Cite as: Goral, K. D.: Implementing shear current theory into the waves2Foam toolbox. In Proceedings of
CFD with OpenSource Software, 2021, Edited by Nilsson. H.,
http://dx.doi.org/10.17196/0S_CFD#YEAR_2021

CFD wiTH OPENSOURCE SOFTWARE

A COURSE AT CHALMERS UNIVERSITY OF TECHNOLOGY
TAUGHT BY HAKAN NILSSON

Implementing shear current theory into
the waves2Foam toolbox

Developed for OpenFOAM-v2012
Requires: waves2Foam toolbox

Author: Peer reviewed by:
Koray Deniz GORAL David R. FUHRMAN
Technical University of Denmark Saeed SALEHI
kdego@mek.dtu.dk Mahmoud GADALLA

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone
through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no
responsibility for the contents.

January 20, 2022

http://dx.doi.org/10.17196/OS_CFD#YEAR_2021

Learning Outcomes

The main requirements of a tutorial in the course are that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:
e Examining the waves2Foam toolbox considering the available wave theories library.

e Showing how to create a new wave theory besides the existing ones in the waves2Foam toolbox
to lead the implementation of the shear current theory.

The theory of it:

e Describing the structure of available wave theories library in waves2Foam toolbox.

Describing the simple (uniform) current solution in waves2Foam toolbox and pointing to the
need for a more realistic approach considering the shear currents.

Explaining the shear current mixing length theory from the van Driest solution for the flow
above smooth beds, including the extension of Cebeci & Chang for incorporating effects of bed
roughness.

How it is implemented:
e Describing the waveTheory class and sub-classes in waves2Foam toolbox.
e Describing the waveProperties.input file structure in waves2Foam toolbox.
e Describing the makeNewWaveTheory script in waves2Foam toolbox.

How to modify it:

e Showing the steps to implement the shear current theory considering the flow on both smooth
and rough walls with all the required equations and other corresponding files into the wave
theories library as a new option in waves2Foam toolbox.

e Setting up a tutorial case to show the shear current model results considering the wall rough-
ness.

Prerequisites

The reader is expected to know the following in order to get the maximum benefit out of this report:
e Previous experience with the OpenFOAM
e Previous experience with the waves2Foam toolbox [1, 2]

e The simple (uniform) current and shear current mixing length theory [3]

Contents

Introduction

Theoretical Background

2.1 waves2Foam toolbox
2.2 Simple (uniform) current
2.3 Shear current e e

Library and Class Structure of waves2Foam Toolbox

3.1 waveTheory class and sub-classes L.
3.2 waveProperties.input file structure. o oL
3.3 makeNewWaveTheory script. o

Modification
4.1 New shearCurrent library e
4.2 Modification of Make folder

Tutorial Case
5.1 Preparation e
5.2 shearCurrent tutorial

potentialCurrent
A.1 potentialCurrent declaration file
A2 potentialCurrent definition file oo

shearCurrent

B.1 Blank shearCurrent.H and shearCurrent.Cfiles
B.2 shearCurrent declaration file (shearCurrent.H)
B.3 shearCurrent definition file (shearCurrent.C)
B.4 shearCurrentProperties.H and shearCurrentProperties.Cfiles

10
10

12
12
14
15

16
16
21

24
24
26

32
32
35

List of Figures

2.1

5.1
5.2
5.3
5.4

5.5

Example of van Driest velocity profiles for different values of roughness (Taken from

[3], Figure 3.21 at page 101) L e 11
Example potentialCurrent tutorial result at t =10s 25
Example shearCurrent tutorial result at t=10s. 28
Closer look at the example shearCurrent tutorial result at t=10s 28
Comparison of shearCurrent tutorial sampled (inlet) result at ¢ = 10 s with van

Driest profile (Eq. (2.4)) o 28
Example trial with full relaxation zone for shearCurrent tutorial result at t =10s . 29

Listings

2.1
3.1
3.2
3.3
3.4
3.5
4.1
4.2
4.3
44
4.5
4.6
4.7
5.1
5.2
5.3
5.4
5.5
Al
A2
B.1
B.2
B.3
B.4
B.5
B.6

An example code for the installation o000 9
Declaration of parameters in potentialCurrent library 12
Reading parameters in potentialCurrent library definition file 13
Member functions in potentialCurrent library definition file 13
Example of waveProperties.input file 14
Creating shearCurrent library script L oL 15
Location of shearCurrent library 16
Declared classes inside the shearCurrent.H 16
Declared member functions inside the shearCurrent.H 17
Definition of constructors inside the shearCurrent.C. 18
An example code for the backup of Make folders. 21
Creating shearCurrentProperties functionality in setWaveProperties class. . . . 22
An example code for the wclean of the related Make folders 23
An example code for copying the waveFlume tutorial 24
waveProperties.input file of the potentialCurrent tutorial 25
waveProperties.input file of the shearCurrent tutorial 26
sample file of the shearCurrent tutorial 27
An example code for executing the currentFlume tutorial 27
potentialCurrent.H 32
potentialCurrent.C 35
Blank templated shearCurrent.H L. 37
Blank templated shearCurrent.C L. 39
shearCurrent.H e 42
shearCurrent.C e 44
shearCurrentProperties.H 47
shearCurrentProperties.C 48

Nomenclature

English symbols

U Mean VEIOCIEY ..o v vttt ettt e e e e m/s
Ag Damping coefficient -
D Water deptho m
d Mean grain diameter of the sandy bed i m
Fr Froude number. -
g Gravitational acceleration............. m/s?
ks Nikuradse’s equivalent sand roughness i m
Re Reynolds number o -
U Flow VElOCItYo m/s
Uy Friction velocity...... ... m/s

Greek symbols

K von Karman constant -
v Fluid kinematic viSCOSItY m? /s
p FIOIA denSiby « . ovee ettt e e e kg/m?3

Chapter 1

Introduction

Coastal regions have high importance for human activities such as producing energy from offshore
wind farms, trading with harbors, and performing touristic activities on the beach areas. Therefore,
the nature of coastal regions is highly prone to change with these human-related activities. These
activities require the construction of different purposed coastal structures like breakwaters, harbors,
or wind turbines. The design and operation of these coastal structures are a complex study-field
that one has to consider the interactions such as wave-wave, wave-structure, wave-bathymetry.

The waves2Foam toolbox is one of the powerful numerical toolboxes used for the coastal field
problems. This toolbox has been created for estimating the wave characteristics considering different
wave theories. The waves2Foam toolbox is coupled with the OpenFOAM and gives open access to
users. Therefore, the waves2Foam toolbox is updated as for the OpenFOAM, considering the latest
developments in the coastal research area.

The waves2Foam toolbox is very powerful to find the wave parameters propagating on the free
surface, but especially the potential current theory in the toolbox is not sufficient to find the different
flow characteristics on the entire flow depth (uniform velocity profile is given for entire water depth
for the potential current theory) like the flow characteristics close to the wall considering the given
wall roughness like the sandy bed. Yet, some of the coastal region applications like the scour of the
sandy bed under the pipeline are bound to the flow characteristics close to the wall (sandy bed).
Therefore, as a trial to implement new functionality in the waves2Foam toolbox, this project focused
on the shear current theory which is implemented in the waves2Foam toolbox for resolving the flow
characteristics for the entire section from wall to the free surface.

This project is structured as follows:

In Chapter 2, “Theoretical Background”, the structure and available wave theories in the waves2Foam
toolbox, simple (uniform) current theory, and shear current mixing length theory from the van Dri-
est solution with the extension of Cebeci & Chang for incorporating effects of bed roughness are
explained [3].

In Chapter 3, “Library and Class Structure of waves2Foam Toolbox”, the waveTheory class and
sub-classes, the waveProperties.input file structure, and the makeNewWaveTheory script in the
waves2Foam toolbox are described.

In Chapter 4, “Modification”, the steps to implement the shear current theory considering the
flow on both smooth and rough walls inside the waves2Foam toolbox is explained.

In Chapter 5, “Tutorial Case”, the selected waveFlume tutorial case inside the waves2Foam
toolbox is manipulated for the new shearCurrent wave theory library tutorial, and the results with
the given bed roughness are shown.

Chapter 2

Theoretical Background

The main contents of waves2Foam toolbox are explained in this section, briefly. Then, the potential
current solution in the waves2Foam is discussed in detail and pointed to the need of implementing
the shear current theory as a new waveTheory library into the waves2Foam toolbox. Also, the shear
current theory is explained in detail.

2.1 waves2Foam toolbox

The waves2Foam toolbox is an open-source plug-in toolbox for the OpenFOAM and was originally
developed by Niels Gjgl Jacobsen at the Technical University of Denmark. The libraries in the
waves2Foam toolbox are used for generating and absorbing free surface water waves applied with
the relaxation zone technique (active sponge layers) where the relaxation zones can take arbitrary
shapes. The up-to-date instructions on how to download and install the waves2Foam toolbox can
be found at the OpenFOAMWiki page of waves2Foan toolbox [1, 4] .

The waves2Foam toolbox is compatible with the three main branches:

e OpenFOAM (Foundation) as distributed through www.openfoam.org.
e OpenFOAM (ESI) as distributed through www.openfoam.com.

e foam-extend (FE) as distributed through the foam-extend community.

In this report, OpenFOAM-v2012 from the ESI distribution is used and the instructions on how
to download and install the waves2Foam toolbox inside of the selected OpenFOAM-v2012 is given
below.

One has to check that the additional third-party packages are installed on the system, before
compiling the waves2Foam toolbox. The additional third-party packages are:

e GNU Scientific Library (GSL)
e Subversion (SVN)

o git

e gfortran

The waves2Foam toolbox is available for download through the OpenFOAM-Extend SourceForge
SVN. After obtaining the source code via SVN, one has to move the waves2Foam folder inside to
the application/utilities sub-folder of the WM_PROJECT_USER_DIR folder of OpenFOAM-v2012.
Then, the Allwmake script in the folder waves2Foam can be executed for finishing the installation.
An example code for the installation of the waves2Foam toolbox is given below in Listing 2.1.

[I N N

2.1. waves2Foam toolbox Chapter 2

Listing 2.1: An example code for the installation

// * Source the selected OpenFOAM version * //

svn co http://svn.code.sf.net/p/openfoam-extend/svn/trunk/Breeder_1.6/other/waves2Foam
mkdir -p $WM_PROJECT_USER_DIR/applications/utilities

cp -r waves2Foam $WM_PROJECT_USER_DIR/applications/utilities

cd $WM_PROJECT_USER_DIR/applications/utilities/waves2Foam

. /Allwmake

One can check the tutorials of waves2Foam toolbox to make sure that the compilation procedure
of waves2Foam toolbox inside to the OpenFOAM-v2012 is successful. If modifications and additions
have been made to the waves2Foam toolbox like adding a new wave theory, one has to recompile
the waves2Foam toolbox as a whole with the given changes which are explained in Chapter 4, in
detail. The available solvers and the wave theories in the waves2Foam toolbox are listed below. More
information about the waves2Foam toolbox are available in the manual [2].

Solvers:

1. waveFoam
2. porousWaveFoam

3. waveDyMFoam (moving meshes)

Wave Theories:

1. Regular wave theories

(a) Stokes first order

) Standing Stokes first order

(c) Stokes second order

(d) Modulated second-order Stokes wave
) Stokes fifth order

) First-order cnoidal theory

(g) Stream function wave
2. Bichromatic wave theories

(a) First-order bichromatic wave

(b) Second-order bichromatic wave
3. First-order irregular waves

(a) Spectral shape

i. JONSWAP
ii. Pierson-Moskowitz

(b) Spectral discretization
i. equidistantFrequencyAxis
ii. cosineStretchedFrequencyAxis

(c) Phases

i. Random phase
ii. Phase focusing for a certain location, xy at a certain time instance ¢

2.2. Simple (uniform) current Chapter 2

4. Solitary wave theories

(a) First-order solitary wave
(b) Chappelear (1962)

5. External wave theories

(a) Empty external method
(b) Fast summation of irregular waves
(¢) OceanWave3D

6. Potential current

All of the above-mentioned wave theories can be called by waveProperties.input file. Also,
there is an additional wave theory class named combinedWaves. The wave theories mentioned in
the above list can be combined with the help of this combinedWaves wave theory class. Also, one
can implement the new wave theory with the help of a small script called makeNewWaveTheory.
waveProperties.input file and makeNewWaveTheory script are explained in Chapter 3, in detail.

In the scope of this project, only the potential current theory class using the waveFoam solver is
examined and pointed out the need for the shear current mixing length theory implementation.

2.2 Simple (uniform) current

The simple (uniform) current also named potential current introduces a current that is uniform over
the entire water depth as stated in Eq. (2.1).

U
fU)

S|
I

(2.1)

S|
|

The potential current approach does not resolve different flow characteristics for the entire water
depth as the theory assumes a fixed velocity for the entire flow section. Therefore, the results taken
from the potential current theory are beneficial for a basic estimate of the effect of potential current
on the given wave field. As an example, if one wants to study the sediment motion which mobilizes
from the bed and generally transports in the boundary layer (for the current it is the full water
depth), the potential current theory results do not give realistic results. Therefore, the shear current
theory should be used for that type of study. The shear current theory is explained in the next
section.

2.3 Shear current

The shear current mixing length theory from the van Driest solution for the flow above smooth beds
is given in Eq. (2.2) where y is the distance from the wall, Uy is the friction velocity, is the von
Karman constant and A, is the damping coefficient [3]. The van Driest velocity distribution derived
from the mixing length theory reduces to linear velocity distribution for small values of 4T, whereas
for large values of yT, it reduces to logarithmic velocity distribution.

+

Y dy+
2Uf/ 14 {1 4 4221 — _yty211/2
0 14+ {1+4r?y+7[1 —exp(—4;)]%} (2.2)

where y™ =>—, k=04, and Ay3=25

10

2.3. Shear current Chapter 2

The effect of bed roughness should be implemented inside the van Driest solution considering the
velocity distribution for the flow above both smooth and rough beds. The effect of bed roughness
implemented to the van Driest solution with the extension of Cebeci & Chang is shown in Eq. (2.3)
where the term Ay is the coordinate displacement (coordinate shift), and ks is the Nikuradse’s
equivalent sand roughness [3]. The mean velocity distribution, @, considering the van Driest solution
with the extension of Cebeci & Chang is given in Eq. (2.4).

k+
Ayt =09[Vki — kjexp(—?s)] if 5 <kl <2000
U (2.3)
where kI = et
v
_ vt dy™
u=2Uy (y+ +AyT)
o 14+ {14+4r2(yt + Ayt)2[1 - exp(—%)]z}l/2 (2.4)

ﬂ:f(Uf7y7ksay)

As an example of the possible application, one can use the velocity distribution calculated from
the Eq. (2.4) for the sediment transport problems, as the calculated velocity distribution resolves
the flow across the entire section such as viscous sublayer, buffer layer, logarithmic layer, and outer
region considering the effect of the bed roughness. An example of van Driest velocity profiles for
different values of roughness taken from the ”Sumer and Fuhrman [3]” is given in Figure 2.1.

+

y

20

Sl
T

15

Figure 2.1: Example of van Driest velocity profiles for different values of roughness (Taken from [3],
Figure 3.21 at page 101)

11

Chapter 3

Library and Class Structure of
waves2Foam Toolbox

3.1 waveTheory class and sub-classes

The waves2Foam toolbox has a wide range of wave theories. The waveTheories library in the
waves2Foam toolbox is structured with the names given in the wave theories list in Section 2.1.

As a starter, one should examine the potential current theory library (potentialCurrent) in the
waves2Foam toolbox for understanding the coding structure in waves2Foam toolbox. This option is
typically used in the waves2Foam toolbox applications for outlet relaxation zones, where the velocity
vector is set to 0. The potentialCurrent library can be found at:

1| $WM_PROJECT_USER_DIR/applications/utilities/waves2Foam/src/waves2Foam/waveTheories/current/potentialCurrent

There are two files in the potentialCurrent folder, in which potentialCurrent.H is the class
declaration and potentialCurrent.C is the class definition files. The declaration and definition files
of the potentialCurrent wave theory library are given in Listing A.1, and Listing A.2, respectively
in the Appendix A.

The flow velocity, U (declared as U_), Tso5¢ (declared as Tsoft_), and local sea level (declared as
localSealLevel_) are declared in the class declaration part of the potentialCurrent.H file shown
in Listing 3.1. T,z is used for softening the initial warm-up period of the waveFoam solver.

Listing 3.1: Declaration of parameters in potentialCurrent library

/* *\
Class potentialCurrent Declaration

* */

class potentialCurrent

public waveTheory
{

protected:

// Protected data
vector U_;
scalar Tsoft_;
scalar localSealevel_;

12

3.1. waveTheory class and sub-classes Chapter 3

In the constructors part of the definition in potentialCurrent.C file, the parameters are read
from the related dictionaries. As an example, U, Ty, ¢, and local sea level parameters are read from
the waveProperties file. These parameters are read in the constructors part of the potentialCurrent.C

I

© 0 N @

10
11
12
13
14

© 0 N O O A W N e

[I T e R S S~ S S S
Vo= O © KL N A W N = O

file shown in Listing 3.2.

Listing 3.2: Reading parameters in potentialCurrent library definition file

// % % % % % % % *x % k% % % *x % * *x Constructors * * % * % * % % % % * *x x x //
potentialCurrent: :potentialCurrent
(

const word&% subDictName,

const fvMesh& mesh_
)

waveTheory(subDictName, mesh_),

U_(vector(coeffDict_.lookup("U"))),

Tsoft_(readScalar(coeffDict_.1lookup("Tsoft"))),

localSealevel _

(

coeffDict_.lookupOrDefault<scalar>("localSealevel", sealevel_)

)

In the member functions part of the potentialCurrent.C file, there is a factor calculation part
for softening the calculated parameters within the specified time, Ts,f; for the initial part of the

simulation. In the potentialCurrent, this factor is used for relaxing the U values. The related
sections of member functions part of the potentialCurrent.C file is shown in Listing 3.3.

Listing 3.3: Member functions in potentialCurrent library definition file

// % % % % % % % % % * % % *x % * Member Functions * * * % % % % % % * % x x //
scalar potentialCurrent::factor(const scalar& time) const

{
scalar factor(1);
if (Tsoft_ > 0.0)
{
factor = Foam: :sin(PI_/2.0/Tsoft_»Foam: :min(Tsoft_, time));
¥
return factor;
}

vector potentialCurrent::U

(

const point& x,
const scalar& time

) const

{

}

return (U_sfactor(time));

13

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

3.2. waveProperties.input file structure Chapter 3

3.2 waveProperties.input file structure

An example of waveProperties.input file is given in Listing 3.4. waveFoam solver uses relaxation
zones for removing the spurious reflections from the numerical simulations. Therefore, one should
give a proper relaxation method considering the inlet and outlet regions of the computational domain.

One has to do the preparation before executing waveFoam solver. The waveProperties.input file
has to be converted to waveProperties file by executing the setWaveParameters application, where
all the necessary wave parameters are transferred based on physical meaningful properties with the
given application [2]. Then, the setWaveField application should be executed. The setWaveField
application sets the initial conditions that the user defined in the wave theory [2].

Listing 3.4: Example of waveProperties.input file

J/ % % % % %k % % % % % k% % %k % % % >k % % % % % % % % % % %k % % %k % *x * *x *x x //
sealevel 0.00;

// A list of the relaxation zones in the simulation. The parameters are given
// in <name>Coeffs below.

relaxationNames (inlet outlet);
initializationName outlet;
inletCoeffs
{
// Wave type to be used at boundary "inlet" and in relaxation zone "inlet"
waveType stokesFirst;
// Ramp time of 2 s
Tsoft 2;
// Water depth at the boundary and in the relaxation zone
depth 0.400000;
// Wave period
period 2.0;
// Phase shift in the wave
phi 0.000000;
// Wave number vector, k.
direction (1.0 0.0 0.0);
// Wave height
height 0.1;
// Specifications on the relaxation zone shape and relaxation scheme
relaxationZone
{
relaxationScheme Spatial;
relaxationShape Rectangular;
beachType Empty;
relaxType INLET;
startX (0 0.0 -1);
endX (5 0.0 1);
orientation (1.0 0.0 0.0);
}
};
outletCoeffs
{
waveType potentialCurrent;
U (00 0);
Tsoft 2;
relaxationZone
{
relaxationScheme Spatial;
relaxationShape Rectangular;
beachType Empty;
relaxType OUTLET;
startX (13 0.0 -1);
endX (18 0.0 1);
orientation (1.0 0.0 0.0);
}
};

// 3k >k 3k >k 3k ok 3k 3k ok 3k ok 3k ok ok ok >k 3k >k 3k ok sk ok 3k 3k ok 3k >k 3k ok sk ok 3k 3k ok 3k ok 3k ok ok k ok 3k >k sk ok sk ok sk 3k ke 3k ok 3k ok sk ok ok 3k ok 3k ok k ok 3k 3k >k 3k >k sk %k 5k k k //

14

w N e

3.3. makeNewWaveTheory script Chapter 3

3.3 makeNewWaveTheory script

The waves2Foam toolbox has a special coding script that should be followed when creating a new
wave theory inside this toolbox. Therefore, the creator of the waves2Foam toolbox has templated
a small script named makeNewWaveTheory that creates a new wave theory with the given name.
Then, the created folder, which contains the declaration and definition files for the new wave theory,
can be transferred to the related wave theory’s sub-folder inside the waveTheories dictionary. The
makeNewWaveTheory can be called inside the waves2Foam toolbox folder where it is compiled. An
example code for creating a new shearCurrent wave theory library for the waves2Foam toolbox is
given below in Listing 3.5.

Listing 3.5: Creating shearCurrent library script

cd $WM_PROJECT_USER_DIR/applications/utilities/waves2Foam/doc/templateWaveTheory
. /makeNewWaveTheory shearCurrent
mv shearCurrent $WM_PROJECT_USER_DIR/applications/utilities/waves2Foam/src/waves2Foam/waveTheories/current

The created declaration (shearCurrent.H) and definition (shearCurrent.C) files of the new
shearCurrent wave theory library after executing the makeNewWaveTheory application are given
in Listing B.1, and Listing B.2, respectively in the Appendix B. The implementation of the shear
current theory inside of these given blank declaration and definition classes are given in Chapter 4,
in detail.

15

Chapter 4

Modification

4.1 New shearCurrent library

The new shearCurrent library is created from scratch. Therefore, after creating the shearCurrent
scripts with the help of makeNewWaveTheory application mentioned in Chapter 3, one should imple-
ment all the necessary details to the declaration and definition files of the new library. The directory
path of the new shearCurrent library created by the makeNewWaveTheory application is shown in
Listing 4.1.

Listing 4.1: Location of shearCurrent library

1| cd $WM_PROJECT_USER_DIR/applications/utilities/waves2Foam/src/waves2Foam/waveTheories/current

The declaration file of the shearCurrent library is created based on the previously created
shearCurrent.C script. Friction velocity, Uy (declared as Uf_), fluid kinematic viscosity, v (de-
clared as nu_), Nikuradse’s equivalent sand roughness, ks (declared as ks_), von Karman constant,
k (declared as kappa_), and damping coefficient, A; (declared as Ad_) are added to the class dec-
laration part of the shearCurrent.H file as shown in Listing 4.2. Ty ¢ (declared as Tsoft_), and
local sea level (declared as localSeaLevel_) are also added to the declaration classes for keeping the
functionality of the wave2Foam toolbox, as wave2Foam toolbox has lots of other wave theories which
can be used together with the combinedWaves functionality mentioned in Chapter 2. In addition,
as the van Driest formulation uses the distances from the wall, these distances of each cell should be
stored for the calculation. Therefore, the wall distances of each cell center are stored under the name
y (declared as y_). The points for each cell in the computational domain are also stored (declared
as x_) which can be used for indexing in the van Driest cumulative trapezoidal integration part.

Listing 4.2: Declared classes inside the shearCurrent.H

/* *\
Class shearCurrent Declaration

* */
protected:

// Protected data

scalar Tsoft_;

scalar localSealevel_;

scalar Uf_;

scalar nu_;

scalar ks_;

scalar kappa_;

scalar Ad_;

const volScalarField& y_;

const volVectorField& x_;

16

© 0 N O U A W N e

e e e
S S

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

4.1. New shearCurrent library Chapter 4

The member functions part of the declaration file of the shearCurrent library is shown in
Listing 4.3. Member functions section in the declaration file is created with the help of the
potentialCurrent declaration file as the new shearCurrent library is implemented in the current

wave theory folder. For keeping the different functionalities in the wave2Foam toolbox like combinedWaves
functionality stated before, the potentialCurrent library is considered as the base for the shearCurrent

theory to be able to cover the functionality for the current wave theory library.

Listing 4.3: Declared member functions inside the shearCurrent.H

// Member Functions
virtual Switch conflictTSoftInitialise() const
{

if (Tsoft_ > 0)
{

return true;
¥
else
{

return false;
¥

18

void printCoeffs();

virtual scalar eta
(
const point&,
const scalar&
) const;

virtual scalar pExcess
(
const point&,
const scalar&
) const;

bool implementPressure() const
{
return true;

18

virtual vector U
(
const point&,
const scalar&
) const;

The definition file of the shearCurrent library is created from the previously created shearCurrent.C

script. Friction velocity, Uy, fluid kinematic viscosity, v, Nikuradse’s equivalent sand roughness, ks,
von Karman constant, k, the damping coefficient, A4, the distance from the wall, and volumetric vec-
tor field containing the point coordinates are added to the class definition of the shearCurrent.C file
as shown in Listing 4.4. Although von Karman constant, x, and the damping coefficient, A, are given
with their default values, one can change these values by declaring them in waveProperties.input
file. Also, Ts0f¢, and local sea level are added to the definition classes for keeping the func-
tionality of the wave2Foam toolbox as discussed before. In addition, as the distances from the
wall are calculated with the help of the wallDist function embedded in the OpenFOAM library,
#include "wallDist.H" should be added to the #include section which is located on the top of
the definition file. At the end, x_ (volVectorField) is constructed with the center coordinates of
each cell member in the mesh_ structure (mesh_.CQ)).

17

© 0 N O U A W N e

[
=]

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

4.1. New shearCurrent library

Chapter 4

Listing 4.4: Definition of constructors inside the shearCurrent.

*

#include "wallDist.H"

[/ % % ok kK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k ok ok k ok k ok k ok ok ok ok Kk ok ok x ok //

// % % % % % % % x % % % *x x % % *x Constructors * * % * % % % % *x % * *x x x //

shearCurrent: :shearCurrent

(

const word& subDictName,
const fvMesh& mesh_

waveTheory(subDictName, mesh_),
Tsoft_(readScalar(coeffDict_.lookup("Tsoft"))),
localSealevel _
(

coeffDict_.lookupOrDefault<scalar>("localSealevel", sealevel_)
Do
Uf_(readScalar(coeffDict_.lookup("Uf"))),
nu_(readScalar(coeffDict_.lookup("nu"))),
ks_(readScalar(coeffDict_.lookup("ks"))),

kappa_
(
coeffDict_.lookupOrDefault<scalar>
(
"kappa",
0.41
)
))
Ad_
(
coeffDict_.lookupOrDefault<scalar>
(
"Ad",
25.0
)
Do

y_(wallDist: :New(mesh_).y()),
x_(mesh_.CQ))

is kept as it is as in the script, the factor section is not demonstrated.

The steps for implementing the member functions inside the definition file of the shearCurrent
library from the blank shearCurrent.C script are itemized below. As the factor member function

e Eta definition

The old definition of the eta member function is changed to its new definition considering the
given input of local sea level in the waveProperties.input file. The new definition of the eta

member function is shown below.

1| scalar shearCurrent::eta
2| (

3 const point& x,
4 const scalar& time
5|) const
6| {

7 scalar eta = localSealevel_;
8 return eta;

9

18

4.1.

New shearCurrent library Chapter 4

© N O A W N

Excess pressure definition

The old definition of the excess pressure member function is changed to its new definition
considering the excess pressure created by the given local sea level. This pressure definition is
also used by the potentialCurrent library, therefore, the definition is directly taken from the
potentialCurrent.C for keeping the functionality of the wave2Foam toolbox discussed before.
The new definition of the excess pressure member function is shown below.

scalar shearCurrent: :pExcess
(
const point& x,
const scalar& time
) const
{
return referencePressure(localSealevel_);

}

Flow velocity definition

The old definition of flow velocity member function is changed to its new definition considering
the van Driest solution with the extension of Cebeci & Chang by adding the effect of the bed
roughness as stated in Chapter 2. The extensions of k¥ (defined as ksPlus_), and Ay™ (defined
as deltayPlus_) by Cebeci & Chang are calculated before the main forAll loop. Then, these
values are used for finding the effect of the bed roughness on the mean streamwise shear current
velocities at each cell center calculated in the forAll loop. Also, temporary volumetric scalar
fields temp and temp2 are defined by getting the properties of the y_ (later all the elements
inside the temporary object is set to ”0”) for calculating and storing the streamwise velocities
at each cell center in the volumetric field. Later, these temporary objects are also used in the
cumulative trapezoidal calculation as shown in the van Driest formulation’s integration part.

In the forAll loop, calculated vanDriest values are stored in both the temp and temp2 volu-
metric fields. Then, the mean streamwise velocities at each cell are found with the cumulative
trapezoidal integration over the water depth with the calculated y* values as given in the van
Driest solution. After the cumulative trapezoidal integration part, the searched cell for assign-
ing the calculated temp[index] as the mean streamwise velocity is found with the help of the
if function where the actual point at that instant is checked with the previously structured
x_ volumetric vector field. Then, the calculated summation value of temp[index] is assigned
as the mean streamwise shear current (declared as shearU_) at the found cell center with the
cell index. Later, in the return part, the assigned scalar shearU_ is converted to vector by
multiplying the value to vector(1.0,0,0) as the mean flow is pointing to the streamwise
direction. Also, for the Ty,s; functionality, the final vector is multiplied by the factor (time).

19

4.1. New shearCurrent library Chapter 4

1| vector shearCurrent::U
2| (

3 const point& x,
4 const scalar& time
5|) const
6| {

7

8 volScalarField temp=y_;
9 volScalarField temp2=y_;

11 temp *=scalar(0.0);

12 temp2 *=scalar(0.0);

13

14 scalar yPlus_ = 0.0;

15 scalar vanDriest_ = 0.0;

16

17 scalar ksPlus_= ks_*Uf_/nu_;

18 scalar deltayPlus_=0.9*(Foam: :sqrt(ksPlus_)-ksPlus_*Foam: :exp(-ksPlus_/6.0));
19

20 scalar shearU_ = 0.0;

21

22 forAll(temp,index)

23 {

24

25 yPlus_=y_[index] *Uf_/nu_;

26

27 vanDriest_=1.0/(1.0+Foam: :sqrt(1.0+4.0+Foam: :pow(kappa_,2.0)*Foam: : pow(yPlus_+deltayPlus_,2.0)*Foam: :pow

(1.0-Foam: :exp(-(yPlus_+deltayPlus_)/Ad_),2.0)));
28

29 temp[index] =vanDriest_;

30 temp2[index] =vanDriest_;

31

32 if (index > 0)

33

34 {

35 temp[index] = temp[index-1] + 0.5 (temp2[index] + temp2[index-1])*(y_[index]*Uf_/nu_ - y_[index-1]*
Uf_/mu_);

36 }

37

38 if (x_[index] == x)

39

40 {

41 shearU_ = 2.0%Uf_stemp[index] ;

42 }

43

44 }

45

46 return shearU_xvector(1.0,0,0)*factor(time) ;

a7| }

One can find the final declaration (shearCurrent.H) and definition (shearCurrent.C) files of
the shearCurrent wave theory library with the all changes mentioned above in Listing B.3, and
Listing B.4, respectively in Appendix B.

20

4.2. Modification of Make folder Chapter 4

4.2 Modification of Make folder

The new shearCurrent wave theory library is implemented both for shearCurrent library and
setWaveParameters function. While the Make folder for the shearCurrent library is inside the
waves2Foam sub-folder, the setWaveParameters function for the shearCurrent library is located
at the waves2FoamProcessing/preProcessing sub-folder. Therefore, one should add the new
shearCurrent wave theory library path into the files file inside the Make folders and re-compile
the src folder. These mentioned Make folders can be found at:

2| $WM_PROJECT_USER_DIR/applications/utilities/waves2Foam/src/waves2FoamProcessing

1| $WM_PROJECT_USER_DIR/applications/utilities/waves2Foam/src/waves2Foam

One can create backups for the Make folders in case of any problem. An example code for creating
backups for the Make folders can be found in Listing 4.5.

Listing 4.5: An example code for the backup of Make folders

N N

cd $WM_PROJECT_USER_DIR/applications/utilities/waves2Foam/src/waves2Foam

cp -r Make Make_backup

cd $WM_PROJECT_USER_DIR/applications/utilities/waves2Foam/src/waves2FoamProcessing
cp -r Make Make_backup

Changes in the Make folder both for shearCurrent library and setWaveParameters function are
itemized below.

e Adding shearCurrent library path to the Make/files for the waves2Foam solver

The files file located under the src/waves2Foam/Make folder has to be modified consid-
ering the new shearCurrent library. As the shearCurrent library is implemented under
the waveTheories/current wave theory folder, a directory line pointing the location of the
shearCurrent.C file should be added after the potentialCurrent wave theory line, which is
located to the /*WAVE THEORIES#*/ - /*current typex*/ part of the files file. The updated
part of the files file is shown below.

/* WAVE THEORIES */

/* Current type */

current=current

$(waveTheories)/$(current) /potentialCurrent/potentialCurrent.C
$ (waveTheories) /$ (current) /shearCurrent/shearCurrent.C

Lo N R

e Adding shearCurrentProperties path to the Make/files for the setWaveParameters func-
tion

As explained in Chapter 3, the waveProperties. input file has to be converted to waveProperties

file by executing the setWaveParameters application. Therefore, as a starter shearCurrentProperties
folder should be created under the setWaveProperties/current folder. The potentialCurrentProperties
folder and its declaration and definition files can be used as a template for the shearCurrentProperties.

An example code for creating shearCurrentProperties folder and its declaration and defi-

nition files from the potentialCurrentProperties is given in Listing 4.6. After copying the
potentialCurrentProperties folder, one should change the old file names to shearCurrentProperties
with mv (move) command. Then, the contents of the declaration and definition files should be

changed with the sed command for changing potentialCurrent to shearCurrent.

21

4.2. Modification of Make folder Chapter 4

Listing 4.6: Creating shearCurrentProperties functionality in setWaveProperties class

1| cd $WM_PROJECT_USER_DIR/applications/utilities/waves2Foam/src/waves2FoamProcessing/preProcessing/
setWaveProperties/current

cp -r potentialCurrentProperties shearCurrentProperties

cd shearCurrentProperties

mv potentialCurrentProperties.C shearCurrentProperties.C

mv potentialCurrentProperties.H shearCurrentProperties.H

sed -i s/potentialCurrent/shearCurrent/g shearCurrentProperties.C

sed -i s/potentialCurrent/shearCurrent/g shearCurrentProperties.H

N4 0 aoA W N

After creating the shearCurrentProperties declaration and definition files, one should change

the member functions sections of the definition file shearCurrentProperties.C. As, shearCurrent
library requires the declarations of friction velocity, Uy, fluid kinematic viscosity, v, Niku-
radse’s equivalent sand roughness, k;, von Karman constant, x, the damping coefficient, Ag,
Tsoft, and local sea level in the waveProperties file, these inputs has to be taken from the
waveProperties.input file. The changes to cover mentioned inputs are shown below for the
member functions section of the shearCurrentProperties.C file.

1| // Write the already given parameters

2| writeGiven(os, "waveType");

3| writeGiven(os, "Tsoft");

1| writeGiven(os, "Uf");

5| writeGiven(os, "nu");

6| writeGiven(os, "ks");

7

8 if (dict_.found("localSealevel"))
9 {

10 writeGiven(os, "localSealevel");
11 }

12 if (dict_.found("kappa"))

13 {

14 writeGiven(os, "kappa");

15 ¥

16 if (dict_.found("Ad"))

17 {

18 writeGiven(os, "Ad");

19 }

One can find the final declaration (shearCurrentProperties.H) and definition (shearCurrentProperties.C)
files of the shearCurrentProperties with the all changes mentioned above in Listing B.5, and
Listing B.6, respectively in Appendix B.

After creating the potentialCurrentProperties folder, one should add the directory of the
potentialCurrentProperties.C file to the files file located under the src/waves2FoamProcessing/Make
folder. A directory line pointing the location of the potentialCurrentProperties.C file
should be added after the potentialCurrentProperties.C line, which is located to the
/*current typex/ part of the files file. The updated part of the files file is shown below.

/* Current type */

current=current

$ (waveProp) /$(current) /potentialCurrentProperties/potentialCurrentProperties.C
$ (waveProp) /$ (current) /shearCurrentProperties/shearCurrentProperties.C

N N R

22

S

[

4.2. Modification of Make folder Chapter 4

After creating all the necessary steps for the shearCurrent wave theory mentioned above, one
should re-compile the waves2Foam and waves2FoamProcessing/preProcess wave theory libraries.
Before the re-compilation, one should clean the Make folders by using wclean command. An example
code for the wclean of the related Make folders is shown in Listing 4.7.

Listing 4.7: An example code for the wclean of the related Make folders

cd $WM_PROJECT_USER_DIR/applications/utilities/waves2Foam/src/waves2Foam

wclean

cd $WM_PROJECT_USER_DIR/applications/utilities/waves2Foam/src/waves2FoamProcessing
wclean

After the cleaning process, one can recompile all the contents under the src folder by executing
the Allwmake file. An example recompilation code is shown below.

cd $WM_PROJECT_USER_DIR/applications/utilities/waves2Foam/src
./Allumake

23

-

Chapter 5

Tutorial Case

5.1 Preparation

The tutorial cases can be found in the waves2Foam_tutorials folder in the waves2Foam toolbox.
The waveFlume tutorial inside the waveFoam dictionary is selected for creating the shearCurrent
tutorial, which is named as currentFlume. The waveFlume tutorial is composed of two sections
where there are fluid (like water) and gas (like air) sections. The computational domain dimensions
of the waveFlume tutorial are 18 m in length, 0.6 m in height, and 0.1 m in thickness. While the fluid
section is positioned at the bottom with 0.4 m depth, the gas section is positioned at the top with 0.2
m height. One can find detailed information about the waveFlume tutorial in waves2Foam manual
[2]. An example code for copying the waveFlume tutorial to the $WM_PROJECT_USER_DIR/run folder
by changing it’s name to currentFlume is given below in Listing 5.1.

Listing 5.1: An example code for copying the waveFlume tutorial

mkdir --parents $WM_PROJECT_USER_DIR/run/currentTutorial/tutorials/waveFoam

cp -r $WM_PROJECT_USER_DIR/applications/utilities/waves2Foam/tutorials/waveFoam/waveFlume $WM_PROJECT_USER_DIR/
run/currentTutorial/tutorials/waveFoam/currentFlume

cp -r $WM_PROJECT_USER_DIR/applications/utilities/waves2Foam/tutorials/commonFiles $WM_PROJECT_USER_DIR/run/
currentTutorial/tutorials

cp -r $WM_PROJECT_USER_DIR/applications/utilities/waves2Foam/bin $WM_PROJECT_USER_DIR/run/currentTutorial

5| cd $WM_PROJECT_USER_DIR/run/currentTutorial/tutorials/waveFoam/currentFlume

sed -i 's/20/10/g' system/controlDict

As a starter, the new currentFlume tutorial can be checked by implementing the available
potentialCurrent wave theory tutorial by changing the waveProperties.input file. The old
waveProperties.input file in the constant folder should be changed to Listing 5.2 considering the
potentialCurrent library where the streamwise current velocity is set to 1 m/s with the Froude
number equal to 0.5. Also, the type of the outlet boundary condition of the flow velocity, U, located
at the 0.org/U.org file should be changed from fixedValue to zeroGradient boundary condition.
Then, one can run the potentialCurrent tutorial by executing the Allrun file in the currentFlume
folder. The graphical result of the potentialCurrent tutorial at ¢ = 10 s is also shown in Figure 5.1.

24

© 0 N O U A W N e

AR A A R A W oW W W W W W W W WNNNNDNDNNNNNRE B BB BB R e e e
Gk @ MR O 0 BN DR ®N R O ©® N TR ®N RO O KN O A ®N RO

5.1. Preparation Chapter 5

Listing 5.2: waveProperties.input file of the potentialCurrent tutorial

// % % % % % % % %k % *k % % % % % % % % % %k %k % % %k % %k % *k % %k % * % * % % *x //
sealevel 0.00;

relaxationNames (inlet outlet);
initializationName outlet;

inletCoeffs

{
waveType potentialCurrent;
U (100);
Tsoft 0;

relaxationZone

{
relaxationScheme Spatial;
relaxationShape Rectangular;
beachType Empty;

relaxType INLET;

startX (0 0.0 -1);

endX (5 0.0 1);
orientation (1.0 0.0 0.0);

I8

outletCoeffs

{
waveType potentialCurrent;
U (100);
Tsoft 0;

relaxationZone

{
relaxationScheme Spatial;
relaxationShape Rectangular;
beachType Empty;

relaxType OUTLET;
startX (13 0.0 -1);
endX (18 0.0 1);
orientation (1.0 0.0 0.0);
}
I8

// 3k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k 3k 3k >k 3k >k 3k >k sk k >k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k ok 3k ok >k 5k >k 3k >k 3k >k 5k 5k >k 3k >k 3k >k >k >k >k 5k >k 3k >k 3k >k >k %k >k %k >k %k %k >k %k >k k k //

U Magnitude
- 1.0008+00

0.75

~0.000e+00

Figure 5.1: Example potentialCurrent tutorial result at ¢t = 10 s

25

5.2. shearCurrent tutorial Chapter 5

5.2 shearCurrent tutorial

The currentFlume tutorial mentioned in the preparation section is converted for the shearCurrent
tutorial. First, one has to change the context of the waveProperties. input file for the shearCurrent
tutorial. The new waveProperties.input file for the shearCurrent wave theory can be seen in
Listing 5.3. Additionally, one can adjust the direction (positive or negative) of the shear current
by manipulating the sign of the friction velocity, Us. The depth-averaged velocity calculated from
the given Uy = 0.01 m/s is calculated as 0.215 m/s by using Eq. (2.4). Also, the ks value is taken
as 1.25 x 1072 m. The dimensionless numbers for the shearCurrent tutorial are calculated as in
Eq. (5.1), shown below.

Us D v Uk
Re, = 2122 — 4000, Fr=——— =0.108, and kf = L "5 —125 (5.1)
v vgxD v

Listing 5.3: waveProperties.input file of the shearCurrent tutorial

1| // % % % % % % % % % % % % % %k %k % *k >k >k % % % % *k *k *k *k *x % * * % *x % % x x //
2| seaLevel 0.00;

3| relaxationNames (inlet outlet);

4| initializationName outlet;

5| inletCoeffs

o {

7 waveType shearCurrent;

8 Tsoft 0;

9 Uf 0.01; // Friction velocity (m/s)

10 nu 1.0e-06; // Fluid kinematic viscosity (m~2/s)
11 ks 1.25e-03; // Nikuradse's equivalent sand roughness (m)
12 //0Optional entries

13 //kappa 0.41; // von Karman constant

14 //Ad 25.0; // Damping coefficient

15 relaxationZone

16 {

17 relaxationScheme Spatial;

18 relaxationShape Rectangular;

19 beachType Empty;

20

21 relaxType INLET;

22 startX (0 0.0 -1);

23 endX (56 0.0 1);

24 orientation (1.0 0.0 0.0);

25 b

26| };

27| outletCoeffs

28| {

29 waveType shearCurrent;

30 Tsoft 0;

31 Uf 0.01; // Friction velocity (m/s)

32 nu 1.0e-06; // Fluid kinematic viscosity (m~2/s)
33 ks 1.25e-03; // Nikuradse's equivalent sand roughness (m)
34 //Optional entries

35 //kappa 0.41; // von Karman constant

36 //Ad 25.0; // Damping coefficient

37 relaxationZone

38 {

39 relaxationScheme Spatial;

40 relaxationShape Rectangular;

41 beachType Empty;

42

43 relaxType OUTLET;

14 startX (13 0.0 -1);

45 endX (18 0.0 1);

16 orientation (1.0 0.0 0.0);

a7 }

a8| };

40| [/ Fkskskokskokokokokokkok ook ook ok ok ok o sk o ok ok sk ok o sk ok ok ok sk ok sk ok sk ok sk sk sk sk sk sk ok sk ok sk ok sk ok ok sk kok ok kokk ok / /

26

N

© 0w N U A W N e

LT S T S S o
N 2 O © ® N O oA W N R O

I S

© 0 N @

5.2. shearCurrent tutorial Chapter 5

Calculation of the wall distances of each mesh cell is done by the wallDist function as stated
in Chapter 4. Therefore, the method for the wallDist function should be added at the end of the
fvSchemes file in the system folder. The added lines which specify the method for the wallDist
function are shown below.

wallDist
{

method meshWave;
}

Additionally, U values of each cell center are sampled for comparing the simulated results with
the theoretical van Driest solution with the extension of Cebeci & Chang given in Eq. (2.4). An
example code for sampling the U values is given in Listing 5.4. One can put this sample file inside
the system folder. Then after the simulation completed, this sample file can be executed with
postProcess -func sample command.

Listing 5.4: sample file of the shearCurrent tutorial

type sets;
libs (sampling) ;
writeControl onEnd;
interpolationScheme cellPoint;
setFormat raw;
sets
(
x1
{
type face;
axis y;
start (1 -0.4 0);
end (100);
nPoints 100;
¥
)s
fields ;

After cleaning the time folders except the 0 and 0.org and other unnecessary files (log, post-
process etc.) in the currentFlume tutorial, one can execute the new shearCurrent tutorial. An
example code for executing the currentFlume tutorial is given in Listing 5.5.

Listing 5.5: An example code for executing the currentFlume tutorial

foamListTimes -rm

yes | rm log.*

rm -rf postProcessing
rm -rf waveGaugesNProbes

setWaveParameters
setWaveField

waveFoam

postProcess —func sample

27

5.2. shearCurrent tutorial Chapter 5

The graphical result of the shearCurrent tutorial at ¢ = 10 s is shown in Figure 5.2. Also, a
zoomed inlet section in Figure 5.2 is shown in Figure 5.3 where the sampled inlet velocity profile is
compared with the van Driest profile (Eq. (2.4)) in Figure 5.4.

U Magnitude

1.600=-01

Figure 5.2: Example shearCurrent tutorial result at ¢ = 10 s

Figure 5.3: Closer look at the example shearCurrent tutorial result at ¢ = 10 s

104 F T T T T
F | ——— van Driest (Eq. 2.4)
shearCurrent tutorial

'Outer region
10%F

= 102

r30

Viscous sublayer
1

10°
0 5 10 15 20 25
/Uy

Figure 5.4: Comparison of shearCurrent tutorial sampled (inlet) result at ¢ = 10 s with van Driest
profile (Eq. (2.4))

As seen from Figure 5.3, the mean velocity profile is increasing from the wall to the free surface
which is expected from the van Driest velocity profile. Although it seems that the shearCurrent
library is giving reasonable results, one can notice problems in Figure 5.2. In Figure 5.2, it can
be seen that the fluid section of the computational domain is not homogeneous considering the
van Driest velocity profile, where the velocities of the entire section should be 0 at the wall, then

28

5.2. shearCurrent tutorial Chapter 5

increasing up to the free surface like the inlet section in Figure 5.3. Additionally, it can be seen from
Figure 5.4 that although the slopes of the simulated and theoretical velocity profiles are nearly the
same for logarithmic layer and outer region sections, they are shifted from each other. A possible
reason for this problem is the mesh density of the tutorial which is not dense enough to resolve
the section close to the wall. As van Driest’s solution uses cumulative integration, the streamwise
velocity values at that unresolved section could not be added to the computation, therefore due
to the lack of these velocity values contribution to the van Driest velocity profile, there is a shift
between the computed and theoretical results. Although this may be a possible problem, due to
the computational time, the mesh density has not been increased as the simulation has not finished
within a reasonable time.

One can notice that there are some nonphysical small velocity pockets inside the fluid section. The
reason for this problem can be attributed to a bug inside of the newly implemented shearCurrent
wave theory library or as waves2Foam toolbox is also manipulating the flow velocities at the back-
ground considering the relaxation zones etc., there can be problems regarding the shearCurrent
library which is not fully adapted considering the internal functionalities in the waves2Foam tool-
box. Additionally, one can notice that there is a significant computational time increase from the
potentialCurrent tutorial to shearCurrent tutorial. This increase may be the effect of the forAll
loop used for the calculation of the cumulative integration part.

As a different approach to see the reaction of waves2Foam toolbox to try to alter possible men-
tioned problems, the relaxation zone for the inlet and outlet area is increased where both relaxation
zones are structured as fully covering the entire fluid region (from startX=0 to endX=18 m). The
new trial result for the shearCurrent tutorial at ¢ = 10 s is shown Figure 5.5. It can be seen
from Figure 5.5 that the fluid domain is showing expected results considering the velocity increase
from the wall to the free surface for the entire fluid region, homogeneously. Although this shows
that the shearCurrent theory is working, as the relaxation zone is set for the entire domain, the
shearCurrent theory is not projected across the domain as an initial condition. Also, one can see
unexpected pockets of high-velocity regions on some parts of the free surface. Therefore, one should
consider the possible problems for the shearCurrent library and tutorial.

U Magnitud

n

Figure 5.5: Example trial with full relaxation zone for shearCurrent tutorial result at ¢ = 10 s

29

Bibliography

[1] N. G. Jacobsen, D. R. Fuhrman, and J. Fredsge, “A wave generation toolbox for the open-source
CFD library: OpenFoam(@®),” International Journal for Numerical Methods in Fluids, vol. 70,
no. 9, pp. 1073-1088, 2012.

[2] N. G. Jacobsen, “waves2foam manual,” 2017.

[3] B. M. Sumer and D. R. Fuhrman, Turbulence in Coastal and Civil Engineering. World Scientific,
2020.

[4] “Waves2Foam.” https://www.openfoamwiki.net/index.php/Contrib/waves2Foam. Accessed:
2021-12-17.

30

https://www.openfoamwiki.net/index.php/Contrib/waves2Foam

Study questions

1. Can waves2Foam be used without OpenFOAM?

2. What are the main differences between the potential current and shear current considering the
velocity distributions?

3. What is the main parts and functionalities of the waves2Foam toolbox used in this project?

4. How is the integration in the van Driest solution handled in the newly implemented shearCurrent
wave theory library?

5. What are the problems seen in the shearCurrent tutorial in Chapter 57

31

© 0 N O U A W N e

I I N e R S~ S S S S S
AW N = O © KB N oA W N = O

25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43

Appendix A

potentialCurrent

A.1 potentialCurrent declaration file

Listing A.1: potentialCurrent.H

/* *\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Class
Foam: :waveTheories: :potentialCurrent
Description

Implementation of a potential current velocity profile, e.g. uniform
velocity distribution over the vertical. In the special case of
U = vector::zero it can be used as outlet sponge layer wave type.

A description of the general wave framework is given in

Qarticle { jacobsenFuhrmanFredsoe2011,
Author = {Jacobsen, N G and Fuhrman, D R and Freds\o{}e, J},

title = {{A Wave Generation Toolbox for the Open-Source CFD Library:

{31},
Journal = {{Int. J. for Numer. Meth. Fluids}},
Year = {2012},
Volume = {70},
Number = {9},
Pages = {1073-1088},
DOI = {{10.1002/f1d.2726}},

32

OpenFoam\textregistered

A.1. potentialCurrent declaration file Chapter 1

46| SourceFiles
a7 potentialCurrent.C

49| Author
50 Niels Gjoel Jacobsen, Technical University of Denmark. All rights reserved.

52| \k————— --- -== -== -== ===/

54| #ifndef potentialCurrent_H
55| #define potentialCurrent_H

57| #include "waveTheory.H"
59| // % % %k % % % k >k k >k k %k k k *k *k k >k >k * >k *k %k *k *k *k *k kx *x * * % * % *x x x //
61| namespace Foam

62| {

63| namespace waveTheories

66 |/ e ittt ittt *\
67 Class potentialCurrent Declaration
68| *x————- -—- -—- -—- -—- ——=x/

70| class potentialCurrent

72 public waveTheory

73| {
75| protected:

77 // Protected data

78 vector U_;

79 scalar Tsoft_;

80 scalar localSealevel_;

82 // Protected member functions

84 scalar factor(const scalar&) const;
85| public:

87 //- Runtime type information
88 TypeName ("potentialCurrent");

90 // Constructors

92 //- from components

93 potentialCurrent

94 (

95 const word&,

96 const fvMesh& mesh_
97)8

100 // Destructor

102 “potentialCurrent ()

103 {

106 // Member Functions

107 virtual Switch conflictTSoftInitialise() const
108 {

109 if (Foam::mag(U_) > SMALL && Tsoft_ > 0)
110 {

111 return true;

33

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

A.1. potentialCurrent declaration file

Chapter 1

I8

}
else
{

return false;
I8
void printCoeffs();

virtual scalar eta

(
const pointé&,
const scalar&
) const;

virtual scalar ddxPd

(
const point&,
const scalarg,
const vector&
) const;

virtual scalar pExcess

(
const pointé&,
const scalar&
) const;

bool implementPressure() const
{
return true;

g

virtual vector U
(
const pointé&,
const scalar&
) const;

inline virtual vector currentSpeed()

{

return U_;

8

[/ % % ok ok k k k ok ko k ok ok ok ok k ok Kk Kk k ok k Kk k ok ok k k k ok k kx k *k * x x *x //

} // End namespace waveTheories
} // End namespace Foam

J/ % % ok ok ok ok ok ok ok ok ok ok ko k ok ok ok ko k ok ok ko k ok k kK k ok ok k k k ok x x *x *x //

#endif

[/ kokskok ok sk ok sk ok ok sk ok sk ok sk ok k sk ok s ok ok sk ok sk ok ok sk ok sk ok ok k ok ok sk ok k ok k sk ok ok 3k ok ok s ok sk ok k sk ok sk ok sk sk ok skok sksk ok sk ok skokkkk -/ /

34

© 0 N O U A W N

Lo R A R R A R R A R R W W W W W W W W W W NN NNNNNNNNRE B R e e e e e e
= O © X N O R W RO O YO0k G R, O © 0N 0 RN RO ®© 0N O A ®N RO

53
54
55
56
57
58
59
60
61
62
63

A.2. potentialCurrent definition file

Chapter 1

A.2 potentialCurrent definition file

Listing A.2: potentialCurrent.C

VERE R - - - - ———x\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
License

This file is part of OpenFOAM.

OpenF0AM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

* */

#include "potentialCurrent.H"
#include "addToRunTimeSelectionTable.H"

[/ % % ok ok ko k ok ok ok ok ok ok ko k k k ok Kk k ok k kK k ok ok ok k ok ok k k k ok * x *x *x //
namespace Foam
namespace waveTheories

// % % % % % % % % x * x % *x % Static Data Members * * * * * % % % *x * % % *x //

defineTypeNameAndDebug(potentialCurrent, 0);
addToRunTimeSelectionTable(waveTheory, potentialCurrent, dictionary);

// % % % % % % % % % * % * % % *x % Constructors * * % % % % % % % % % % % *x //

potentialCurrent::potentialCurrent

(
const word& subDictName,
const fvMesh& mesh_

)
waveTheory (subDictName, mesh_),
U_(vector(coeffDict_.lookup("U"))),
Tsoft_(readScalar(coeffDict_.lookup("Tsoft"))),
localSeal.evel _
(

coeffDict_.lookupOrDefault<scalar>("localSealevel", sealevel_)

)

{r

void potentialCurrent::printCoeffs()
{

Info << "Loading wave theory: " << typeName << endl;

35

64

66
67
68
69
70
71

72
73
74

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

A.2. potentialCurrent definition file Chapter 1

// % % % % % % % % % * x * % % *x Member Functions * * * % % % % % % % % % *x //

scalar potentialCurrent::factor(const scalar& time) const

{
scalar factor(1);
if (Tsoft_ > 0.0)
{
factor = Foam::sin(PI_/2.0/Tsoft_x*Foam: :min(Tsoft_, time));
¥
return factor;
}

scalar potentialCurrent::eta

(
const point& x,
const scalar& time

) const

{

// scalar eta = sealevel_;
scalar eta = localSealevel_;
return eta;

}

//scalar potentialCurrent: :ddxPd

//(

// const point& x,

// const scalar& time,

// const vector& unitVector
//) const

/74

// return 0.0;

//%

scalar potentialCurrent::pExcess

(
const point& x,
const scalar& time
) const
{
return referencePressure(localSealevel_);
}

vector potentialCurrent::U

(
const point& x,
const scalar& time
) const
{
return (U_xfactor(time));
}

// k% % % % % % % %k % *k %k % % % % % %k % %k *k *k %k % %k % % % *k % *k * * % * % % *x //

} // End namespace waveTheories
} // End namespace Foam

// 3k >k 3k >k 3k ok 3k 3k 3k 3k ok 3k ok ok ok sk k >k 3k ok sk ok 3k 3k ok 3k >k 3k ok sk ok 3k 3k >k 3k ok 3k ok ok k ok 3k >k 3k ok sk ok sk 3k ok 3k ok 3k ok sk ok >k 3k ok 3k ok dk ok k k >k 3k >k 3k ok 5k >k k //

36

© 0 N O U A W N e

I I N e R S~ S S S S S
AW N = O © KB N oA W N = O

25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43

Appendix B

shearCurrent

B.1

Listing B.1: Blank templated shearCurrent.H

Blank shearCurrent.H and shearCurrent.C files

/* *\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Class
Foam: :waveTheories: :shearCurrent
Description

TEMPLATE WAVE THEORY
A description of the general wave framework is given in

Qarticle { jacobsenFuhrmanFredsoe2011,

Author = {Jacobsen, N G and Fuhrman, D R and Freds\o{}e, J},
title = {{A Wave Generation Toolbox for the Open-Source CFD Library:
{311,

Journal = {{Int. J. for Numer. Meth. Fluids}},
Year = {2012},

Volume = {70},

Number = {9},

Pages = {1073-1088},

DOI = {{10.1002/f1d.2726}},

37

OpenFoam\textregistered

110
111

B.1. Blank shearCurrent.H and shearCurrent.C files

Chapter 2

SourceFiles

shearCurrent.C
Author

Niels Gjoel Jacobsen, Technical University of Demmark. All rights reserved.
* */

#ifndef shearCurrent_H
#define shearCurrent_H

#include "waveTheory.H"
[/ % % ok ok ok k k kK ok ok ok ok ok ok ok k Kk k ok k Kk k ok k kK k k ok k kx k ok * x x *x //

namespace Foam

{

namespace waveTheories

{

/* *\
Class shearCurrent Declaration

* */

class shearCurrent

public waveTheory
{
protected:
// Protected data
//scalar H_;
//Add the needed the variables
//scalar Tsoft_;
// Protected member functions
scalar factor(const scalar&) const ;
public:
//- Runtime type information
TypeName ("shearCurrent") ;
// Constructors
//- from components
shearCurrent
(
const word&,
const fvMesh& mesh_
)8
// Destructor
“shearCurrent ()
{3
// Member Functions
Switch conflictTSoftInitialise() const
{
if (Tsoft_ > 0)
{
return true;
}

38

112
113
114
115
116
117
118
119

© 0 N O U A W N

e e
AW N = O

15
16
17
18
19
20
21
22
23
24

B.1. Blank shearCurrent.H and shearCurrent.C files

Chapter 2

else
{
return false;
¥
I8

void printCoeffs();

scalar eta

(
const pointé,
const scalar&
) const;

scalar ddxPd

(
const pointé&,
const scalarg,
const vector&
) const;
vector U
(
const pointé&,
const scalar&
) const;

I8

J/ % % % % % % % %k % *k % % % % % % %k % %k *k *k %k *k %k % %k % *k *x *k k * % * % % *x //

/ End namespace waveTheories
/ End namespace Foam

Y/
Y/
J/ % % % % % %k % %k k k % *k %k % %k % *k % %k k *k *k *k %k % %k X *k X *k k * *x * *x *x *x //

#endif

// 3k >k 3k >k 3k >k 3k 3k ok 3k >k 3k ok 3k ok >k 3k >k 3k >k 3k >k 3k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k ok >k k >k 3k >k 3k >k 5k 5k >k 3k >k 3k >k 3k >k >k k >k 3k >k 3k >k >k k >k 3k >k %k >k >k >k >k >k *k //

Listing B.2: Blank templated shearCurrent.C

[*==—== ——— ———x%\
S |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
License

This file is part of OpenFOAM.

OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

39

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49
50
51

53
54

56

B.1. Blank shearCurrent.H and shearCurrent.C files Chapter 2

* */

#include "shearCurrent.H"
#include "addToRunTimeSelectionTable.H"

[/ % % ok ok k k k kK ok k k ok ok ok ok k Kk k ok k Kk k ok ok k k k ok k k k *k * x *x *x //
namespace Foam
namespace waveTheories

// * % % % % % x % x * x * x % Static Data Members * * * * x % *x % *x * % % *x //

defineTypeNameAndDebug(shearCurrent, 0);
addToRunTimeSelectionTable(waveTheory, shearCurrent, dictionary);

// % % % % % % % % % * *x * % % *x % Constructors * * % % % % % % % % % % % *x //

shearCurrent: : shearCurrent

(
const word& subDictName,
const fvMesh& mesh_
)
waveTheory (subDictName, mesh_)//,
//H_(readScalar(coeffDict_.lookup("height"))),
//Add the other variables
//Tsoft_(coeffDict_.lookupOrDefault<scalar>("Tsoft",period_))
{r

void shearCurrent::printCoeffs()
{
Info << "Loading wave theory: " << typeName << endl;

}

// * % % % % % x % % % x * *x % *x Member Functions * * * % % % % % % * % % *x //

scalar shearCurrent::factor(const scalar& time) const

{
scalar factor(1.0);
if (Tsoft_ > 0.0)
{
factor = Foam::sin(2*PI_/(4.0*Tsoft_)*Foam::min(Tsoft_, time));
¥
return factor;
}
scalar shearCurrent::eta
(
const point& x,
const scalar& time
) const
{
scalar eta = 0.0;
// Insert expression for eta
return eta;
}

scalar shearCurrent::ddxPd
(

const point& x,

const scalar& time,

40

93
94
95
96
97
98
99

101
102
103
104
105
106

108
109
110
111
112
113
114
115
116
117
118
119

B.1. Blank shearCurrent.H and shearCurrent.C files

Chapter 2

const vector& unitVector

) const

{
// This gives the z-coordinate relative to sealevel
scalar Z(returnZ(x));

scalar ddxPd(0);
// Most theories return O, as the issue with oblique waves has not
// yet been derived.

return ddxPd;
}

vector shearCurrent::U
(
const point& x,
const scalar& time
) const
{
// This gives the z-coordinate relative to seaLevel
scalar Z(returnZ(x));

scalar Uhorz(0.0), Uvert(0);

// Insert expression for Uvert and Uhorz as a function of z-coordinate
// Scale by ramp-up time

Uhorz *= factor(time);

Uvert *= factor(time);

// Cast into a directed vector. Look into any of the existing waves

// theories to test how this is done correctly. Without the definitions
// of the variables, it looks something like:

// return Uhorzxk_/K_ - Uvertxdirection_;

// Note "-" because of "g" working in the opposite direction

return vector::zero;

}

[/ % % ok ok k k k ok ok ok ok ok Kk ok k ok Kk Kk k ok k Kk k ok k Kk k k ok k kx k *k * x x *x //

} // End namespace waveTheories
} // End namespace Foam

[/ Fxxkkokokkokkskokokokokkokokkokokokok ko sk ok okokok ok ok skskokokokok sk ok sk ok okokok ok ok skskokokokok ok ok skokokokok ok kR kkkokok -/ /

41

B.2. shearCurrent declaration file (shearCurrent.H) Chapter 2

B.2 shearCurrent declaration file (shearCurrent.H)

Listing B.3: shearCurrent.H

1| /* *\

y — |

3] \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 A\ / 0 peration |

5 \\ / A nd | Copyright held by original author

6 \\/ M anipulation |

7 — — —

8| License

9 This file is part of OpenFOAM.

10

11 OpenF0AM is free software; you can redistribute it and/or modify it

12 under the terms of the GNU General Public License as published by the

13 Free Software Foundation; either version 2 of the License, or (at your

14 option) any later version.

15

16 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

19 for more details.

20

21 You should have received a copy of the GNU General Public License

22 along with OpenFOAM; if not, write to the Free Software Foundation,

23 Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

24

25| Class

26 Foam: :waveTheories: :shearCurrent

27

28| Description

29 TEMPLATE WAVE THEORY

30

31 A description of the general wave framework is given in

32

33 Q@article { jacobsenFuhrmanFredsoe2011,

34 Author = {Jacobsen, N G and Fuhrman, D R and Freds\o{}e, J},

35 title = {{A Wave Generation Toolbox for the Open-Source CFD Library: OpenFoam\textregistered
{311,

36 Journal = {{Int. J. for Numer. Meth. Fluids}},

37 Year = {2012},

38 Volume = {70},

39 Number = {9},

40 Pages = {1073-1088},

41 DOI = {{10.1002/f1d.2726}},

42 }

43

14| SourceFiles

45 shearCurrent.C

16

47| Author

48 Niels Gjoel Jacobsen, Technical University of Demmark. All rights reserved.

49

50

51| * */

52

53| #ifndef shearCurrent_H

54| #define shearCurrent_H

55

56| #include "waveTheory.H"

57

58 // % % % k ok k x k ok k k k ok k Kk k k *k k k k *k *k k *k *k *k kx *k * * *x *x *x *x x x //

59

60| namespace Foam

61| {

62| namespace waveTheories

42

110
111
112

114
115
116
117
118
119

B.2. shearCurrent declaration file (shearCurrent.H)

Chapter 2

Class shearCurrent Declaration

\k————— - - -

class shearCurrent

public waveTheory

{

protected:

// Protected data
scalar Tsoft_;

scalar localSealevel_;
scalar Uf_;

scalar nu_;

scalar ks_;

scalar kappa_;

scalar Ad_;

const volScalarField& y_;
const volVectorField& x_;

// Protected member functions

scalar factor(const scalar&) const ;
public:

//- Runtime type information
TypeName ("shearCurrent") ;

// Constructors

//- from components
shearCurrent
(

const word&,

const fvMesh& mesh_

g

// Destructor

~“shearCurrent ()

{3

// Member Functions
virtual Switch conflictTSoftInitialise() const
{
if (Tsoft_ > 0)
{
return true;
}
else
{

return false;
};
void printCoeffs();
virtual scalar eta
(

const pointé&,
const scalar&

43

135

151

158

B.3. shearCurrent definition file (shearCurrent.C)

Chapter 2

) const;

virtual scalar pExcess
(
const pointé&,
const scalar&
) const;

bool implementPressure() const
{
return true;
18
virtual vector U
(
const pointé,
const scalar&

) const;

I8

J/ k% % % % % % % %k % *k %k % % % % % %k % % *k *k %k % %k % %k % *k *x *k *k * % * % % *x //

/ End namespace waveTheories
/ End namespace Foam

Y/
Y/
// % % % % % %k % %k % k% %k * % % % % %k % %k k *k %k *k %k % %k % *k X *k k * *x * *x % *x //

#endif

// 3k >k 3k >k 3k 3k 5k 3k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k ok >k 3k >k 3k >k 3k >k 5k >k >k 3k >k 3k >k >k >k >k >k >k 3k >k 3k >k >k >k >k %k >k %k >k 5k %k >k >k *k //

B.3 shearCurrent definition file (shearCurrent.C)

Listing B.4: shearCurrent.C

/* *\

\\ / F ield

|

| OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |

|

|

\\ / A nd
\\/ M anipulation

Copyright held by original author

License
This file is part of OpenFOAM.

OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

#include "shearCurrent.H"
#include "addToRunTimeSelectionTable.H"

44

B.3. shearCurrent definition file (shearCurrent.C) Chapter 2

29| #include "wallDist.H"
30
31| // * %k *x *x x //
32
33| namespace Foam

34| {

35| namespace waveTheories
36| {

37
38| // * % % % % % x % % * % % x *x Static Data Members * * * * % % % % % % % % x //
39
40| def ineTypeNameAndDebug (shearCurrent, 0);

41| addToRunTimeSelectionTable (waveTheory, shearCurrent, dictionary);
42
43| // * % % % % * % * % x % x * x * *x Constructors * * * % * % % * x * x * x *x //
44
45| shearCurrent: :shearCurrent
a6 (

a7 const word& subDictName,
48 const fvMesh& mesh_

49])
50
51 waveTheory (subDictName, mesh_),

52 Tsoft_(readScalar(coeffDict_.lookup("Tsoft"))),

53 localSealevel _

54 (

55 coeffDict_.lookupOrDefault<scalar>("localSealevel", sealevel_)
56),

57 Uf _(readScalar(coeffDict_.lookup("Uf"))),

58 nu_(readScalar(coeffDict_.lookup("nu"))),

59 ks_(readScalar(coeffDict_.lookup("ks"))),

60 kappa_

61 (

62 coeffDict_.lookupOrDefault<scalar>

63 (

64 "kappa",

65 0.41

66)

67),

68 Ad

69 (

70 coeffDict_.lookupOrDefault<scalar>

71 (

72 "Ad",

73 25.0

74)

75 P

76 y_(wallDist::New(mesh_).y()),

77 x_(mesh_.CQ))

78
79| {
so| }
81
82| void shearCurrent::printCoeffs()

83| {

84 Info << "Loading wave theory: " << typeName << endl;
85|}

86
87| // * * % % % % * % * % % % % *x x Member Functions * * * % * % * % % % x *x x //
88
89| scalar shearCurrent::factor(const scalar& time) const

90| {

91 scalar factor(1.0);

92 if (Tsoft_ > 0.0)

93 {

94 factor = Foam::sin(2*PI_/(4.0*Tsoft_)*Foam: :min(Tsoft_, time));
95 }

96

45

97
98
99
100
101
102
103

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

B.3. shearCurrent definition file (shearCurrent.C) Chapter 2

return factor;

}
scalar shearCurrent::eta
(
const point& x,
const scalar& time
) const
{
scalar eta = localSealevel_;
return eta;
}
scalar shearCurrent::pExcess
(
const point& x,
const scalar& time
) const
{
return referencePressure(localSealevel_);
}
vector shearCurrent::U
(
const point& x,
const scalar& time
) const
{

volScalarField temp=y_;
volScalarField temp2=y_;

temp *=scalar(0.0);
temp2 *=scalar(0.0);

scalar yPlus_ = 0.0;

scalar vanDriest_ 0.0;

scalar ksPlus_= ks_xUf_/nu_;
scalar deltayPlus_=0.9%(Foam: :sqrt(ksPlus_)-ksPlus_xFoam: :exp(-ksPlus_/6.0));

scalar shearU_ = 0.0;

forAll(temp,index)
{

yPlus_=y_[index]*Uf_/nu_;

vanDriest_=1.0/(1.0+Foam: :sqrt (1.0+4.0*Foam: : pow(kappa_,2.0)*Foam: : pow (yPlus_+deltayPlus_,2.0)
*Foam: :pow(1.0-Foam: :exp (- (yPlus_+deltayPlus_)/Ad_),2.0)));

temp[index] =vanDriest_;
temp2[index] =vanDriest_;

if (index > 0)

{
temp[index] = temp[index-1] + 0.5%(temp2[index] + temp2[index-1]1)*(y_[index]*Uf_/nu_ - y_[
index-1]*Uf_/nu_);
}

if (x_[index] == x)
{

shearU_ = 2.0%Uf_xtemp[index];
}

46

164
165
166
167
168
169

171

© 0 N C A W N

W oW oW W W W W N NNNNNNNNNRE 2R R s e R e e e
S A @D~ O © 0N O A WN RO © K N0 A W N R O

37
38
39
40
41
42
43
44
45
46
47
48

B.4. shearCurrentProperties.H and shearCurrentProperties.C files Chapter 2

return shearU_xvector(1.0,0,0)*factor(time);

}

// k% % % % % % % % % k % % % % % % %k % % %k %k % % %k * %k % *k % *k % * % * *x % *x //

} // End namespace waveTheories
} // End namespace Foam

// 3k >k 3k >k 3k 3k 3k 3k ok 3k ok 3k >k >k 3k >k 3k >k 3k >k 3k 5k >k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k >k >k 5k >k 3k >k 3k >k 5k >k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k >k >k %k >k %k >k %k %k >k >k >k k k //

B.4 shearCurrentProperties.H and shearCurrentProperties.C
files

Listing B.5: shearCurrentProperties.H

/% .
========= |
A\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
License
This file is part of OpenFOAM.
OpenF0AM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Class
Foam: :shearCurrentProperties
Description
This is a dummy file, where nothing happens, as the input parameters given
by the user is sufficient.
A description of the general wave framework is given in
Qarticle { jacobsenFuhrmanFredsoe2011,
Author = {Jacobsen, N G and Fuhrman, D R and Freds\o{}e, J},
title = {{A Wave Generation Toolbox for the Open-Source CFD Library: OpenFoam\textregistered
{311,
Journal = {{Int. J. for Numer. Meth. Fluids}},
Year = {2012},
Volume = {70},
Number = {9},
Pages = {1073-1088},
DOI = {{10.1002/£1d.2726}},
}
SourceFiles
shearCurrentProperties.C
Author

47

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

N

© W N o u

10
11
12
13
14
15
16
17
18
19
20
21
22
23

B.4. shearCurrentProperties.H and shearCurrentProperties.C files Chapter 2

Niels Gjoel Jacobsen, Technical University of Denmark. All rights reserved.

* */

#ifndef shearCurrentProperties_H
#define shearCurrentProperties_H

#include "setWaveProperties.H"

namespace Foam

{
class shearCurrentProperties

public setWaveProperties

{
private:
public:
//- Runtime type information
TypeName ("shearCurrentProperties") ;
shearCurrentProperties
(
const Time&,
dictionaryé,
vector,
bool
)3
// Method
virtual void set(Ostream&);
};
}
#endif
Listing B.6: shearCurrentProperties.C
/* *\
========= |
A\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
License

This file is part of OpenFOAM.

OpenF0AM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

48

B.4. shearCurrentProperties.H and shearCurrentProperties.C files

Chapter 2

#include "shearCurrentProperties.H"
#include "addToRunTimeSelectionTable.H"

// % % % % % % % %k % *k % % % % % % %k % % *k *k %k % %k % % % *k % *k *k * % * % % *x //

namespace Foam

{

// % % % % % %k % %k % k %k * %k % % % *k % %k k *k *k *k %k % %k % *k X *k k * *x * *x *x *x //

defineTypeNameAndDebug(shearCurrentProperties, 0);
addToRunTimeSelectionTable

(
setWaveProperties,
shearCurrentProperties,
setWaveProperties

)5

// % % % % % % % % x % x % *x % *x x Constructors * * % % % % % % % % * % % *x //

shearCurrentProperties: :shearCurrentProperties

(
const Time& rT,
dictionary& dict,
vector g,
bool write
)
setWaveProperties(rT, dict, g, write)
{
Info << "\nConstructing: " << this->type() << endl;
}

// % % % % % % % % % * % * % % *x Member Functions * % * % % % % % % % % % *x //

void shearCurrentProperties::set(Ostream& os)

{
// Write the beginning of the sub-dictionary
writeBeginning(os);

// Write the already given parameters
writeGiven(os, "waveType");
writeGiven(os, "Tsoft");
writeGiven(os, "Uf");

writeGiven(os, "nu");

writeGiven(os, "ks");

if (dict_.found("localSeaLevel"))

{
writeGiven(os, "localSealevel");
}
if (dict_.found("kappa"))
{
writeGiven(os, "kappa");
¥
if (dict_.found("Ad"))
{
writeGiven(os, "Ad");
}

// This is where type specific data can be written
// Nothing to be done for shearCurrent

49

B.4. shearCurrentProperties.H and shearCurrentProperties.C files

// Write the relaxation zone
writeRelaxationZone(os);

// Write the closing bracket
writeEnding(os);

J/ % % % %k %k % % % % % >k % %k % % % % % % % % % % % % % % %k % % % % %k * *x *x x //
} // End namespace Foam

// 3k >k 3k >k 3k ok 3k 3k >k 3k ok 3k ok ok ok >k 3k >k 3k ok sk ok sk 3k ok 3k ok 3k ok sk ok 3k 3k ok 3k ok Sk ok ok 3k >k 3k >k 3k ok sk ok sk 3k ok 3k ok 3k ok sk ok ok 3k ok 3k ok 3k ok dk 5k >k 3k >k 3k %k >k >k k //

50

Index

potentialCurrent tutorial, 24

shearCurrentProperties library for the
setWaveParameters function, 21

shearCurrent tutorial, 27

waves2Foam toolbox, 8

Changes in Make folders, 21

o1

Declaration of shearCurrent, 16
Definition of shearCurrent, 17

Potential current theory, 10
Shear current theory, 11

Wave theories in waves2Foam toolbox, 9

	Introduction
	Theoretical Background
	waves2Foam toolbox
	Simple (uniform) current
	Shear current

	Library and Class Structure of waves2Foam Toolbox
	waveTheory class and sub-classes
	waveProperties.input file structure
	makeNewWaveTheory script

	Modification
	New shearCurrent library
	Modification of Make folder

	Tutorial Case
	Preparation
	shearCurrent tutorial

	potentialCurrent
	potentialCurrent declaration file
	potentialCurrent definition file

	shearCurrent
	Blank shearCurrent.H and shearCurrent.C files
	shearCurrent declaration file (shearCurrent.H)
	shearCurrent definition file (shearCurrent.C)
	shearCurrentProperties.H and shearCurrentProperties.C files

