS/multiphase/VoF/createAlphaFluxes.H .

Rename within the files in Make directory to change the name and path of the excutable:

sed -i s/inter/myInter/g Make/files

sed -i s/APPBIN/USER_APPBIN/g Make/files
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Then change the interCondensatingEvaporatingFoam to myInterCondensatingEvaporatingFoam
in myInterCondensatingEvaporatingFoam.C:

sed -i s/interCon/myInterCon/g myInterCondensatingEvaporatingFoam.C

Rename the library to our library in the source code folder:

mv temperaturePhaseChangeTwoPhaseMixtures myTemperaturePhaseChangeTwoPhaseMixtures

Then we have to update the Make/options files in the source code folder and the myTemperature

PhaseChangeTwoPhaseMixtures folder, respectively. Firstly we delete the relative paths for inter
PhaseChangeFoam, interFoam solver and VoF in the Make/options files in the source code folder,
since we already copy the needed files to the source folder. We also need to link to the modified
library, we change the Make/options files as follows:

Make/options in the source code

0 EXE_INC = \

1 -ImyTemperaturePhaseChangeTwoPhaseMixtures/lnInclude \

2 -I$(LIB_SRC)/finiteVolume/lnInclude \

3 -I$(LIB_SRC)/fvOptions/lnInclude\
4 -I$(LIB_SRC)/meshTools/lnInclude \

5 -I$(LIB_SRC)/sampling/lnInclude \

6 -I$(LIB_SRC)/dynamicFvMesh/lnInclude \

7 -I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \

8 -I$(LIB_SRC)/transportModels \

9 -I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \

10 -I$(LIB_SRC)/transportModels/incompressible/lnInclude \

11 -I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \

12 -I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \

13 -I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude
14

15 EXE_LIBS = \

16 -L$(FOAM_USER_LIBBIN) \

17 -lfiniteVolume \

18 -lfvOptions \

19 -lmeshTools \

20 -lsampling \

21 -ldynamicFvMesh \

22 -lmyPhaseTemperatureChangeTwoPhaseMixtures \

23 -ltwoPhaseMixture \

24 -linterfaceProperties \

25 -ltwoPhaseProperties \

26 -lincompressibleTransportModels \

27 -lturbulenceModels \

28 -lincompressibleTurbulenceModels \

29 -lfluidThermophysicalModels

Then rename within the files in the Make directory of myTemperaturePhaseChangeTwoPhaseMixtures
to change the name and path of the library:

sed -i s/libphase/libmyPhase/g myTemperaturePhaseChangeTwoPhaseMixtures/Make/files

sed -i s/LIBBIN/USER_LIBBIN/g myTemperaturePhaseChangeTwoPhaseMixtures/Make/files

Now we have a local version of the interCondensatingEvaporatingFoam solver. Try to compile it to
see that everything works as intended

wmake myTemperaturePhaseChangeTwoPhaseMixtures

wmake

Then we modify the alphaEqn.H to add the SGS source term to the volume fraction equation. First
of all, we need to create a new file for SGS term. Create alphaTUA WALE.H file and add the following
piece of code for the SGS term to the file:
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Code for the SGS term

0 //Get the mesh size

1 volScalarField V

2 (

3 IOobject

4 (

5 mesh.V().name(),

6 runTime.timeName(),

7 mesh,

8 IOobject::NO_READ,

9 IOobject::NO_WRITE,

10 false

11 ),

12 mesh,

13 dimensionedScalar(mesh.V().dimensions(), Zero),

14 calculatedFvPatchField<scalar>::typeName

15 );

16 V.ref() = mesh.V();

17 volScalarField delta = pow(V, 1./3);

18

19 //Create the variables needed by SGS term

20 volTensorField gradU(fvc::grad(U));

21 volSymmTensorField Sd(dev(symm(gradU & gradU)));

22 volScalarField magSqrSd(magSqr(Sd));

23 volScalarField nuSGS =

24 sqr(0.5*delta/1.0)*

25 sqrt(

26 pow(magSqrSd, 3.0)

27 /(

28 sqr

29 (

30 pow(magSqr(symm(gradU)), 5.0/2.0)

31 + pow(magSqrSd, 5.0/4.0)

32 )

33 + dimensionedScalar

34 (

35 "SMALL",

36 dimensionSet(0, 0, -10, 0, 0),

37 SMALL

38 )

39 )

40 );

41

42 //SGS term

43 volScalarField TUA

44 (

45 nuSGS*fvc::laplacian(alpha1)

46 );

Here we implement the SGS term in Eqn. 2.20, since the subgrid scale viscosity is modelled by
WALE model. The above code from row 0 to row 40 is applied to create the subgrid scale viscosity
in Eqn. 2.21 and the last four rows are for the Eqn. 2.22. Save the file and exit.

Now we have created the file for SGS term, the next step is to add this term to alphaEqn.H file.
Firstly, we include the file in line 17 and then add the source term we created in line 30.

Code for alpha equation

15 if (MULESCorr)

16 {

17 #include "alphaTUA_WALE.H"

18 fvScalarMatrix alpha1Eqn

19 (

20 fv::EulerDdtScheme<scalar>(mesh).fvmDdt(alpha1)

21 + fv::gaussConvectionScheme<scalar>

22 (

23 mesh,

24 phi,
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25 upwind<scalar>(mesh, phi)

26 ).fvmDiv(phi, alpha1)

27 - fvm::Sp(divU, alpha1)

28 ==

29 fvm::Sp(vDotvmcAlphal, alpha1)

30 + vDotcAlphal + TUA

31 );

Then we have implemented our SGS source term into the volume fraction equation. Try to compile
it to see that everything works as intended

wclean

wmake
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Chapter 4

Test case and results

4.1 Test case setting

In this section we will test the original solver interCondensatingEvaporatingFoam and the modified
solver myInterCondensatingEvaporatingFoam by applying them to a liquid droplet in vapor in a
box. An overview of the test case geometry and mesh are shown in Figure 4.1. The droplet is initial-
ized with a specific diameter and position. The emphasis will be on qualitatively evaluating the evap-
oration in the phase change model and the SGS term in the volume equation. The test case can be
found in the supplied material attached to this report, it is named dropletEvaporation testCase.
The saturated temperature of the droplet is set to 300K, and the temperature of the internal field
is set to 400K. Therefore, the evaporation of the droplet will happen and the results will be shown
in the next subsection. If further details of case setting are required by the reader, please refer to
the case files.

(a) Computational domain (b) Mesh

Figure 4.1: Computational domain and mesh
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4.2 Results

In order to compare the simulation results without evaporation model and with evaporation model
and to study the influence of SGS term on the volume fraction field. The droplet will be simulated by
interFoam, interCondensatingEvaporatingFoam and myInterCondensatingEvaporatingFoam. All
solvers are interface capturing method, the SGS term is implemented in myInterCondensatingEvapor
atingFoam.

4.2.1 interCondensatingEvaporatingFoam

Figure 4.2 presents the results by interCondensatingEvaporatingFoam. At 1e-7 s, it can be seen
the droplet evaporated obviously and the liquid volume fraction decreased. At 1e-6 s, the size of
the liquid droplet is becoming lager due to the evaporation. At 1e-5 s, the droplet almost fully
evaporated.

(a) 0 s (b) 1e-7 s (c) 3e-7 s

(d) 5e-7 s (e) 1e-6 s (f) 1e-5 s

Figure 4.2: Contours of liquid volume fraction from interCondensatingEvaporatingFoam at dif-
ferent time steps
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4.2.2 myInterCondensatingEvaporatingFoam

Figure 4.3 presents the results by myInterCondensatingEvaporatingFoam. The difference be-
tween interCondensatingEvaporatingFoam and myInterCondensatingEvaporatingFoam is only
the SGS term in the volume fraction equation. If we compare the results in Figure 4.2 (a) and Figure
4.3 (a), it can be seen both droplets have evaporated, the different is very slight at every time step.
Overall, the influence of the SGS term is very small in the present case.

(a) 0 s (b) 1e-7 s (c) 3e-7 s

(d) 5e-7 s (e) 1e-6 s (f) 1e-5 s

Figure 4.3: Contours of liquid volume fraction from myInterCondensatingEvaporatingFoam at
different time steps
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Study questions

1. How does the phase interface be tracked in volume of fluid method?

2. What is the assumption of the Lee’s phase change model?

3. Why is the mass transfer rate ṁ decomposed into ṁv and ṁc

4. How do you implement source terms into the volume fraction equation?
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