
CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Project work:

Modeling of bed roughness using a
geometry function and forcing terms in

the momentum equations

Developed for OpenFOAM-2.2.x

Author:
Jonatan Margalit

Peer reviewed by:
Håkan Nilson

Thomas Vyzikas
Simon Lindberg

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone

through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

January 5, 2015

CONTENTS CONTENTS

Contents

1 Introduction 2

1.1 Theoretical background . 2

1.2 Getting started . 3

2 Preparing the solver 3

2.1 Copying the pimpleFoam solver . 3

2.2 Modifying the solver code . 4

3 Preparing the case 6

3.1 Copying a case from the Tutorials directory . 6

3.2 Defining the domain and the mesh . 7

3.3 Setting initial conditions in the 0 folder . 10

3.4 Generating the rough bed . 14

3.5 Adding source terms with fvOptions . 18

3.6 Configuring simulation controls with controlDict . 19

3.7 The fvSchemes and fvSolution dictionaries . 21

3.8 Configuring the turbulence parameters . 23

3.9 Configuring the flow parameters . 25

3.10 Running the case . 25

4 Post-processing 25

4.1 postChannel utility for spatial averaging . 25

4.2 Plotting with Gnuplot . 28

1

1 INTRODUCTION

1 Introduction

This tutorial guides how to set up an OpenFOAM case with a rough bed using porosity to replicate
the bed elements. The case set-up is based on the channel395 tutorial; an LES modeled turbulent
channel-flow with periodic boundary conditions in the streamwise and spanwise directions. The
solver used is the pimpleFoam with additional source terms for the pressure gradient and the porosity,
using the fvOptions. Post-processing is done by averaging the fields in time and space, in order to
have mean depth profiles.

The tutorial is proposing a way to implement Stoesser’s [1] rough bed simulation, in OpenFOAM. The
idea is that, since wall functions have a somewhat limited success when applied in LES modelings, a
rough-bed geometry is better as the near-bed flow is resolved. Stoesser proposed to simply model the
bed within the domain by blocking the flux through the cells that represent the bed. This simplifies
the computation since a structured mesh can be used, as long as the near-bed cells are in the order
of magnitude of the mean grain diameter. Stoesser demonstrated that for averaged quantities, the
result show a good representation of laboratory measured quantities.

The user of this tutorial does not need to have much understanding of the structure of OpenFOAM
as it is a step by step guide for the rough-bed implementation. However, for detailed explanation of
the dictionaries and case structure, as well as the underlying equations, it is recommended that the
user completes the tutorials in the OpenFOAM user guide first and consults the text-books about
CFD.

1.1 Theoretical background

The following is a brief summary of the governing equations.

The Navier-Stokes equation with index notations is given by

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= ρgi +

∂

∂xj

[
−pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
. (1)

For a pressure driven channel flow, the time-averaged equation in the flow direction, x, is reduced
into

∂

∂y

(
µ
∂u

∂y
− ρu′v′

)
=
∂p

∂x
, (2)

where the overline denotes time-averaged quantities. In Newtonian fluids the shear is related linearly
to the velocity gradient. In turbulence modeling it is customary to consider the effective shear as
comprising of a viscous part, and the Reynolds stresses. This is defined as

τ ≡ τeff = µ
∂u

∂y
− ρu′v′, (3)

which implies that Eq. (2) may be written as

∂τ

∂y
=
∂p

∂x
. (4)

Integrating Eq. (4) and applying the boundary condition τ(h) = 0 (h being the depth), leads to the
solution of the shear stress

τ = −∂p
∂x
h
(

1 − y

h

)
. (5)

For a flow over a smooth bed the velocity is in the logarithmic layer given by

u

Uf
=

1

κ
ln
(
y+
)

+ 5.5, (6)

2

1.2 Getting started 2 PREPARING THE SOLVER

where Uf =
√
τb/ρ is the friction velocity, τb is the bed shear stress, κ = 0.4 is the von Karman

constant and y+ = yUf/ν is the depth wise wall units. Similarly for a rough-bed the flow the velocity
is given by

u

Uf
=

1

κ
ln

(
30y

ks

)
, (7)

where ks is Nikuradse equivalent sand roughness.

For LES the governing equation is the spatially averaged Navier-Stokes equation:

∂ρui
∂t

+
∂

∂xj
(ρuiuj) = − ∂p

∂xi
+

∂

∂xj

[
(µ+ µSGS)

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ ρgi (8)

where overline denotes spatial-averaged quantities and µSGS is the Sub-grid scale viscosity which
has to be modeled.

1.2 Getting started

The commands in the tutorial are intended to be executed in a Linux terminal where OpenFOAM-
2.2.x has been installed. All framed lines are intended to be executed sequentially in the order of
appearance.

Start by sourcing your OpenFOAM-2.2.x. For example, if OpenFOAM has been installed into the
user $HOME directory, you can source it by the line:

source $HOME/OpenFOAM/OpenFOAM-2.2.x/etc/bashrc

2 Preparing the solver

The channel flow in this tutorial is solved using the pimpleFoam solver, which is included in the
OpenFOAM installation directories. A small modification is applied to the solver in order to make
it write out the viscous and SGS stresses at every time step.

The pimpleFoam solver is a large time-step transient solver for incompressible flow using the PIMPLE
(merged PISO-SIMPLE) algorithm [2]. It includes turbulence modeling and run-time selection finite
volume options.

2.1 Copying the pimpleFoam solver

Make a copy of the pimpleFoam solver in the user directory:

cd $FOAM_APP

cp -r --parents solvers/incompressible/pimpleFoam $WM_PROJECT_USER_DIR

cd $WM_PROJECT_USER_DIR/solvers/incompressible

Rename the copied pimpleFoam solver:

mv pimpleFoam pimpleFoam_mod

cd pimpleFoam_mod

mv pimpleFoam.C pimpleFoam_mod.C

3

2.2 Modifying the solver code 2 PREPARING THE SOLVER

Cleanup the directory and delete the unnecessary folders and files:

wclean

rm -rf SRFPimpleFoam/ pimpleDyMFoam/ Allwmake Make/linux*

Now execute the Linux command tree from within the solver directory and verify that the output
is as the following:

.

createFields.H

Make

files

options

pEqn.H

pimpleFoam mod.C

UEqn.H

2.2 Modifying the solver code

The next step is to modify the solver code in order to make it output the viscous (nuGradU) and the
SGS (B) stress tensors. Start by opening the file pimpleFoam_mod.C in your preferred text editor.
For example, the following command will open the file in the gedit editor:

gedit pimpleFoam_mod.C

Now have a look at the code within the time iteration loop. After the PIMPLE loop, make the
solver write the stress tensors nuGradU and B, so your script should look like this:

Time iteration loop in pimpleFoam mod.C

Info<< "\nStarting time loop\n" << endl;

while (runTime.run())

{

#include "readTimeControls.H"

#include "CourantNo.H"

#include "setDeltaT.H"

runTime++;

Info<< "Time = " << runTime.timeName() << nl << endl;

// --- Pressure-velocity PIMPLE corrector loop

while (pimple.loop())

{

#include "UEqn.H"

// --- Pressure corrector loop

while (pimple.correct())

{

#include "pEqn.H"

}

4

2.2 Modifying the solver code 2 PREPARING THE SOLVER

if (pimple.turbCorr())

{

turbulence->correct();

}

}

nuGradU = laminarTransport.nu()*-2*dev(symm(fvc::grad(U)));

B = turbulence->R();

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

}

Save and exit the editor.

Next, you need to initialize the two new fields nuGradU and B, so that they are pre-allocated in the
memory before the simulation starts. This is done in createFields.H, which is a header file that is
called at the beginning of a simulation to initialize all the necessary fields. Open createFields.H:

gedit createFields.H

Add the following lines to the end of createFields.H:

Additions to createFields.H

volSymmTensorField nuGradU

(

IOobject

(

"nuGradU",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

laminarTransport.nu()*-2*dev(symm(fvc::grad(U)))

);

volSymmTensorField B

(

IOobject

(

"B",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

5

3 PREPARING THE CASE

laminarTransport.nu()*-2*dev(symm(fvc::grad(U)))

);

Notice that nuGradU and B are created with the same expression using laminarTransport.nu().
For B this expression is simply used to initiate the field with the correct structure and dimensions.
The correct values are calculated in each time step.

Save and exit the editor and now open Make/files:

gedit Make/files

Modify the content to the following:

Content of Make/files

pimpleFoam_mod.C

EXE = $(FOAM_USER_APPBIN)/pimpleFoam_mod

Save and exit. This is done to tell the OpenFOAM compiler to compile the pimpleFoam_mod.C file
and put the executable in a directory where it is found by the OpenFOAM environment. Then it
can be called any time, as any other solver.

Finish by compiling the solver with the command wmake from the main solver directory:

wmake

If no error message appears, proceed to the next section.

3 Preparing the case

The modified solver will in the following be used to simulate the flow in an open channel. For this the
tutorial case channel395 will be used. This case is made for running with LES in a closed channel
with Reτ = Ufh/ν = 395. The case is run, copied and modified so it can be used to compare the
flow over a smooth and a rough bed.

3.1 Copying a case from the Tutorials directory

Copy the tutorial case channel395 into the run directory:

cp -r $FOAM_TUTORIALS/incompressible/pimpleFoam/channel395 $FOAM_RUN

run

In the run folder make another copy of channel395 and call it roughChannel:

6

3.2 Defining the domain and the mesh 3 PREPARING THE CASE

cp -r channel395 roughChannel

Now run the channel395 case while you configure the roughChannel:

blockMesh -case channel395

pimpleFoam_mod -case channel395 > channel395/log.run &

Verify that channel395 is running correctly by peeking at the log.run file:

tail -f channel395/log.run

Exit tail with Ctrl+C.

Head over to the roughChannel case and cleanup the directory:

cd roughChannel

rm -rf 0.org Allrun

View the directory organization with the Linux tree command:

tree

.

0

B.gz

k.gz

nuSgs.gz

nuTilda.gz

p.gz

U.gz

constant

LESProperties

polyMesh

blockMeshDict

boundary

postChannelDict

transportProperties

turbulenceProperties

system

controlDict

decomposeParDict

fvOptions

fvSchemes

fvSolution

3.2 Defining the domain and the mesh

Edit the channel in order to create an open-channel. Open constant/polyMesh/blockMeshDict in
a text editor and edit the vertices section as the following:

7

3.2 Defining the domain and the mesh 3 PREPARING THE CASE

vertices definition in blockMeshDict

vertices

(

(0 0 0)

(4 0 0)

(0 0.2 0)

(4 0.2 0)

(0 1 0)

(4 1 0)

(0 0 2)

(4 0 2)

(0 0.2 2)

(4 0.2 2)

(0 1 2)

(4 1 2)

);

Then edit the blocks section in the following way:

blocks definition in blockMeshDict

blocks

(

hex (0 1 3 2 6 7 9 8) (60 25 40) simpleGrading (1 1 1)

hex (2 3 5 4 8 9 11 10) (60 35 40) simpleGrading (1 6 1)

);

Finally, change the boundary type of the topWall into a patch:

topWall definition in blockMeshDict

topWall

{

type patch;

faces ((4 10 11 5));

}

Save and exit the editor.

Run blockMesh from the main case directory:

blockMesh

Your terminal output should look like this:

Terminal output from the command blockMesh

/*---*\

| ========= | |

8

3.2 Defining the domain and the mesh 3 PREPARING THE CASE

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.x |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

Build : 2.2.x-61b850bc107b

Exec : blockMesh

Date : Nov 28 2014

Time : 15:43:31

Host : "COMPUTER_NAME"

PID : 3665

Case : /home/USER/OpenFOAM/USER-2.2.x/run/roughChannel

nProcs : 1

sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).

fileModificationChecking : Monitoring run-time modified files using timeStampMaster

allowSystemOperations : Disallowing user-supplied system call operations

// * //

Create time

Creating block mesh from

"/home/USER/OpenFOAM/USER-2.2.x/run/roughChannel/constant/polyMesh/blockMeshDict"

Creating curved edges

Creating topology blocks

Creating topology patches

Creating block mesh topology

Check topology

Basic statistics

Number of internal faces : 1

Number of boundary faces : 10

Number of defined boundary faces : 10

Number of undefined boundary faces : 0

Checking patch -> block consistency

Creating block offsets

Creating merge list .

Creating polyMesh from blockMesh

Creating patches

Creating cells

Creating points with scale 1

Writing polyMesh

Mesh Information

boundingBox: (0 0 0) (4 1 2)

nPoints: 152561

nCells: 144000

nFaces: 440400

nInternalFaces: 423600

9

3.3 Setting initial conditions in the 0 folder 3 PREPARING THE CASE

Patches

patch 0 (start: 423600 size: 2400) name: bottomWall

patch 1 (start: 426000 size: 2400) name: topWall

patch 2 (start: 428400 size: 1500) name: sides1_half0

patch 3 (start: 429900 size: 1500) name: sides1_half1

patch 4 (start: 431400 size: 2100) name: sides2_half0

patch 5 (start: 433500 size: 2100) name: sides2_half1

patch 6 (start: 435600 size: 1000) name: inout1_half0

patch 7 (start: 436600 size: 1000) name: inout1_half1

patch 8 (start: 437600 size: 1400) name: inout2_half0

patch 9 (start: 439000 size: 1400) name: inout2_half1

End

Figure 1 shows the meshes of channel395 and roughChannel.

Figure 1: Left: Mesh of channel395, Right: Mesh of roughChannel.

3.3 Setting initial conditions in the 0 folder

The 0 folder contains the boundary and initial conditions of the simulated fields. Since we changed
the mesh in blockMeshDict, the current field values do not match the mesh any more. We can
either start all fields from 0, which will require very long simulation time to develop the flow, or map
the developed fields using interpolation from channel395. In the following it is shown how set the
fields to 0, and then map the lower half field values of channel395, into the roughChannel fields.

To modify the fields in the 0 folder, we can conveniently use the changeDictionaryDict, which
allows the modification of the fields altogether. Lets start by copying the changeDictionaryDict

dictionary from another tutorial, into the system folder:

cp -r $FOAM_TUTORIALS/multiphase/interFoam/ras/damBreakPorousBaffle/system/ \

changeDictionaryDict system/

Open up changeDictionaryDict and edit the contents to be as in the frame below.

What we do is specify the internal fields to be uniform 0 for all the files. For vectors this is specified
as internalField uniform (0 0 0);, and for scalars internalField uniform 0;.

10

3.3 Setting initial conditions in the 0 folder 3 PREPARING THE CASE

Furthermore, for the velocity set the boundary condition at the topWall to be of the type slip, in
order to have a rigid lid surface. Similarly, set the topWall boundary condition of k to zeroGradient.

Contents of changeDictionaryDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.2 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object changeDictionaryDict;

}

// * //

dictionaryReplacement

{

p

{

internalField uniform 0;

}

U

{

internalField uniform (0 0 0);

boundaryField

{

topWall

{

type slip;

}

}

}

k

{

internalField uniform 0;

boundaryField

{

topWall

{

type zeroGradient;

}

}

}

nuSgs

{

internalField uniform 0;

11

3.3 Setting initial conditions in the 0 folder 3 PREPARING THE CASE

}

}

// *** //

Now execute the changes by running

changeDictionary

from the case directory.

Note that this step is necessary before mapping fields, because the mapFields utility is not able to
map fields between two cases with different meshes and non-uniform internal fields. Alternatively,
you could use the 0.org, where all fields are uniform 0.

You will now map the fields of the lower half of the channel in channel395 into your rough channel.
This is done by copying the mapFieldsDict into the system folder:

cp -r $FOAM_APP/utilities/preProcessing/mapFields/mapFieldsDict system/

Now inside the mapFieldsDict you specify the patches that coincide for the two cases in the
patchMap section. Then enter the name of the patch in the current case that cuts the geome-
try. This would be topWall since it is laying exactly at the middle of the \channel395 geometry.
Your mapFieldsDict should now look like this:

mapFieldsDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.2 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object mapFieldsDict;

}

// * //

// List of pairs of target/source patches for mapping

patchMap

(

bottomWall bottomWall

sides1_half0 sides1_half0

sides2_half0 sides2_half0

inout1_half0 inout1_half0

inout2_half0 inout2_half0

12

3.3 Setting initial conditions in the 0 folder 3 PREPARING THE CASE

);

// List of target patches cutting the source domain (these need to be

// handled specially e.g. interpolated from internal values)

cuttingPatches

(

topWall

);

// *** //

Now map the fields from channel395 into the rough channel:

mapFields ../channel395/

This should produce the following terminal output:

Terminal output from mapFields

/*---*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.x |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

Build : 2.2.x-61b850bc107b

Exec : mapFields ../channel395

Date : Nov 28 2014

Time : 15:50:54

Host : "COMPUTER_NAME"

PID : 3791

Case : /home/USER/OpenFOAM/USER-2.2.x/run/roughChannel

nProcs : 1

sigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).

fileModificationChecking : Monitoring run-time modified files using timeStampMaster

allowSystemOperations : Disallowing user-supplied system call operations

// * //

Source: ".." "channel395"

Target: "/home/USER/OpenFOAM/USER-2.2.x/run" "roughChannel"

Create databases as time

Source time: 0

Target time: 0

Create meshes

Source mesh size: 60000 Target mesh size: 144000

Mapping fields for time 0

13

3.4 Generating the rough bed 3 PREPARING THE CASE

interpolating p

interpolating k

interpolating nuSgs

interpolating nuTilda

interpolating U

interpolating B

End

Open up the field files again and verify that the internalFields have been created and that the
boundary conditions are correct. Give a special attention to the boundary conditions that you
modified earlier.

3.4 Generating the rough bed

In this section you will generate a zone of cells near the channel-bed, which are to be used to simulate
the bed roughness, in a similar approach to the one demonstrated by Stoesser [1].

The following script is used to generate a random field of 3D bars, of which heights follow a normal
distribution. The script is quite poorly coded in C++ and is expected to by optimized for use as a
tool in the future. Comments have been added for the sake of clarity.

The main idea behind the script is to define the geometry of the domain in the spanwise and
streamwise directions. Then a set of 3D bars are generated, where the height is a function of the
mean grain diameter. This is arranged in a list of coordinates in a new file, which the OpenFOAM
topoSetDict is able to read.

For optimal results, the bars should be larger than the mesh cell sizes, i.e. so the roughness is well
discretized.

Start by creating a new file called boxes.C in the system folder and paste the code lines into it:

cd system

gedit boxes.C

Rough bed generation script to be pasted in boxes.C

// C++ script that generates a file 'boxes.txt' that contains the coordinates

// to 3D bars, of which heights follow a normal distribution

#include <iostream>

#include <fstream>

#include <random>

#include <math.h>

using namespace std;

int main()

{

const double d50=0.024; // mean grain diameter

const double c=3; // scaling factor

const double x=4; // streamwise domain size

14

3.4 Generating the rough bed 3 PREPARING THE CASE

const double z=2; // spanwise domain size

const double mean=0; // mean

const double sigma=0.5*d50; // standard deviation

double dx=c*d50; // streamwise spacing

double dz=c*d50; // spanwise spacing

const int nx=ceil(x/dx); // number of boxes streamwise

const int nz=ceil(z/dz); // number of boxes spanwise

// outputs to terminal

cout << "Mean grain diameter: " << d50 << endl;

cout << "Number of boxes in streamwise direction: " << nx << endl;

cout << "Number of boxes in spanwise direction: " << nz << endl;

cout << "Streamwise bar size: " << dx << endl;

cout << "Spanwise bar size: " << dz << endl;

// generate coordinates with the depthwise being random

default_random_engine generator;

normal_distribution<double> distribution(mean,sigma);

double X[nx+1];

double Z[nz+1];

double number[nx][nz];

double small = number[0][0];

for (int i=0; i<nx; i++)

{

for (int j=0; j<nz; j++)

{

number[i][j] = distribution(generator);

}

}

// find the lowest depthwise coordinate and scale all so it becomes 0

for (int i=0; i<nx; i++)

{

for (int j=0; j<nz; j++)

{

if(small>number[i][j])

small = number[i][j];

}

}

cout << "Mean 0 bed located " << abs(small) << " above bottomWall" << endl;

for (int i=0; i<nx; i++)

{

for (int j=0; j<nz; j++)

{

number[i][j] += abs(small) ;

}

}

// output coordinates to file

for (int i=0; i<nx+1; i++)

{

X[i] = i*dx;

15

3.4 Generating the rough bed 3 PREPARING THE CASE

}

for (int i=0; i<nz+1; i++)

{

Z[i] = i*dz;

}

ofstream myfile;

myfile.open ("boxes.txt");

for (int i=0; i<nx; i++)

{

for (int j=0; j<nz; j++)

{

myfile << "(" << X[i] << " 0 " << Z[j] << ")(" << X[i+1] << " " <<

number[i][j] << " " << Z[j+1] << ")\n";

}

}

myfile.close();

return 0;

}

Save and exit the editor.

Now compile the script in order to create an executable file:

g++ -std=c++11 boxes.C -o boxes

and now execute boxes to create the coordinate list file boxes.txt:

./boxes > log.boxes

The topoSet tool creates a list of sets at constant/polyMesh/sets based on it’s dictionary input.
Here we want it to read the coordinates in the file boxes.txt and create a set of all cells that are
confined by the bars.

Copy the topoSetDict file into the system folder:

cp -r $FOAM_APP/utilities/mesh/manipulation/topoSet/topoSetDict .

Open and edit the file:

gedit topoSetDict

You will notice that all the various options for the inputs are commented. You can either leave those
commented or clean up, so that your code looks like the following:

Content of topoSetDict

actions

(

16

3.4 Generating the rough bed 3 PREPARING THE CASE

{

name bed;

type cellSet;

action new;

source boxToCell;

sourceInfo

{

boxes

(

#include "boxes.txt"

);

}

}

);

As can be seen, topoSet creates a cellSet called bed, and it is generated using the source
boxToCell, which reads the coordinates from boxes.txt.

Save and exit topoSetDict. To execute topoSet, simply run the command from the case directory:

cd ..

topoSet

And now you want to convert the set of cells into a zone, in order to be able to assign the bed
properties to it. This can be done by simply executing the command:

setsToZones

You should now successfully have defined a zone of cells which can be referred to by it’s name: bed.
The topoSet created the file constant/polyMesh/sets/bed and setsToZones used it to create the
zone in constant/polyMesh/cellZones.

Figure 2 shows the cells of the bed zone.

Figure 2: Cells representing the rough bed

17

3.5 Adding source terms with fvOptions 3 PREPARING THE CASE

3.5 Adding source terms with fvOptions

The fvOptions framework is used in order to allow users to select any physics that can be represented
as sources or constraints on the governing equations, e.g. porous media, MRF and body forces [3].
For our case we will use it in order to give the bed-cells a porosity and to drive the flow by a pressure
gradient.

Edit the system/fvOptions file and add the following porosity specification such that your file
should look like this:

Content of fvOptions

momentumSource

{

type pressureGradientExplicitSource;

active off; //on/off switch

selectionMode all; //cellSet // points //cellZone

pressureGradientExplicitSourceCoeffs

{

fieldNames (U);

Ubar (0.1335 0 0);

}

}

porosity

{

type explicitPorositySource;

active true;

selectionMode cellZone;

cellZone bed;

explicitPorositySourceCoeffs

{

type DarcyForchheimer;

DarcyForchheimerCoeffs

{

d d [0 -2 0 0 0 0 0] (1e12 1e12 1e12);

f f [0 -1 0 0 0 0 0] (1e12 1e12 1e12);

coordinateSystem

{

e1 (1 0 0);

e2 (0 1 0);

}

}

}

}

The pressureGradientExplicitSource adds a momentum source to the momentum equation. It
can be applied to specific areas or to the whole domain by specification in selectionMode. In this
case it is adjusting the pressure gradient over the whole domain, to achieve the specified average
flow velocity Ubar.

18

3.6 Configuring simulation controls with controlDict 3 PREPARING THE CASE

For this case we are interested in completely blocking the flow through the bed-cells. Therefore we
use the implementation of the Darcy-Forchheimer equations, where the coefficients d and f should
be specified with 3 components. A coordinate system is defined for each coefficient, e1 and e2, which
sets the local orientation of the components of the coefficients.

In the actual implementation we assign this to the cellZone bed, and we simple give very high
values to the coefficients, such that the cells become practically impermeable.

3.6 Configuring simulation controls with controlDict

Open and edit system/controlDict to adjust the time steps such that a specified Courant number
withheld. This is achieved by adding the following after runTimeModifiable:

adjustTimeStep yes;

maxCo 0.5;

Since the time step will be adjusted during run-time, we have to make sure that writeControl is
set to adjustableRunTime, so that the simulation will write out results at the time steps specified
by deltaT and writeInterval.

Furthermore, we want get time-averaged quantities from the simulation, so we specify which fields
have to be average during runtime. You can see that the velocity U and pressure p fields are already
averaged under the fieldAverage function. Add the viscous and SGS stress fields to it, so your
controlDict should look like this:

Content of controlDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.2 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object controlDict;

}

// * //

application pimpleFoam_mod;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 1000;

19

3.6 Configuring simulation controls with controlDict 3 PREPARING THE CASE

deltaT 0.2;

writeControl adjustableRunTime;

writeInterval 100;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

adjustTimeStep yes;

maxCo 0.5;

functions

{

fieldAverage1

{

type fieldAverage;

functionObjectLibs ("libfieldFunctionObjects.so");

enabled true;

outputControl outputTime;

resetOnRestart true;

fields

(

U

{

mean on;

prime2Mean on;

base time;

window 125;

}

p

{

mean on;

prime2Mean on;

base time;

window 125;

}

nuGradU

20

3.7 The fvSchemes and fvSolution dictionaries 3 PREPARING THE CASE

{

mean on;

prime2Mean on;

base time;

window 125;

}

B

{

mean on;

prime2Mean on;

base time;

window 125;

}

);

}

}

// *** //

The window option allows setting a moving average based the specification in base. The resetOnRestart
option lets you determine whether averaging should be reset when restarting the simulation, or if it
should continue averaging using the previous average.

Note that in some versions it has been reported that fieldAverage cannot average prime2Mean for
volSymmTensorField. If that is the case, you can simply set it to off for nuGradU and B.

3.7 The fvSchemes and fvSolution dictionaries

The fvSchemes dictionary located in the system folder is where the finite volume schemes of each
quantity are defined. For the current case there is no need to modify it.

The fvSolution dictionary is used to define the numerical solver of the different fields as well as
the tolerances. There is a section dedicated for specific inputs for the PIMPLE solver, where you
have to specify a reference point for the pressure. In this case rename pRefCell into pRefPoint and
specify the coordinates of the point (0 1 0);. This means that the reference pressure at the top of
channel is set to be 0.

Content of fvSolution

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.2 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

21

3.7 The fvSchemes and fvSolution dictionaries 3 PREPARING THE CASE

object fvSolution;

}

// * //

solvers

{

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0.05;

}

pFinal

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0;

}

"(U|k)"

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-05;

relTol 0.1;

}

"(U|k)Final"

{

$U;

tolerance 1e-05;

relTol 0;

}

}

PIMPLE

{

nOuterCorrectors 1;

nCorrectors 2;

nNonOrthogonalCorrectors 0;

pRefPoint (0 1 0);

pRefValue 0;

}

// *** //

22

3.8 Configuring the turbulence parameters 3 PREPARING THE CASE

3.8 Configuring the turbulence parameters

In order to configure which turbulence model should be used, if any, the constant/turbulenceProperties
dictionary should be used. There you will find a single entry, simulationType, followed by the type.
For this case we use LES, hence the entry is LESModel. Alternatives can be RASModel or laminar.

Having specified the turbulence model, it is necessary to have a dictionary which defines the proper-
ties of the chosen model. This is for the LES model done in the constant/LESProperties dictionary,
where a variety of LES models can be selected, and their coefficients chosen.

In this case we use the default LES model which is the oneEqEddy model. It uses one k equation to
model the turbulence in the sub-grid scale. The spatial filter delta is chosen to be the cube root of
each cell, with no van-Driest damping because the bed cells are not regarded as a wall and therefore
the vanDriest delta would not work as it is intended to.

Make sure you edit the third line of the code in constant/LESProperties from delta vanDriest

into delta cubeRootVol.

Content of LESProperties

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.2 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object LESProperties;

}

// * //

LESModel oneEqEddy;

printCoeffs on;

delta cubeRootVol;

cubeRootVolCoeffs

{

deltaCoeff 1;

}

PrandtlCoeffs

{

delta cubeRootVol;

cubeRootVolCoeffs

{

deltaCoeff 1;

}

23

3.8 Configuring the turbulence parameters 3 PREPARING THE CASE

smoothCoeffs

{

delta cubeRootVol;

cubeRootVolCoeffs

{

deltaCoeff 1;

}

maxDeltaRatio 1.1;

}

Cdelta 0.158;

}

vanDriestCoeffs

{

delta cubeRootVol;

cubeRootVolCoeffs

{

deltaCoeff 1;

}

smoothCoeffs

{

delta cubeRootVol;

cubeRootVolCoeffs

{

deltaCoeff 1;

}

maxDeltaRatio 1.1;

}

Aplus 26;

Cdelta 0.158;

}

smoothCoeffs

{

delta cubeRootVol;

cubeRootVolCoeffs

{

deltaCoeff 1;

}

maxDeltaRatio 1.1;

}

// *** //

24

3.9 Configuring the flow parameters 4 POST-PROCESSING

3.9 Configuring the flow parameters

The last thing to do before the simulation starts is to reduce the viscosity due to the reduction of the
channel depth with the creation of the bed inside the domain. Open constant/transportProperties

and reduce the viscosity of the fluid to say:

Viscosity specification in transportProperties

nu nu [0 2 -1 0 0 0 0] 1.9e-05;

Another thing you would notice in transportProperties is the presence of Ubar, like in fvOptions.
The value that is used for the average velocity is the one specified in fvOptions.

You can also see inputs for CrossPowerLawCoeffs and BirdCarreauCoeffs. These are used for
non-Newtonian viscosity models, and since this case is Newtonian they are simply ignored.

3.10 Running the case

Your case should be fully set-up by now and ready for simulation. Run the case with your modified
solver pimpleFoam_mod:

pimpleFoam_mod > log.run &

Verify that the case is running:

tail -f log.run

4 Post-processing

While the simulation is running, you can prepare the post-processing tools.

4.1 postChannel utility for spatial averaging

In the constant folder you will find the file postChannelDict. This is used for post-processing so
the user can specify the direction of the depth and whether or not the domain is symmetric. In the
channel395 case the domain is symmetric thus the post-processing is generating of half the depth
by averaging the top and bottom. In our case we have an open top and therefore the symmetry
should be turned off:

Content of postChannelDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.2 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

25

4.1 postChannel utility for spatial averaging 4 POST-PROCESSING

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object postChannelDict;

}

// * //

// Seed patches to start layering from

patches (bottomWall);

// Direction in which the layers are

component y;

// Is the mesh symmetric? If so average(symmetric fields) or

// subtract(asymmetric) contributions from both halves

symmetric false;

// *** //

Copy the postChannel utility into the utility directory in the user directory (if you don’t have a
utility folder in the user directory you can create it with mkdir!):

cp -r $FOAM_UTILITIES/postProcessing/miscellaneous/postChannel \

$WM_PROJECT_USER_DIR/utilities

cd $WM_PROJECT_USER_DIR/utilities

Now rename the folder and files:

mv postChannel postChannelRough

cd postChannelRough

wclean

mv postChannel.C postChannelRough.C

mv channelIndex.C channelIndexRough.C

The postChannel utility does a spatial averaging of fields over 2 dimensions. Here it is configured
to average the quantities over the streamwise and spanwise directions such that depth profiles are
generated.

Recall that we used the fieldAverage function in the controlDict dictionary, thus we have some
time averaged quantities. By default postChannel creates spatially averaged profiles from the mean
velocity and pressure fields. In the following we will add averaging of our added viscous and SGS
stress fields.

Open and edit readFields.H and add the following lines to the end of the file:

26

4.1 postChannel utility for spatial averaging 4 POST-PROCESSING

Additions to readFields.H

volSymmTensorField BMean

(

IOobject

(

"BMean",

runTime.timeName(),

mesh,

IOobject::MUST_READ

),

mesh

);

volScalarField Bxx(BMean.component(symmTensor::XX));

volScalarField Byy(BMean.component(symmTensor::YY));

volScalarField Bzz(BMean.component(symmTensor::ZZ));

volScalarField Bxy(BMean.component(symmTensor::XY));

volSymmTensorField nuGradUMean

(

IOobject

(

"nuGradUMean",

runTime.timeName(),

mesh,

IOobject::MUST_READ

),

mesh

);

volScalarField nuGradUxx(nuGradUMean.component(symmTensor::XX));

volScalarField nuGradUyy(nuGradUMean.component(symmTensor::YY));

volScalarField nuGradUzz(nuGradUMean.component(symmTensor::ZZ));

volScalarField nuGradUxy(nuGradUMean.component(symmTensor::XY));

Now we want to generate the profiles from the read fields. This is done by adding the following lines
to collapse.H:

Additions to collapse.H

scalarField BxyValues(channelIndexing.collapse(Bxy));

scalarField nuGradUxyValues(channelIndexing.collapse(nuGradUxy));

makeGraph(y, BxyValues, "tauSgs", path, gFormat);

makeGraph(y, nuGradUxyValues, "tauVisc", path, gFormat);

Last thing we need to do is add the renamed entries to Make/files:

files

postChannelRough.C

channelIndexRough.C

27

4.2 Plotting with Gnuplot 4 POST-PROCESSING

EXE = $(FOAM_USER_APPBIN)/postChannelRough

Compile the utility with wmake.

Now you can navigate back to the run directory to check on the simulation progress of channel395
and roughChannel. Take a peak at the log file of each case:

run

tail -f channel395/log.run

tail -f roughChannel/log.run

If the log file shows that the simulations have reached the last time step specified in the controlDict,
you can run the post-processing utility on the cases.

For post processing the cases type:

postChannel -case channel395

postChannelRough -case roughChannel

Each case should now have a folder named graphs that includes averaged profiles of various quantities
in the saved time steps.

4.2 Plotting with Gnuplot

The profiles can easily be visualized in gnuplot.

Notice that when you tailed the logs of the simulations, the pressure gradient in each iteration was
listed. We will now run a command that will scan through the log file of roughChannel for the
value of the pressure gradient, write it into a file gradP.txt and then calculate the mean pressure
gradient over time:

cd roughChannel

cat log.run | grep 'pressure gradient' | cut -d' ' -f11 | tr -d ',' > gradP.txt

awk '{total += $1} END { print total/NR }' gradP.txt

You should now have output to the terminal the mean value of the pressure gradient, which you
should insert in the following gnuplot script, in order to calculate the friction velocity:

gedit plotProfiles.gplt

plotProfiles.gplt

analytical profile data

D2 = 1 # depth channel395

offset = 0.0449899 # mean 0 bed of roughChannel found in boxes.txt

D1 = D2-offset # mean depth roughChannel

28

4.2 Plotting with Gnuplot 4 POST-PROCESSING

kappa = 0.41 # von karman

d50 = 0.024 # mean grain diameter

Ks = 2.0*d50 # Nikuradse roughness

gradP = 0.000116894 # pressure gradient roughChannel

Uf1 = sqrt(gradP*D1) # friction velocity roughChannel

Uf2 = 0.0079 # friction velocity channel395

nu1 = 2e-5 # viscosity roughChannel

nu2 = 2e-5 # viscosity channel395

Retau = Uf1*D1/nu1

KsP=Ks*Uf1/nu1

set terminal pngcairo

set pointsize 1.5

######################### Ux velocity plot #########################

set output 'U.png'

set key left top

set xlabel "y^+"

set ylabel "U^+"

set logscale x

plot [yP=1:Retau] \

"graphs/1000/Uf.xy" u (($1-offset)*Uf1/nu1):($2/Uf1) t "roughChannel", \

"../channel395/graphs/1000/Uf.xy" u ($1*Uf2/nu2):($2/Uf2) t "channel395", \

1/kappa*log(30*yP/KsP) lw 2 t "1/kappa*ln\(30y^+/K_s^+)"

######################### shear stress plot #########################

set output 'tau.png'

set key right bottom

set xlabel "y/D"

set ylabel "tau/Uf^2"

unset logscale x

set xrange [0:1]

plot \

"graphs/1000/uv.xy" u (($1-offset)/D1):($2/Uf1**2) t "uv", \

"graphs/1000/tauVisc.xy" u (($1-offset)/D1):($2/Uf1**2) t "tauvisc", \

"graphs/1000/tauSgs.xy" u (($1-offset)/D1):($2/Uf1**2) t "tauSgs", \

'< paste graphs/1000/uv.xy graphs/1000/tauVisc.xy graphs/1000/tauSgs.xy' \

u (($1-offset)/D1):(($2+$4+$6)/Uf1**2) t "tauTot"

system('display U.png &')

system('display tau.png &')

Generate plots with gnuplot:

gnuplot plotProfiles.gplt

You now have the files U.png and tau.png, which show the velocity profiles in roughChannel and
channel395, and the shear stress in roughChannel.

29

4.2 Plotting with Gnuplot 4 POST-PROCESSING

Figures 3 and 4 show these profiles as obtained with the current set-up. It can be seen that the
velocity has the parallel shift due to the roughness, exactly as it should be, and also confirmed by the
log law for a rough bed. It should be noted that this is a very coarse simulation, hence a finer mesh
should preferably be used for more accurate results, nevertheless the results are quite impressive for
such a low computational cost. The shear stress profiles show how the Reynolds stresses dominate
in the outer flow, while the SGS stress and viscous stress become gradually the dominating factors
near the bed in the boundary layer. The total shear stress should ideally vary linearly and become
unity at the bed. The unity seems to be obtained suggesting that the simulation has converged to a
mean. The kinks in the total shear profile near the bed might indicate that the components haven’t
been computed to a satisfactory degree in that region, thus mesh refinement should be tested.

Figure 3: Velocity profiles

Figure 4: Shear stress distribution in roughChannel

30

REFERENCES REFERENCES

References

[1] Stoesser, T. (2010). ”Physically Realistic Roughness Closure Scheme to Simulate Turbulent
Channel Flow over Rough Beds within the Framework of LES.” J. Hydraul. Eng., 136(10),
812-819.

[2] http://www.openfoam.org/features/standard-solvers.php

[3] http://www.openfoam.org/version2.2.0/fvOptions.php

31

