
CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 1

Implementation of simple solvers

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 2

Implementation of simple solvers

Prerequisites

• You are familiar with the directory and file structure of OpenFOAM.

• You have a basic knowledge of how OpenFOAM application implementations are struc-

tured, and how objects are used in a top-level code.

• You understand the very basic parts of a C++/OpenFOAM code.

• You understand the wmake compilation procedure for applications, and how it is related to

compilation with the g++ compiler and make.

Learning outcomes

• You will get a suggested way of working with your own developments of applications.

• You will step-by-step from scratch implement and understand the purpose of the most gen-

eral high-level parts of OpenFOAM solvers.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 3

Implement a steady-state thermal conduction solver
Let’s start from scratch and implement a steady-state thermal conduction solver:

cd $WM_PROJECT_USER_DIR/applications/myTests

foamNewApp myThermalConductionSolver

cd myThermalConductionSolver

wmake

Add in myThermalConductionSolver.C after #include "createTime.H" :

#include "createMesh.H"

#include "createFields.H"

Add in createFields.H:

volScalarField T

(

IOobject

(

"T",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

This is the point where we were before. Now we need to specify and discretize the equation...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 4

Equation specification and discretization in OpenFOAM

• We need to convert a PDE into a linear equation system, Ax=b. Here x and b are volFields

(geometricFields) and A is an fvMatrix that is created by a discretization of a geometricField

on a mesh according to the PDE and the discretization schemes used for each term in the PDE.

• The fvm (Finite Volume Method) and fvc (Finite Volume Calculus) namespaces contain static

functions for the differential operators, and discretize any geometricField. fvm returns an

fvMatrix, and fvc returns a geometricField

(see $FOAM_SRC/finiteVolume/finiteVolume/fvc and fvm)

Examples (see more in Programmer’s guide):

Term description Mathematical expression fvm::/fvc:: functions

Laplacian ∇ · Γ∇φ laplacian(Gamma,phi)

Time derivative ∂φ/∂t ddt(phi)

∂ρφ/∂t ddt(rho, phi)

Convection ∇ · (ψ) div(psi, scheme)

∇ · (ψφ) div(psi, phi, word)

div(psi, phi)

Source ρφ Sp(rho, phi)

SuSp(rho, phi)

φ: vol<type>Field, ρ: scalar, volScalarField, ψ: surfaceScalarField

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 5

A familiar example

A call for solving the equation

∂ρ~U

∂t
+∇ · φ~U −∇ · µ∇~U = −∇p

has the OpenFOAM representation

solve

(

fvm::ddt(rho, U)

+ fvm::div(phi, U)

- fvm::laplacian(mu, U)

==

- fvc::grad(p)

)

In this case all terms except the pressure gradient contribute to the coefficient matrix. The

pressure gradient thus ends up as an explicit source term.

The convecting velocity is treated using the flux φ, and there is a viscosity mu defined somewhere

else. We will get back to that later.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 6

Implement a steady-state thermal conduction solver

In our steady-state thermal conduction solver we want to solve the equation

∇ · k∇T = 0

We thus add in our code (after #include "createFields.H"):

solve(fvm::laplacian(k, T));

runTime++;

runTime.write();

We see that the right hand side of the equation is omitted. For OpenFOAM this means that it

is zero.

runTime++ increases the time by the value of deltaT specified in controlDict, so that we

do not overwrite the T file in the startTime directory.

runTime.write() tells the code to write out all the fields that are specified with

IOobject::AUTO_WRITE, which is the case for our T field.

This means that in our case we must make sure that the fields are written at time

startTime+deltaT

We need to specify the thermal conductivity k...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 7

Read thermal conductivity from dictionary

We could hard-code the thermal conductivity in createFields.H as (remember how we did

this for a tensor before):

dimensionedScalar k

(

"k",

dimensionSet(0, 2, -1, 0, 0, 0, 0),

scalar(4e-05)

);

However, we would probably prefer that the value can be modified when we run the case.

Have a look at how the kinematic viscosity is read from a dictionary in createFields.H of

the laplacianFoam solver, and copy-paste from the next two slides into our createFields.H

file.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 8

Read thermal conductivity from dictionary

Copy-paste to end of createFields.H:

IOdictionary transportProperties

(

IOobject

(

"transportProperties",

runTime.constant(),

mesh,

IOobject::MUST_READ_IF_MODIFIED,

IOobject::NO_WRITE

)

);

This means that the file named transportProperties in the constant directory will be

read (and read again if it is modified) into an object named transportProperties of the

class IOdictionary. At this point the contents of that dictionary file is just kept in the object

transportProperties.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 9

Read thermal conductivity from dictionary

Copy-paste to end of createFields.H:

dimensionedScalar k

(

"k",

dimArea/dimTime,

transportProperties

);

This is similar to the hard-coded way of doing it, as discussed before, but:

• The dimension is set using the pre-defined dimensionSets defined in

$FOAM_SRC/OpenFOAM/dimensionSet/dimensionSets.C

• The transportProperties object is used to set the value. It should be noted here that

if the constant/transportProperties file changes, the transportProperties object

changes, and thus also the value of the k object changes.

• We need to provide a constant/transportProperties file with a k entry in our case.

Compile using wmake, and proceed to set up a test case...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 10

A test case for myThermalConductionSolver
Copy-paste to the terminal window (and understand the purpose of each line):

pushd $FOAM_RUN

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity/cavity thermalSquare

cd thermalSquare

mv 0/U 0/T; rm 0/p

sed -i s/volVectorField/volScalarField/g 0/T

sed -i s/U/T/g 0/T

sed -i s/"1 -1 0"/"0 0 1"/g 0/T

sed -i s/"(0 0 0)"/0/g 0/T

sed -i s/"(1 0 0)"/1/g 0/T

sed -i s/"noSlip;"/"fixedValue; value uniform 0;"/g 0/T

sed -i s/icoFoam/myThermalConductionSolver/g system/controlDict

sed -i s/"0.005"/1/g system/controlDict

sed -i s/"20"/1/g system/controlDict

sed -i s/Euler/steadyState/g system/fvSchemes

sed -i s/U/T/g system/fvSolution

sed -i s/nu/k/g constant/transportProperties

sed -i s/"0.01"/"4e-05"/g constant/transportProperties

Run blockMesh, myThermalConductionSolver and check in paraFoam.

Now, spend some time to clean up the case for this specific solver, not to fool any

future user with settings that are not affecting the solver! Tell me when you’re done!

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 11

Add source terms

Go back to the code using popd

Let us add a linearized source term (S(x) = Su + Spx). Add to createFields.H:

dimensionedScalar su

(

"su",

dimTemperature/dimTime,

transportProperties

);

dimensionedScalar sp

(

"sp",

pow(dimTime,-1),

transportProperties

);

Info << "k: " << k << endl;

Info << "su: " << su << endl;

Info << "sp: " << sp << endl;

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 12

Add source terms

Change in myThermalConductionSolver.C:

solve(fvm::laplacian(k, T) + su + fvm::Sp(sp, T));

Compile with wmake.

Go to the case with pushd $FOAM_RUN/thermalSquare

Add to constant/transportProperties:

// Line to remove copy-paste problem

su 0.02;

sp 0.03;

Run the case and investigate the result.

Later we can have a look at the code to figure out how the source terms are treated exactly.

Now we simply see that su is a dimensionedScalar. It means that it must be expanded and

treated as a field covering the entire computational domain. It will be added to the source term,

b, of the linear system Ax=b. The sp contribution is implemented using the fvm namespace,

which tells us that it will contribute to the coefficient matrix, A, rather than the source term,

b.

Let’s play with this...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 13

Add source terms

It is indeed possible to add the source terms as:

solve(fvm::laplacian(k, T) + su + sp*T);

If you do that you see that the results change drastically, and the number of iterations is greatly

reduced. Why?

You get exactly the same effect if you add it like:

solve(fvm::laplacian(k, T) + su + fvc::Sp(sp, T));

Try changing your code to:

for (int i=0; i<10; i++)

{

solve(fvm::laplacian(k, T) + su + fvc::Sp(sp, T));

runTime++;

runTime.write();

}

In the final time directory we have good results!

Have a look at the log file...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 14

Add source terms
The log file:

smoothSolver: Solving for T, Initial residual = 1, Final residual = 9.94501e-06, No Iterations 197

smoothSolver: Solving for T, Initial residual = 0.0211164, Final residual = 9.54079e-06, No Iterations 153

smoothSolver: Solving for T, Initial residual = 0.00557356, Final residual = 9.58851e-06, No Iterations 130

smoothSolver: Solving for T, Initial residual = 0.00196027, Final residual = 9.64058e-06, No Iterations 109

smoothSolver: Solving for T, Initial residual = 0.000734073, Final residual = 9.60551e-06, No Iterations 89

smoothSolver: Solving for T, Initial residual = 0.000283075, Final residual = 9.81723e-06, No Iterations 69

smoothSolver: Solving for T, Initial residual = 0.000113519, Final residual = 9.93168e-06, No Iterations 50

smoothSolver: Solving for T, Initial residual = 4.9317e-05, Final residual = 9.87474e-06, No Iterations 33

smoothSolver: Solving for T, Initial residual = 2.48817e-05, Final residual = 9.85407e-06, No Iterations 19

smoothSolver: Solving for T, Initial residual = 1.55733e-05, Final residual = 9.56393e-06, No Iterations 10

We see that the Initial residual jumps up a lot from the previous Final residual, and

is decreasing every time we solve the equation.

The reason is that with this way of writing the source term is given explicitely, and the tem-

perature field of the source term is considered constant each time we solve the equation. We

therefore need to iterate to get the correct solution. This is not efficient, and should be avoided

if possible.

Change fvc to fvm, and you see that the linear solver will only iterate the first time, i.e. we

reach the correct solution directly. Then the sp part of the source term is treated implicitely, as

it should.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 15

Add source terms using fvOptions

Just a note to say that source terms can be added using fvOptions, for the solvers that have

that functionality included. This is similar to User Defined Functions in Fluent for example.

See:

$FOAM_SRC/fvOptions/sources

We are not covering that now.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 16

Implement a convection-diffusion solver

In this part, we implement a solver for convection-diffusion problem with the governing equa-

tion

∇ · (UT) = ∇ · k∇T

In high-level programming language, this equation is translated to

fvm::div(phi, T) - fvm::laplacian(k, T) == 0

Note that the second term is exactly the same as the governing equation in our steady-state
thermal conduction solver, so we can use this solver as a base for our implementation.

cd $WM_PROJECT_USER_DIR/applications/myTests

cp -r myThermalConductionSolver/ myConvectionDiffusionSolver

cd myConvectionDiffusionSolver

mv myThermalConductionSolver.C myConvectionDiffusionSolver.C

sed -i s/myThermalConductionSolver/myConvectionDiffusionSolver/g Make/files

We then replace the for loop in myConvectionDiffusionSolver.C with the governing equa-
tion for convection diffusion problem

fvScalarMatrix TEqn (fvm::div(phi, T)-fvm::laplacian(k, T));

TEqn.solve();

runTime++;

runTime.write();

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 17

Implement a convection-diffusion solver

We include the printOutfvMatrixCoeffs.H file after the line which includes the governing

equations.

#include "printOutfvMatrixCoeffs.H"

The code in this file prints out the coefficients in the linear system Ax=b for an internal cell.

Let’s have a quick look in this file.

Since we do not have any source term in the governing equation, we remove the respective lines

from createFields.H

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 18

Implement a convection-diffusion solver

As the governing equations includes phi which is the flux of U at faces, we add the following to

createFields.H,

Info<< "Reading field U\n" << endl;

volVectorField U

(

IOobject

(

"U",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

#include "createPhi.H"

We compile using wmake.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 19

Two-dimensional convection-diffusion problem
We need to create a test case for our new solver. We copy an existing tutorial and modify it by
copying the following lines in the terminal.

// Line to remove copy-paste problem

cd $FOAM_RUN

mkdir 2DConvectionDiffusionCase

cd 2DConvectionDiffusionCase

cp -r $FOAM_TUTORIALS/verificationAndValidation/schemes/divergenceExample/{0.orig,constant,system} .

mv 0.orig 0

sed -i s/"DT.*"/"k 0.0012;"/g constant/transportProperties

sed -i s/"100;"/"1;"/g system/controlDict

sed -i s/"0.005;"/"1;"/g system/controlDict

Since the governing equation has a divergence term, we need to specify the discretization
scheme for this term. As a first try, we select linear scheme.

sed -i s/"div(phi,T).*"/"div(phi,T) Gauss linear;"/g system/fvSchemes

We then create the mesh using the blockMesh and run the solver.

If we check the output of the solver in the terminal, we can see that the solution did not con-
verged.

DILUPBiCG: Solving for T, Initial residual = 1, Final residual = 7.14412e+13, No Iterations 1000

We can check the solution using paraFoam to see that it looks strange.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 20

Two-dimensional convection-diffusion problem

The reason for divergence of the solution can be explained by examining the sufficient condition

for a convergent iterative method. This condition can be expressed as:
∑

|anb|

|ap|

{

≤ 1 at all nodes

< 1 at one node at least

Here, anp is the off-diagonal coefficients in matrix A and ap is the diagonal coefficients in this

matrix. If a matrix of coefficients satisfies the above condition, we call it diagonally dominant.

Let’s check if the above condition is true for the cell for which we printed out the coefficients.

diagonal coefficient for a(1275,1275) = 0.00048

source term due to discretization b(1275) = 0

off-diagonal coefficients:

a(1275,1225) : -0.00112

a(1275,1274) : -0.00112

a(1275,1276) : 0.00088

a(1275,1325) : 0.00088

As we can see, for the selected cell, the above stability conditions is not satisfied. That is why

the solver does not converge.
∑

|anb|

|ap|
=

0.004

0.00048
> 1

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 21

Two-dimensional convection-diffusion problem
There are a couple of ways to make the solution converge. One way is to increase the mesh
resolutions. Let’s try that.

sed -i s/"(50 50 1)"/"(500 500 1)"/g system/blockMeshDict

We create the mesh and run the solver. We can see that we have a converged solution now.

DILUPBiCG: Solving for T, Initial residual = 1, Final residual = 7.54955e-11, No Iterations 106

We can also see that the coefficients for the selected cell satisfies the sufficient convergence
condition.

diagonal coefficient for a(1275,1275) = 0.00048

source term due to discretization b(1275) = 0

off-diagonal coefficients:

a(1275,775) : -0.00022

a(1275,1274) : -0.00022

a(1275,1276) : -2e-05

a(1275,1775) : -2e-05

∑

|anb|

|ap|
=

0.00048

0.00048
≤ 1

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 22

Two-dimensional convection-diffusion problem
Another way to improve the stability of the solution is to change the divergence scheme to
upwind. To compare with the convergence of this scheme with linear scheme, we use the
original coarse mesh.

sed -i s/"(500 500 1)"/"(50 50 1)"/g system/blockMeshDict

sed -i s/"div(phi,T).*"/"div(phi,T) Gauss upwind;"/g system/fvSchemes

We create the mesh and run the solver. We can see that we have a converged solution

DILUPBiCG: Solving for T, Initial residual = 1, Final residual = 4.81385e-12, No Iterations 15

and the coefficients also satisfy the sufficient convergence conditions.

diagonal coefficient for a(1275,1275) = 0.00448

source term due to discretization b(1275) = 0

off-diagonal coefficients:

a(1275,1225) : -0.00212

a(1275,1274) : -0.00212

a(1275,1276) : -0.00012

a(1275,1325) : -0.00012

∑

|anb|

|ap|
=

0.00448

0.00448
≤ 1

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 23

Add a time term

A next step is to add a time term. Instead of doing that ourselves we have a look at the existing

code laplacianFoam...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 24

A tutorial example: laplacianFoam, the source code
Solves ∂T/∂t−∇·k∇T = 0 (see $FOAM_SOLVERS/basic/laplacianFoam/laplacianFoam.C)

Here omitting the lines corresponding to fvOptions (version dependent):

#include "fvCFD.H" // Include the class declarations

#include "simpleControl.H" // Prepare to read the SIMPLE sub-dictionary

int main(int argc, char *argv[])

{

include "setRootCase.H" // Set the correct path

include "createTime.H" // Create the time

include "createMesh.H" // Create the mesh

simpleControl simple(mesh); // Read the SIMPLE sub-dictionary

include "createFields.H" // Temperature field T and diffusivity DT

while (simple.loop())

{ while (simple.correctNonOrthogonal())

{

solve(fvm::ddt(T) - fvm::laplacian(DT, T)); // Solve eq.

}

include "write.H" // Write out results at specified time instances}

}

return 0; // End with 'ok' signal

}

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 25

A tutorial example: laplacianFoam, discretization and boundary

conditions
See $FOAM_TUTORIALS/basic/laplacianFoam/flange

Discretization:

dictionary fvSchemes, read from file:

ddtSchemes

{

default Euler;

}

laplacianSchemes

{

default none;

laplacian(DT,T) Gauss linear corrected;

}

Boundary conditions:

Part of class volScalarField object T, read from file:

boundaryField{

patch1{ type zeroGradient;}

patch2{ type fixedValue; value uniform 273;}}

	Implementation of simple solvers
	Equation discretization and boundary conditions

