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Learning outcomes

The reader will learn:

How to use it:

• How to use the acousticAnalogy library

The theory of it:

• The theory of the Curle’s acoustic analogy and the spanwise correction

How it is implemented:

• The implementation of the AcousticAnalogyCorr library

How to modify it:

• How to modify the AcousticAnalogy library for the spanwise correction
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Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• Fundementals of acoustics

• It is recommended to have a look at paper [1] for understanding the method for spanwise
correction
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Preface

In this tutorial, the AcousticAnalogy library is introduced to calculate the sound pressure generated
from a bluff body based on the acoustic wave equation. This library is developed by M. Heinrich and
uploaded on the course website [2]. The library predicts the acoustic sound using Curle’s analogy
method.

When long-span bodies such as cylinder or airfoil are studied for their noise emission, it can be
computationally expensive to simulate the large spatial domain which covers the whole section of
the body. This tutorial extends the AcousticAnalogy library so that the sound pressure generated
from the entire body surface can be obtained using the pressure field data of the computed domain
based on the spanwise correction method.
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Chapter 1

Theory

This chapter explains briefly the Curle’s acoustic analogy, which the AcousticAnalogy library is
based on and the method to correct sound pressure for the long-span body. The following section
shows the expression of sound pressure p′, which is obtained from the pressure and velocity fields.
These flow field data are computed by the CFD solver. Since no interaction between the flow field
and the sound field is assumed here, the calculation of sound is independent on the solution of the
CFD simulations and thus is post-processing.

1.1 Curle’s acoustic analogy

Here the fluid is assumed homogenous at rest. In order to study acoustics, we will express the
pressure or the density as p(x, t) = p0 + p′(x, t), ρ(x, t) = ρ0 + ρ′(x, t), which are the summation of
disturbance p′, ρ′ from the equilibrium state and constant values p0, ρ0 at rest. The wave equation
for p′ is derived from the equations for conservation of mass and momentum. It is expressed as

1

c0

∂2p′

∂t2
−∇2p′ = 0 (1.1)

where c0 is the sound speed at rest. The propagation of the acoustic sound p′ can be described by
the solution for the wave equation, which can be generally obtained by applying the Gauss theorem.

The acoustic analogies, which are derived based on the wave equation, are used to predict noise
in engineering applications. These analogies take different formations depending on the assumptions
for derivation. The Curle’s equation is one of the acoustic analogies and takes into consideration
the influence of static solid boundaries upon the sound field, i.e., the Curle’s analogy can be applied
for the cases where a static object is placed in a fluid. It represents the disturbance of the density
ρ′(x, t) with integrals of the total volume V external to the solid boundaries and the surface S of
the boundaries as

ρ′(x, t) =
1

4πc20

∂2

∂xi∂xj

∫
V

Tij
r
dV (y)− 1

4πc20

∂

∂xi

∫
S

nj
r

(pδij − τij)dS(y) (1.2)

where r = |x− y| is the distance between the observer x and the sound source y, nj is the ourward
surface normal from the fluid, Tij is the Lighthill’s stress tensor, which is ρvivj + pij − c20ρδij , and
τij is ρvivj . The detailed derivation is described in the reference [3].

Larsson et al. [4] rewrites Equation (1.2) based on the formations by Brentner and Farassat [5].
The spatial derivative is converted to a temporal one and the ∂r

∂xi
term becomes

∂r

∂xi
=
∂
√

(xj − yj)2
∂xi

=
xi − yi
r

= li (1.3)
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CHAPTER 1. THEORY

where li is a unit vector pointing from the source location to the observer. Equation (1.2) is modified
on a form where the derivatives are taken inside the integral, and the sound pressure p′(x, t) is
expressed as

p′(x, t) =
1

4π

∫
V

( lilj
c20r

T̈ij +
3lilj − δij
c0r2

˙Tij +
3lilj − δij

r3
Tij

)
dV (y)

+
1

4π

∫
S

linj

( ṗδij − ˙τij
c0r

+
pδij − τij

r2

)
dS(y). (1.4)

Equation (1.4) takes the same formation as written in the code.

1.2 Spanwise correction

There are some methods which predict the total sound pressure of long-span bodies, e.g. cylinder,
airfoil, plate, so on, based on the pressure radiated from a part of the span section. Their approach
can be applied to extrapolate the sound pressure outside the computational domain. Here, an
approach by Kato et al. [1] is introduced, which models the frequency characteristics of pressure
to consider the phase shift in the spanwise direction. The procedure for correction is shown in
Figure 1.1. The total span length of the body is L, and the length of which part intersects in the
computational domain is Ls.

Figure 1.1: Calculation procedure for spanwise correction

The sound pressure level (SPL) is a logarithmic scale of the sound pressure expressed by 20 log10(p′/pref )
dB (decibel). pref is a reference pressure that is typically the threshold of human hearing, 2× 10−5

Pa. The SPL in the frequency domain corrected by the Kato’s method, 20 log10(p′corr/pref ), is
described as follows

SPL(f) ≡


SPLs(f) + 20 log(L/Ls) (L ≤ Lc(f)) (1.5a)

SPLs(f) + 20 log{Lc(f)/Ls}+ 10 log{L/Lc(f)} (Ls ≤ Lc(f) ≤ L) (1.5b)

SPLs(f) + 10 log(L/Ls) (Lc(f) ≤ Ls) (1.5c)

where SPLs is the value directly calculated from the source in the computed region as shown in the
figure. The coherence function γ(f, z) can be defined from coherence between surface pressure at
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CHAPTER 1. THEORY

two points apart by distance z in the spanwise direction, which are p1 and p2 depicted in the figure.
The spanwise coherence length Lc(f) is the distance z when γ(f, z) is 0.5.

The above equations are rewritten so that the sound pressure p′corr can be simply expressed using
a correction coefficient rcorr as p′corr = rcorrp

′ where

rcorr(f) ≡


L/Ls (L ≤ Lc(f)) (1.6a)√
LLc/Ls (Ls ≤ Lc(f) ≤ L) (1.6b)√
L/Ls (Lc(f) ≤ Ls) (1.6c)

The coherence function γ(f, z) needs to be calculated in order to find Lc at each frequency. Given
signals at two locations z = x, y, the coherence function is generally represented as the ratio of the
cross power spectral density, Wxy(f), to the power spectral densities, Wxx(f) and Wyy(f).

γ(f) =
|Wxy(f)|2

Wxx(f) ·Wyy(f)
(1.7)

The two signals correspond to p1 and p2 in our case. Since γ(f, z) is also the function of z, it
is theoretically necessary to have the surface pressure at all points along the z direction in order
to determine γ(f, z) for each z. However, instead of sampling pressure at all points, γ(f, z) is
approximated in the code according to the idea by Siddon [6] for simplification. He noted that the
correlation of the surface pressure can be modeled by the Gaussian function.

γ(f, z) = exp

(
− z2

2l(f)2

)
(1.8)

l is a constant but is dependent on frequency. For a certain frequency f , the value of γ(f, zsamp) can
be obtained from the sampled surface pressure p1 and p2 which are apart by distance zsamp. Then
l is determined, and γ(f, z) is found as a function z. Lc(f) is the value of z = z′ which satisfies
γ(f, z′) = 0.5. By doing so, the code samples the surface pressure p1 and p2 at only two points.
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Chapter 2

AcousticAnalogy library

This chapter describes how the function object, the AcousticAnalogy library, which was developed
by M. Heinrich [2], calculates the sound pressure based on the Curle’s acoustic analogy. This library
is implemented as functionObject for OpenFOAM 3.0.x, and it is intended for solving incompressible
flow. A user gives the patch names of the surface, the density at rest, the sound speed, and the
observer positions as inputs. Time histories of the sound pressure received at each observer are
written to a file created under postProcessing directory.

The top-level directory acousticFunctionObject consists of the following files.

acousticFunctionObject

Curle

Curle.H

Curle.C

CurleFunctionObject.H

CurleFunctionObject.C

Make

files

options

soundObserver.H

soundObserver.C

The Curle.C file is the main source file, which describes the definition of the Curle class to mainly
calculate the sound pressure p′. The soundObserver.C file defines the SoundObserver class, which
is called inside the Curle class and stores both the positions of the observers and the received sound
pressure.

2.1 Curle class

Some important member functions in the Curle class will be explained in this section. One of the
member data observers in the Curle class is declared as

List<SoundObserver> observers_;149

which is a list of the SoundObserver class type. As explained in the next section, the SoundObserver
class stores data for the position of the observer and the sound pressure. Each element in the list
holds the information for each observer.

The read member function reads the input entries, such as the sound speed, the density of fluid,
information of the observers, and so on, that a user specifies in the case directory. This function
also stores the observer’s names and positions in observers .
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CHAPTER 2. ACOUSTICANALOGY LIBRARY

The calculate member function calculates the sound pressure p′ received at each observer, which
consists of the volume and the surface integrals as expressed in Equation (1.4). The calculate

function calculates the term for the volume integral as follows.

SoundObserver& obs = observers_[obsI];428

scalar pPrime = 0.0;429

430

// Volume integral431

if (cellZoneID_ != -1)432

{433

// List of cells in cellZoneID434

const labelList& cells = mesh.cellZones()[cellZoneID_];435

436

// Cell volume and cell center437

const scalarField& V = mesh.V();438

const vectorField& C = mesh.C();439

440

// Loop over all cells441

forAll(cells, i)442

{443

label cellI = cells[i];444

445

// Distance to observer446

scalar r = mag(obs.position() - C[cellI]);447

vector l = (obs.position() - C[cellI]) / r;448

449

// Calculate pressure fluctuation450

pPrime += coeff * V[cellI] *451

(452

((l*l) && d2Tijdt2[cellI]) / (cRef_ * cRef_ * r)453

+ ((3.0 * l*l - I) && dTijdt[cellI]) / (cRef_ * r * r)454

+ ((3.0 * l*l - I) && Tij[cellI]) / (r * r * r)455

);456

}457

reduce(pPrime, sumOp<scalar>());458

}459

The positions of observers are read from the list observers in line 428. pPrime corresponds to
the sound pressure p′. coeff is a constant, 1/4π. If the equation for pPrime is compared with
Equation (1.4), l is the vector li,j , cRef is the sound speed c0, r is the distance r. Tij, dTijdt, and
d2Tijdt2 are other member functions of the Curle class which return the Lighthill tensor Tij and

its first and second time derivatives, ˙Tij and T̈ij respectively. Tij is simply calculated by ρ0UU
T ,

and the function for Tij is defined as follows.

Foam::tmp<Foam::volTensorField> Foam::Curle::Tij() const161

{162

const volVectorField& U = obr_.lookupObject<volVectorField>(UName_);163

164

return165

(166

rhoRef_*(U*U)167

);168

}169

dTijdt and d2Tijdt2 are obtained based on the second-order backward differencing time derivative

9



CHAPTER 2. ACOUSTICANALOGY LIBRARY

and the first-order Euler second time derivative methods, respectively. Thus the functions for dTijdt
and d2Tijdt2 load the velocity fields of the current and last two time steps.

The term of the surface integral is written as follows.

// Surface integral - loop over all patches461

forAllConstIter(labelHashSet, patches_, iter)462

{463

// Get patch ID464

label patchI = iter.key();465

466

// Surface area vector and face center at patch467

vectorField Sf = mesh.Sf().boundaryField()[patchI];468

vectorField Cf = mesh.Cf().boundaryField()[patchI];469

470

// Normal vector pointing towards fluid471

vectorField n = -Sf/mag(Sf);472

473

// Pressure field and time derivative at patch474

scalarField pp = p.boundaryField()[patchI];475

scalarField dpdtp = dpdt.boundaryField()[patchI];476

477

// Lighthill tensor on patch478

tensorField Tijp = Tij.boundaryField()[patchI];479

tensorField dTijdtp = dTijdt.boundaryField()[patchI];480

481

// Distance surface-observer482

scalarField r = mag(obs.position() - Cf);483

vectorField l = (obs.position() - Cf) / r;484

485

// Calculate pressure fluctuations486

pPrime += coeff * gSum487

(488

(489

(l*n)490

&&491

(492

(dpdtp*I - dTijdtp) / (cRef_*r)493

+ (pp*I - Tijp) / sqr(r)494

)495

)496

* mag(Sf)497

);498

}499

obs.pPrime(pPrime);500

n is the surface normal nj and mag(Sf) is the surface area. p and dpdtp are the member functions
which return the pressure and its time derivative. The functions for p and dpdtp are defined as
follows.

Foam::tmp<Foam::volScalarField> Foam::Curle::p() const143

{144

return145

(146

rhoRef_ * obr_.lookupObject<volScalarField>(pName_)147

);148
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CHAPTER 2. ACOUSTICANALOGY LIBRARY

}149

Foam::tmp<Foam::volScalarField> Foam::Curle::dpdt() const152

{153

return154

(155

rhoRef_ * Foam::fvc::ddt(obr_.lookupObject<volScalarField>(pName_))156

);157

}158

The fvc::ddt class returns information about the time scheme, thus dpdt is derived based on the
time scheme specified in fvSchemes of the case directory. After both the volume and surface integrals
are obtained, the total sound pressure pPrime is stored in the obj object in line 500.

The writeCurle member function writes the sound pressure each time step to both the log file
and a file placed in the postProcessing directory as follows.

// File output94

file(0) << obr_.time().value() << tab << setw(1) << " ";95

forAll(observers_, obsI)96

{97

file(0)98

<< observers_[obsI].pPrime() << " ";99

}100

file(0) << endl;101

2.2 SoundObserver class

As shown above, the main Curle class calculates the sound pressure received at each observer.
Each sound pressure is stored in each element of the list of the SoundObserver class type. The
SoundObserver class does nothing for calculations but is needed to store data for the position of
the observer and the sound pressure.

The member data in the SoundObserver class are as follows.

//- Name of the sound observer55

word name_;56

57

//- Position of the sound observer58

vector position_;59

60

//- Pressure fluctuation [Pa]61

scalar pPrime_;62

The member functions are as follows.

//- Return name84

const word& name() const85

{86

return name_;87

}88

89

//- Return position of observer90

const vector& position() const91

{92

return position_;93

}94
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CHAPTER 2. ACOUSTICANALOGY LIBRARY

95

//- Return fluctuation pressure96

const scalar& pPrime() const97

{98

return pPrime_;99

}100

101

//- Set fluctuating pressure102

void pPrime(scalar pPrime);103

A user has to give the names and positions for each observer, which are stored in name and
positions , respectively. The sound pressure, which is p′ in Equation (1.4), is stored in pPrime .
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Chapter 3

Implementation of sound pressure
correction

The procedure to implement the spanwise correction for sound pressure is explained here. The
original acousticAnalogy library calculates and writes out the sound pressure of each time step. We
will modify the code so that it also calculates both the spectrum of the sound pressure (SPLs) and
the corrected spectrum (SPL) during run time. To obtain the corrected spectrum, the coherence
function γ(f, z) first needs to be found using the pressure sampled on the body surface. Then the
correction coefficient rcorr(f) is determined from γ(f, z). The corrected spectrum SPL is calculated
by multiplying rcorr(f) to the original spectrum SPLs.

Asummed that the acousticFunctionObject directory, which is uploaded on website [2], is
placed under $WM PROJECT USER DIR/src, we first go to $WM PROJECT USER DIR/src and prepare a
new directory CurleCorr for modification by copying and renaming files.

mkdir CurleCorr

cp -r acousticFunctionObject/* CurleCorr/

cd CurleCorr

mv Curle/Curle.H Curle/CurleCorr.H

mv Curle/Curle.C Curle/CurleCorr.C

mv Curle/CurleFunctionObject.H Curle/CurleCorrFunctionObject.H

mv Curle/CurleFunctionObject.C Curle/CurleCorrFunctionObject.C

The word Curle is replaced by CurleCorr in all files.

sed -i s/Curle/CurleCorr/g Curle/*

We rename the library as AcousticAnalogyCorr, so it should be written in Make/files as

Curle/CurleCorr.C

Curle/CurleCorrFunctionObject.C

soundObserver.C

LIB = $(FOAM_USER_LIBBIN)/libAcousticAnalogyCorr

and in Make/options as

EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/fileFormats/lnInclude \
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CHAPTER 3. IMPLEMENTATION OF SOUND PRESSURE CORRECTION

-I$(LIB_SRC)/sampling/lnInclude \

-I$(LIB_SRC)/randomProcesses/lnInclude

LIB_LIBS = \

-lspecie \

-lfiniteVolume \

-lmeshTools \

-lfileFormats \

-lsampling \

-lrandomProcesses

After all modifications in the following sections are completed, the code can be compiled using
the command wmake. The new library named libAcousticAnalogyCorr.so will be created under
$FOAM USER LIBBIN. The reader can also refer to the supplied final codes when implementing this
library.

3.1 Modifications in CurleCorr.H

Two header files should be included.

#include "probes.H"

#include "complexFields.H"

The probes class is needed to sample the surface pressure which is then used to calculate the
coherence function γ(f, z). The complexFields.H file needs to be included to use the complex
numbers for the Fourier analysis. To inherit the probes class, the top of the CurleCorr class
declaration should be as follows.

class CurleCorr

:

public functionObjectFile,

public probes

The protected member data from the probes class which are used in this library should be added.

const fvMesh& mesh_;

bool loadFromFiles_;

wordReList fieldSelection_;

bool fixedLocations_;

word interpolationScheme_;

And the additional member data should be added as well.

scalar L_;

scalar Ls_;

label freqSample_;

label Nstart_;

label Naverage_;

label countStep_;

label countFFT_;

List<List<scalar>> pList_;

scalar distance_;

word fileDir_;

scalarField Coh_;

List<List<scalar>> CofftObs_;
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CHAPTER 3. IMPLEMENTATION OF SOUND PRESSURE CORRECTION

L and Ls are L and Ls in Equation (1.5), respectively. For example, if freqSample = 1024 and
Nstart = 3, the first 1024 · 23−1 steps are discarded. The spectra are calculated when the number
of stored data reaches 1024 · 2i+3 (i = 0, 1, ...). Every time the spectra are calculated, they are
written out in a new file. Naverage is the number for averaging the power spectra, and then the
averaged power spectra are used to obtain the coherence function γ(f, z). distance is the distance
between the locations of sampled pressure, zsamp. Coh is the value of γ(f, zsamp). CofftObs is the
corrected sound pressure, pcorr.

The additional public member functions are declared as

virtual void storeSampledPressure();

virtual void calculateSpectrum();

virtual void calculateCoherence();

virtual void calculateCorrection();

virtual complexField calcFFT(const scalarList&);

The storeSampledPressure function stores the surface pressure p1 and p2 sampled by the probes

class. The calculateSpectrum function calculates the spectrum of the sound pressure p′ and write
it to the file. The calculateCoherence function finds Coh , i.e., the value of γ(f, zsamp) for each
frequency f using the p1 and p2 data. The calculateCorrection function determines the coherence
function γ(f, z) and rcorr to calculate the spectrum of the corrected sound pressure p′corr, which is
also written to the file. The calcFFT function performs the Fourier transform. The detail of each
function will be explained in the next section.

3.2 Modifications in CurleCorr.C

The following line should be included in the top.

#include "fft.H"

This header file is needed for the FFT analysis used in the calcFFT function.

The following lines should be added before the last line initialised = true; in the initialise

function.

countFFT_ += Nstart_;

if ( pow(2,Nstart_) < Naverage_ )

{

FatalErrorIn("void Foam::Curle::initialise()")

<< "Nstart is too small or Naverage is too large"

<< exit(FatalError);

}

Info << "First "<< freqSample_*pow(2,(Nstart_-1))

<< " steps will be discarded for fft." << endl;

distance_ = mag(operator[](0) -operator[](1));

Info << "Probed distance = " << distance_ << endl;

pList_.resize(2);

CofftObs_.resize(observers_.size());

The above lines give an error message if a user doesn’t give a proper value of Nstart or Naverage .
distance is calculated here and printed out in the log file. pList and CofftObs are initialized
to match their size to two and the number of the observers, respectively.
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CHAPTER 3. IMPLEMENTATION OF SOUND PRESSURE CORRECTION

In the constructor, some lines are necessary for initialization

probes(name, obr, dict, loadFromFiles),

mesh_(refCast<const fvMesh>(obr)),

loadFromFiles_(loadFromFiles),

fieldSelection_(),

fixedLocations_(true),

interpolationScheme_("cell"),

L_(0),

Ls_(0),

freqSample_(1),

Nstart_(0),

Naverage_(0),

countStep_(1),

countFFT_(0),

pList_(0),

distance_(0),

fileDir_(word::null),

Coh_(0),

CofftObs_(0)

and one line after read(dict); in the if (readFields) statement as well.

probes::read(dict);

As for the CurleCorr::read function, the word "patches" in the if (active ) statement should
be replaced by "patchName". And the following lines should be added also in the if (active )

statement.

L_ = readScalar(dict.lookup("L"));

Ls_ = readScalar(dict.lookup("Ls"));

freqSample_ = readLabel(dict.lookup("freqSample"));

Nstart_ = readLabel(dict.lookup("Nstart"));

Naverage_ = readLabel(dict.lookup("Naverage"));

At the end of the CurleCorr::read function, the following lines are needed.

fileName fileSubDir = name_;

if (mesh_.name() != polyMesh::defaultRegion)

{

fileSubDir = fileSubDir/mesh_.name();

}

fileSubDir = "postProcessing"/fileSubDir/mesh_.time().timeName();

if (Pstream::parRun())

{

fileDir_ = mesh_.time().path()/".."/fileSubDir;

}

else

{

fileDir_ = mesh_.time().path()/fileSubDir;

}

At the end of the definition of the CurleCorr::calculate function, one line should be inserted in
the forAll(observers , obsI) statement.
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CHAPTER 3. IMPLEMENTATION OF SOUND PRESSURE CORRECTION

obs.storepPrime(pPrime);

In the CurleCorr::write function, the following lines should be added after the line calculate();.

probes::write();

storeSampledPressure();

if ( countStep_ == freqSample_*(pow(2,countFFT_)+pow(2,Nstart_-1)) )

{

calculateSpectrum();

calculateCoherence();

calculateCorrection();

countFFT_ += 1;

}

countStep_ += 1;

The first line, probes::write();, is not necessary if the sampled pressure does not need to be
written out. The storeSampledPressure() function is executed all time steps. The functions,
calculateSpectrum(), calculateCoherence(), and calculateCorrection(), are executed every
time it solves the specified number of time steps, more specifically, freqSample · 2i+Nstart (i =
0, 1, ...).

The definition of the CurleCorr::storeSampledPressure function should be as below.

void Foam::CurleCorr::storeSampledPressure()

{

const volScalarField& p = obr_.lookupObject<volScalarField>(pName_);

const scalarField p_sample = probes::sample( p );

forAll(p_sample,i)

{

pList_[i].append(p_sample[i]);

}

}

This function stores the surface pressure at two locations p1 and p2 that a user specifies using the
function object probes.

The definition of the CurleCorr::calculateSpectrum function should be as below.

void Foam::CurleCorr::calculateSpectrum()

{

Info <<"Calculating spectrum" << endl;

mkDir(fileDir_/mesh_.time().timeName());

OFstream* fPtr1 = new OFstream(fileDir_/mesh_.time().timeName()/"pPrimeFFT");

OFstream& fout1 = *fPtr1;

fout1 << "# Frequency ";

forAll( observers_, i)

{

fout1 << "pPrimeFFT_at_"<< observers_[i].name() << " ";

}
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fout1 << endl;

scalar deltaT = mesh_.time().deltaT().value();

scalar N = countStep_ -freqSample_*pow(2,(Nstart_-1));

scalarField freq(N);

forAll( freq, i )

{

freq[i] = i/(deltaT*N);

}

forAll( observers_, i)

{

SubList<scalar> subpPrimeList( observers_[i].pPrimeAll(), N,

freqSample_*pow(2,(Nstart_-1)));

scalarField Cofft_obs_i = mag(calcFFT( subpPrimeList ));

CofftObs_[i] = Cofft_obs_i;

}

forAll( freq, freqi)

{

fout1 << freq[freqi] << " ";

forAll( observers_, i)

{

fout1 << CofftObs_[i][freqi] << " ";

}

fout1 << endl;

}

}

The original Curle class calculates the sound pressure in the calculate() function. Then this func-
tion applies the FFT to obtain the spectrum, stores both frequency and its magnitude in CofftObs ,
and write it in a new file.

The definition of the CurleCorr::calculateCoherence function should be as below.

void Foam::CurleCorr::calculateCoherence()

{

Info <<"Calculating coherence" << endl;

scalar N2 = ( countStep_ -freqSample_*pow(2,(Nstart_-1)) )/Naverage_;

List<complexField> Wxx(Naverage_);

List<complexField> Wyy(Naverage_);

List<complexField> Wxy(Naverage_);

forAll( Wxy, i )

{

List<complexField> pListFFTtemp;

forAll( pList_, ii )

{

SubList<scalar> subpList( pList_[ii], N2, freqSample_*pow(2,(Nstart_-1))+N2*i);

scalarList pListWin(N2);

forAll( subpList, freqi )
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{

scalar hanningi = 0.5*(1 -cos(constant::mathematical::twoPi*freqi/N2));

pListWin[freqi] = subpList[freqi] *hanningi;

}

pListFFTtemp.append(calcFFT( pListWin ));

}

complexField Wxyi(N2);

complexField Wxxi(N2);

complexField Wyyi(N2);

forAll( pListFFTtemp[0], freqi )

{

Wxyi[freqi] = pListFFTtemp[0][freqi].conjugate() *pListFFTtemp[1][freqi];

Wxxi[freqi] = pListFFTtemp[0][freqi].conjugate() *pListFFTtemp[0][freqi];

Wyyi[freqi] = pListFFTtemp[1][freqi].conjugate() *pListFFTtemp[1][freqi];

}

Wxy[i] = Wxyi;

Wxx[i] = Wxxi;

Wyy[i] = Wyyi;

}

Coh_.resize(N2);

forAll( Wxy[0], freqi )

{

complex WWxy;

complex WWxx;

complex WWyy;

forAll( Wxy, i )

{

WWxy += Wxy[i][freqi]/Naverage_;

WWxx += Wxx[i][freqi]/Naverage_;

WWyy += Wyy[i][freqi]/Naverage_;

}

Coh_[freqi] = magSqr(WWxy)/( mag(WWxx)*mag(WWyy) );

}

}

This function first applies the FFT to each Naverage segment of the sampled pressure with the
Hann window. Then after averaging the power spectra of all segments, the coherence γ(f, zsamp) in
Equation (1.7) is obtained and stored in Coh .

The definition of the CurleCorr::calculateCorrection function should be as below.

void Foam::CurleCorr::calculateCorrection()

{

Info << "Calculating correction " << endl;

scalar deltaT = mesh_.time().deltaT().value();

scalar N2 = ( countStep_ -freqSample_*pow(2,(Nstart_-1)) )/Naverage_;
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scalarField freq(N2);

forAll( freq, i )

{

freq[i] = i/(deltaT*N2);

}

scalar l2;

scalar Lc;

scalarField rCorr(N2);

forAll( freq, freqi )

{

if ( Coh_[freqi] < 0.5 )

{

rCorr[freqi] = sqrt(L_/Ls_);

}

else if ( 0.5 <= Coh_[freqi] && Coh_[freqi] <= 0.999999 )

{

l2 = -0.5*sqr(distance_)/log(Coh_[freqi]);

Lc = sqrt( -2 *l2 *log(0.5) );

rCorr[freqi] = sqrt(L_*Lc)/Ls_;

if ( Lc > L_ )

{

rCorr[freqi] = L_/Ls_;

}

}

else

{

rCorr[freqi] = L_/Ls_;

}

}

List<List<scalar>> CofftObsCorr(observers_.size());

forAll( observers_, i)

{

CofftObsCorr[i].resize(N2);

forAll( freq, freqi )

{

scalar fft0 = CofftObs_[i][freqi*Naverage_];

CofftObsCorr[i][freqi] = fft0*rCorr[freqi];

}

}

mkDir(fileDir_/mesh_.time().timeName());

OFstream* fPtr2 = new OFstream(fileDir_/mesh_.time().timeName()/"pPrimeFFT_corr");

OFstream& fout2 = *fPtr2;

fout2 << "# Frequency ";

forAll( observers_, i)

{

fout2 << "pPrimeFFTcorrected_at_" << observers_[i].name() << " ";

}
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fout2 << endl;

forAll( freq, freqi)

{

fout2 << freq[freqi] << " ";

forAll( observers_, i)

{

fout2 << CofftObsCorr[i][freqi] << " ";

}

fout2 << endl;

}

}

This function calculates the correction coefficient rcorr, which is then used to determine the corrected
spectrum of the sound pressure. The correction coefficient represented as rCorr in the code is found
for each frequency as explained in Equation (1.6) based on the coherence. The corrected spectrum
is obtained by multiplying rCorr to CofftObs and it is printed out in the new file.

The definition of the CurleCorr::calcFFT function should be as below.

Foam::complexField Foam::CurleCorr::calcFFT

(

const scalarList& tfield

)

{

complexField tfftField = ReComplexField(tfield);

labelList fftList ( 1, tfield.size() );

complexField Cofft = fft::reverseTransform( tfftField, fftList );

Cofft *= 2.0/pow(tfield.size(),0.5);

Cofft[0] /= 2.0;

Cofft.last() /= 2.0;

return Cofft;

}

This function uses the fft class, which needs an input of the complex field. ReComplexField creates
a list of the complex values. The calcFFT function returns the result scaled by the size of input
data.

3.3 Modifications in soundObserver.H

One private member data should be added

List<scalar> pPrimeAll_;

and two public member functions as well.

const List<scalar>& pPrimeAll() const

{

return pPrimeAll_;

}

void storepPrime(scalar pPrime);

3.4 Modifications in soundObserver.C

In the constructor, the following line should be added after pPrime (0.0),.
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pPrimeAll_(0)

The definition of the SoundObserver::storepPrime function should be as below.

void Foam::SoundObserver::storepPrime(scalar pPrime)

{

pPrimeAll_.append(pPrime);

}
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Test case

This section represents an example case where the AcousticAnalogyCorr library is applied. In this
test case, a circular cylinder is placed in the flow field and the sound is observed at some distance
away from the cylinder. The cylinder has longer span length than the height of the computational
domain. The library will calculate the spectrum of the sound pressure, p, which is generated from
the span section of the computational domain. The spectrum of the corrected sound pressure, pcorr,
generated from the entire cylinder will also be obtained.

4.1 Case description

Figure 4.1 shows the setup where the span length in the computational domain is Ls (= 0.05 m)
and the total span length of the cylinder is L (= 0.5 m). The pressure is sampled at two locations
on the cylinder surface, p1 and p2. The inlet velocity is 70.2 m/s and the cylinder diameter is 19.0
mm.

Figure 4.1: Setup of test case

The input entries in functions in the controlDict file should includes as follows.

CurleCorr

{

functionObjectLibs ( "libAcousticAnalogyCorr.so" );

type CurleCorr;

outputControl timeStep;

outputInterval 1;

fields ( p );

patchName ( cylinder );

fixedLocations true;

probeLocations
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(

(0.0095057 0 -0.02)

(0.0095057 0 0.02)

);

log true;

rhoRef 1.204;

cRef 343;

observers

{

micro1 { position (0 -2.4335 0); }

micro2 { position (-2.4335 0 0); }

micro3 { position (-2.4335 -2.4335 0); }

}

L 0.5;

Ls 0.05;

freqSample 1024;

Nstart 3;

Naverage 4;

}

Two locations where the surface pressure is sampled should be specified in probeLocations. cRef

is the sound speed and rhoRef is the density of the medium. The name and the location for sound
observers should be given in observers. L and L s are L and Ls, respectively. freqSample, Nstart,
and Naverage correspond the variables mentioned early in Section 3.1. freqSample and Naverage

must be a number of powers of two.

Note that the code in this library assume a constant time step, which means that adjustableRunTime
in controlDict should be switched off. To make it simple, the surface pressure at only two points
are chosen to sample for calculation of the coherence function. The distance between their two
points should not be too close for accurate correction.

4.2 Results

Figure 4.2 shows the sound pressure spectra observed at 2.4 m away from the center of the cylinder.
The red line represents the spectrum of pcorr obtained based on the correction coefficient rcorr
expressed in Equation (1.6). It can be seen that the magnitude of pcorr are larger than that of p by
correction.

Figure 4.2: Sound pressure spectrum
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Study questions

1. Why does the AcousticAnalogy library have the SoundObserver class besides the main Curle

class?

2. What is the purpose of implementing the AcousticAnalogyCorr library?

3. What is the purpose of inheriting the probes class in the AcousticAnalogyCorr library?

4. If L/Ls is for example 20, what is the maximum and minimum differences of the SPL in decibel
between p and pcorr according to the correction method implemented in the library?

5. The AcousticAnalogyCorr library creates files for the spectrum of p and pcorr including each
of the frequency table. How many times is the difference of the frequency resolution between
them?
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