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Outline

Objective

e Describe the implementation of the Immersed Boundary Method in OpenFOAM

e Demonstrate application of the immersed boundary method on tutorial cases
Topics

e General framework of the Immersed Boundary Method (IBM)

e Selected IBM approach

e Imposition of Dirichlet and Neumann boundary conditions

e Treatment of the pressure equation

e Implementation details: Class layout

e Tutorial cases and settings

e Fitting functions and high-Re flows

e Wall function implementation in body-fitted meshes

e Wall functions on immersed boundary patch

e Turbulent flow tutorial case
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Immersed Boundary Method (IBM)

Immersed Boundary Method: Non-Conformal Boundary Surfaces

e Simulation of the flow around immersed boundary is carried out on a grid (usually
Cartesian) which does not conform to the boundary shape

e Immersed boundary (IB) is represented by surface grid

e |B boundary conditions modify the equations in cells which interact with the
iImmersed boundary

|
Fluid

/ \\ IB
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IBM: Pros and Cons

Advantages of IBM Over Body-Fitted Mesh Methods
e Substantially simplified grid generation for complex geometry

e Inclusion of body motion is relatively simple due to the use of stationary,
non-deforming background grids

Disadvantages of IBM Over Body-Fitted Mesh Methods

e Imposition of boundary conditions at IB is not straightforward: special techniques
are developed and implemented

e Problem with grid resolution control in boundary layers: effective near-wall mesh
size is approx 50% larger than in equivalent body-fitted mesh

e Limited to low and moderate Reynolds number flows: this is resolved using the
Immersed Boundary wall function implementation

Wish List
1. IBM solution MUST mimic the equivalent body-fitted mesh solution

2. Minimal interaction in top-level code: flow solvers and auxiliary models to be used
without coding changes

3. Remove limitations on background mesh structure: must work with polyhedra

4. Automate mesh refinement under the IB surface
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Boundary Conditions in IBM

Imposition of Boundary Conditions at the IB Distinguishes one IB Method from Another

e Continuous forcing approach
o Effect of the IB is imposed by the source (force) term in governing equations
o Continuous forcing function is spread over a band of cells near IB
o Independent of the spatial discretisation procedure
o Smeared boundary description leads to accuracy and stability problems
o Requires solution of governing equations inside the IB

e Discrete forcing approach

o Indirect imposition of BC
« Forcing term is introduced into discretised equation
x Forcing function still spread over the band of cells

o Direct imposition of BC
x Modification of discretised equations near the IB to directly impose the BC
on cells that touch IB.
x Sharpness of the IB is preserved
x Best accuracy and highest Reynolds number flows (without modification)

CFD with OpenSource Software Course, Chalmers University 2015 Immersed Boundary Method in FOAM — p. 5



IBM In OpenFOAM: Selected Approach

Implementation of IBM In OpenFOAM
e Discrete forcing approach with direct imposition of boundary conditions

e Basic principle: Value of dependent variable in the IB cell centres is calculated by
interpolation using neighbouring cells values and boundary condition at the
corresponding IB point

O o Fluid cells

»  Solid cells

B |B cells
o o |B points
O
O
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IB BC with Quadratic Interpolation

Dirichlet Immersed Boundary Condition
¢p = ¢ip + Co(xp — z4) + C1(yp — Yiv)

+ Co(xzp — z38) (yp — yip) + C3(xp — x4)% + Ca(yp — yiv)*

Unknown coefficients of quadratic polynomial determined using weighted least square
method on extended stencil.

® @ & @ @ @ o Fluid cells
=) = »  Solid cells
\\\\\\ © © B B cells
. A Q & o IB points
N

\\ Extended stencil

N N N e e
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IB BC with Quadratic Interpolation

Neumann Immersed Boundary Condition Interpolation is performed in local coordinate

system x’y’ where z’-axis coincides with the normal to the immersed boundary at the
point b:

op = Co + Mipe(VP)in] 2p + Cryp + Cozlpys + Cs(2'p)? + Ca(yp)?

O o Fluid cells

»  Solid cells

° B |B cells
o o |B points
O
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Least Squares Weighting Factors

Two options are considered:

e Inverse quadratic distance weight function: w; = %2

e Cosine weight function

o Fluid cells

»  Solid cells

B |B cells

IB points

\\ Extended stencll
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Pressure Equation BC at IB

Pressure Equation for a Fluid Cell P Next to IB Cells

1 Hp
> (—)f nge(Vp)pSy =) mye (—)f St + > mny,evy, S,

f ap f ap fib
° | Fluid cells
. IB cells
I IB faces

vi, =3(vp+Vn,)
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Pressure Equation BC at IB

e Boundary condition for pressure is not needed for solution of pressure equation
since velocity at “IB faces” is treated as specified; . . . but pressure at IB faces
(py,,) 1s needed for the momentum equation!

e Pressure for IB faces and IB cells is calculated after solution of pressure equation
by applying procedure for Neumann boundary condition imposition using quadratic
interpolation

e Interpolated velocity at IB faces (v¢,, ) must be scaled in such a way to impose
zero net mass flux through the closed cage of IB faces around immersed boundary

Fluid cells

. IB cells

I IB faces

Vb = %<VP +VNib)
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IBM: Implementation Detalls

Immersed Boundary Implementation in Three Classes:
e cl ass | mmer sedBoundar yPol yPat ch: Basic mesh support, IB mesh

e cl ass i mmer sedBoundar yFvPat ch: FV support, with derived Fv properties
o Cell and face mask fields, live and dead cells indication
o Calculation of intersection points, normals and distances
o Calculation of interpolation matrices used in imposition of boundary conditions
o Parallel communications framework and layout
e cl ass | mmersedBoundar yFvPat chFi el d: field support and evaluation of
boundary conditions
o Patch field evaluation for the IB patch

o Calculation and interpolation of field data at mesh intersection, fixed value
and fixed gradient conditions etc.

o Handling of boundary updates
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IBM: Implementation Detalls

cl ass i mrer sedBoundar yPol yPat ch

publ i c pol yPat ch

{
/| Menber Functions
/'l Access
/- Return imrersed boundary surface nesh
const triSurfaceMesh& i bMesh() const
{
return i bMesh_;
}
/[/- Return true if solving for flowinside the IB
bool internal Flow) const
{
return internal Fl ow ;
}
/- Return triSurface search object
const triSurfaceSearch& tri SurfSearch() const;
}s
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IBM: Implementation Detalls

Including i mrer sedBoundar yPol yPat ch into boundary mesh of a pol yMesh by
modifying const ant / pol yMesh/ boundar y dictionary

6
I bCylinder // constant/tri Surface/ibCylinder.ftr
{
type | mrer sedBoundar y;
nFaces 0;
start Face 3650;
I nt er nal Fl ow no;
J
i n
{
type pat ch;
nFaces 25;
start Face 3650;
}
)
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IBM: Implementation Detalls

cl ass i mer sedBoundar yFvPat ch

public fvPatch
/] Private data

/- Reference to processor patch
const i mrer sedBoundar yPol yPat ch& i bPol yPat ch_;

[/- Finite volune mesh reference
const fvMesh& nesh_;

[/ Menber Functions

[/- Get fluid cells indicator, marking only live fluid cells
const vol Scal ar Fi el d& ganma() const;

[/- Return list of fluid cells next to i mersed boundary (IB cell s
const | abel List& ibCells() const;

//- Return list of faces for which one neighbour is an | B cell
/1 and anot her neighbour is a live fluid cell (IB faces)
const | abel List& i bFaces() const;
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IBM: Implementation Detalls

cl ass i mer sedBoundar yFvPat ch

public fvPatch

//- Return IB points
const vectorFi el d& i bPoints() const;

//- Return IB cell extended stencil
const labelListList& ibCell Cells() const;

//- Return dead cells
const | abel Li st & deadCel | s() const;

/- Return live cells
const labelList& liveCells() const;

[/- Get inverse Dirichlet interpolation matrix
const PtrlList<scal arRectangul arMatri x>&
invDirichletMatrices() const;

/- Get inverse Neumann interpolation matrix
const PtrlList<scal arRectangul arMatri x>&
I nvNeumannMatri ces() const;

b
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IBM: Implementation Detalls

t enpl at e<cl ass Type>
cl ass i mer sedBoundar yFvPat chFi el d

public fvPatchFi el d<Type>

{
/1l Private data
/- Local reference cast into the processor patch
const i mrer sedBoundar yFvPat ch& i bPatch_;
//- Local reference to fvMesh
const fvMesh& nesh_;
/- Defining value field
Fi el d<Type> ref Val ue_;
[/- Defining normal gradient field
Fi el d<Type> ref G ad_;
/| /- Does the boundary condition fix the val ue
Switch fixesVal ue_;
}
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Implementation details

t enpl at e<cl ass Type>
cl ass i mer sedBoundar yFvPat chFi el d

public fvPatchFi el d<Type>

/- Inpose Dirichlet BC at IB cells and return corrected cells val ues
// Calculate value and gradient on IB intersection points
t np<Fi el d<Type> > i nposeDirichl et Condition() const;

/- I nmpose Neumann BC at IB cells and return corrected cells val ues
// Calculate value and gradient on IB intersection points
t np<Fi el d<Type> > i nposeNeunmannCondi ti on() const;
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IBM: Implementation Detalls

t enpl at e<cl ass Type>
cl ass i mer sedBoundar yFvPat chFi el d

public fvPatchFi el d<Type>

{
[1- Update the coefficients associated with the patch field
voi d updat eCoeffs();
/- Evaluate the patch field
virtual void eval uate
(
const Pstream :commsTypes commsType = Pstream : bl ocki ng
);
/- Manipulate matri x
virtual void mani pulateMatrix(fvMatri x<Type>& matri x);
}
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IBM: Implementation Detalls

Including i mrer sedBoundar yFvPat chFi el d into boundary of a vol Vect or Fi el d
boundar yFi el d

{

I bCyl i nder

{
type i nmer sedBoundary;
refValue uniform (0 0 0);
refGadient uniform (0 0 0);
fi xesVal ue yes;
set DeadCel | Val ue yes;
deadCel | Val ue (0 0 0);
value uniform (0 0 0);

}

novi ngWal |

{
t ype parabolicVel ocity;
maxVal ue 0. 375;
n (10 0);
y (10 0);
val ue uniform (0.375 0 0);

}

}
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IBM: Implementation Detalls

' Example of solver source code - 1 col bFoam|

while (runTine. |l oop())

{
Info<< "Tinme =" << runTine.tinmeNanme() << nl << endl;
/'l Pressure-velocity corrector
int oCorr = O;
do
{ _
fvVectorMatri x UEQnN
fvm : ddt (U)
+ fvm :div(phi, U
- fvm :laplacian(nu, U)
);
UEqgn. boundar yMani pul at e( U. boundar yFi el d()) ;
sol ve(UEgn == -cell |l bMask*fvc::grad(p));
}
}
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Tutorial: Cylinder in a Cavity

@) | =l g =)
| B ,\:'_3 / [_)

Tutorial Case: cavity

P
1.382e-01

}  7.276e-02
7.339e-03

-5.808e-02

-1.235e-01

CFD with OpenSource Software Course, Chalmers University 2015

e Laminar flow around cylinder
driven by motion of cavity top wall
e Case setup data
o Cavity dimension: 1 X 1 m

o Moving wall velocity:
0.375 m/s

o Cylinder diameter: 0.5 m
o Reynolds number: 37.5
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Tutorial: Cylinder in a Cavity

Steps of Case Setup and Simulation
e Define volume mesh in const ant / pol yMesh/ bl ockMeshDi ct dictionary
e Create pol yMesh using bl ockMesh

e Copy immersed boundary mesh (i bCyl i nder. {ftr, stl }) into
constant/tri Surface folder

e Include i mrer sedBoundar yPol yPat ch into pol yMesh boundary

e Include i mrer sedBoundar yFvPat chFi el d into boundary field of pressure and
velocity fields

e Set discretisation schemes in ./ syst em f aSchenes dictionary
e Set solution controlsin. / syst em f aSol ut i on dictionary

e Settime step size ./ system control D ct

e Run the case using i col bFoam

e Post-process the case using par aFoam

CFD with OpenSource Software Course, Chalmers University 2015 Immersed Boundary Method in FOAM — p. 23



Tutorial: Flow Around a Cylinder

Tutorial Case: f | owOver Cyl i nder

T e e Laminar flow around a circular
S ' cylinder in open space

e Case setup data

o Open space dimensions:
90 x 90 m

o Inlet velocity: 1 m/s
o Cylinder diameter: 1 m
o Reynolds number: 100
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Tutorial: Flow Around a Cylinder

Steps of Case Setup and Simulation
e Define volume mesh in const ant / pol yMesh/ bl ockMeshDi ct dictionary
e Create pol yMesh using bl ockMesh

e Copy immersed boundary mesh (i bCyl i nder. {ftr, stl }) into
constant/tri Surface folder

e Include i mrer sedBoundar yPol yPat ch into pol yMesh boundary

e Include i mrer sedBoundar yFvPat chFi el d into boundary field for the pressure
and velocity fields

e Refine volume mesh using r ef i neCyl i nder Mesh application which must be
compiled before

e Refine volume mesh using r ef i nel nmer sedBoundar yMesh application
e Set discretisation schemesin ./ syst em f aSchenes dictionary

e Set solution controlsin . / syst eni f aSol ut i on dictionary

e Settime step size ./ systeni control D ct

e Run the case usingi col bFoam

e Post-process the case using par aFoam
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Tutorial: Backward-Facing Step by Pitz and Dem

Tutorial Case: pi t zDai | yLam nar
e Laminar flow over a backward-facing step by Pitz and Daily

e Case setup data:
o Inlet velocity: 1 m/s
o Reynolds number: 2500

U Magnitude
0.25

||||| |'|||||||||[|ji|5|||||||D|'|;15||||||||‘|||||
0

1.08063
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Tutorial: Backward-Facing Step by Pitz and Dm

Steps of Case Setup and Simulation
e Define volume mesh in const ant / pol yMesh/ bl ockMeshDi ct dictionary
e Create pol yMesh using bl ockMesh

e Copy immersed boundary mesh (pi t zDai |l yI B. {ftr, stl })into
constant/tri Surface folder

e Include i mrer sedBoundar yPol yPat ch into pol yMesh boundary

e Include i mrer sedBoundar yFvPat chFi el d into boundary field of pressure and
velocity fields

e Set discretisation schemes in ./ syst em f aSchenes dictionary
e Set solution controlsin. / syst em f aSol ut i on dictionary

e Settime step size ./ system control D ct

e Run the case using i col bFoam

e Post-process the case using par aFoam
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Tutorial: VOF Dam Break Over a Bump

Tutorial Case: danBr eakW t hCyl i nder

e Dam break VOF interface
capturing simulation with circular
bump at the bottom boundary

e Cylinder represented by STL
surface i bCyl i nder. st

=3
N

(=}

e VOF solver uses implicit volume
fraction equation and p-U system
with variable density/viscosity

e Case setup data:

o Domain dimension: 2 X 2 m
o Bump diameter: 0.5 m
o Water-air multi-phase system
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Tutorial: VOF Dam Break Over a Bump

Steps of Case Setup and Simulation
e Define volume mesh in const ant / pol yMesh/ bl ockMeshDi ct dictionary
e Create pol yMesh using bl ockMesh

e Copy immersed boundary mesh (i bCyl i nder. {ftr, stl }) into
constant/tri Surface folder

e Include i mrer sedBoundar yPol yPat ch into pol yMesh boundary

e Include i mrer sedBoundar yFvPat chFi el d into boundary field of pressure and
velocity fields

e Set discretisation schemes in ./ syst em f aSchenes dictionary
e Set solution controlsin. / syst em f aSol ut i on dictionary

e Settime step size ./ system control D ct

e Runthe case usingi nt er| bFoam

e Post-process the case using par aFoam
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Immersed Wall Functions

Dirichlet Condition - Implications

e A functional form in the Dirichlet condition specifies that the near-wall profile of a
variable will be approximately quadratic

e This is appropriate for most cases and consistent with second-order discretisation:
feed-back from functional fit adjusts local variable distribution

e For velocity in high-Re flows, quadratic fit is inappropriate: modification is required
e Equivalent modification appears in body-fitted meshes: wall functions

e Other implementations of IB wall functions are reported in literature, but rely on
Cartesian background mesh

e New polyhedral implementation will be derived, based on the equivalence with the
body-fitted wall functions
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Standard Wall Functions

Standard Wall Functions on a Body-Fitted Mesh
e Wall functions modify the wall drag and turbulence variables, eg. for k — epsilon
model
1. Collect k and near-wall distance y for near-wall cell
2. Calculate y* based on laminar viscosity v; at the wall

ES

Yy

B 02.25 \/Ey

Vi

3. If y* indicates log-law region, calculate turbulence generation and dissipation
and account for wall shear by modifying viscosity in the near-wall cell

Ve Ne(VU)y
C9-25 ky

02.75 k1'5

kY

k
l

G =

CFD with OpenSource Software Course, Chalmers University 2015 Immersed Boundary Method in FOAM — p. 31



Standard Wall Functions

Standard Wall Functions on a Body-Fitted Mesh: Analysis

In the near-wall cell, u and k are calculated. y* is a function of £ and u responds
to the change in y* to match the log-law profile

Introduction of v,, is a stable implicit mechanism to add momentum sink: responds
to near-wall velocity gradient without division

It is crucial to allow & to respond to the velocity gradient (via G) and vice-versa (via

Tw)

Immersed Boundary Wall Function: Issues

Velocity solution in near wall cell must be decomposed into the normal and
tangential component: wall functions act on tangential component only

The near-wall point is fitted for all variables : implementing wall functions on the
near-wall 1B point will not work

Data for active k and ne(Vu),, must be sampled from “live” flow cells
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Immersed Boundary Wall Function

Immersed Boundary Wall Function: Algorithm

1. For each immersed boundary point, introduce the “sampling point”, 150% further
away from the wall

2. At the sampling point, perform a least-square fit of fields through the interpolation
stencil excluding other immersed boundary point

3. Based on least-square fit, evaluate near-wall tangential velocity, turbulence kinetic
energy and laminar viscosity

Calculate y* based on the sampling point near-wall distance and &

If y* indicates log-law region for the sampling point, a log-law fit can be
established to the IB point, otherwise, U will be fitted quadratically, v. sy = v; and
G and € are set to zero

6. Since all parameters of the least square fit are known, log-law fit for the IB point
can be established:

e Modify G, e and v ¢ in the IB point (they are not used in actual immersed
boundary wall function calculation, but only as a post-processing result)

e Log-law fit the tangential velocity; wall-normal velocity is fitted quadratically,
as in low-Re flows

e Fitted log-law velocity appears in force balance for active cells and modified
near-wall velocity field.
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Immersed Boundary Wall Function

Immersed Boundary Wall Function: Consequences

e Log-law fit correctly captures near-wall velocity profile: drag is identical to
body-fitted meshes

e Effective near-wall distance y used with the Immersed Boundary method is 150%
of the distance to the first active cell centre

e Increase in effective near-wall y can be counteracted by refining the background
mesh next to the IB boundary: r ef i nel mrer sedBoundar yMesh utility

e By necessity, smoothness of y and y* adjacent to the IB patch is lower than in
body-fitted meshes

e Since the k transport equation is not solved in the IB cell, value of k follows from
local equilibrium
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Implementation

Implementation of the Immersed Boundary Wall Function

e Basic IB wall function class, i nmer sedBoundar yWal | Functi onFvPat chFi el d

o Class storing point-based IB data, with variation in the wall value
(wal | Val ue) and wall mask (wal | Mask) fields: point-wise switching in
behaviour of the IB patch field

o Additional function i bSanpl i ngPoi nt Val ue, extracting the data at the
“shifted” sampling point in the wall-normal direction from the live stencil point
data

o setl bCel | Val ues: function imposing IB value onto the internal field, based
on wall values and mask

e Velocity IB wall function class,
| mmer sedBoundar yVel oci t yWal | Functi onFvPat chVect or Fi el d,
performing velocity decomposition into normal and tangential component only, and
separately fitting each component

e ¢ or w IB wall function class, performing IB wall function calculation and setting
wal | Val ue and wal | Mask for GG, k, e and u

e |IB wall function class for nu; at IB is not required: wall drag accounted for directly
in velocity fit
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Summary

Implementation of Wall Functions on Immersed Boundary Patch

e Implementation uses flow data in the sampling point within th flow solution, located
above each IB cell, in the wall-normal direction

e Log-law analysis is performed using sampled data. Based on this, the near-wall
log-law profile is established
o For turbulence variables, GG and e are calculated in the standard way
o B cell velocity vector is decomposed into the normal and tangential

component
x Uy, I1s fitted using standard quadratic interpolation, consistent with the

Dirichlet boundary condition
x Uy Is fitted based on the log-law profile between the solid wall and the

sampling point
o Since the k transport equation is not solved in the IB cell, k is calculated from
the local equilibrium condition
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