
Cite as: Olsson, E.: A description of isoAdvector - a numerical method for improved surface

sharpness in two-phase flows. In Proceedings of CFD with OpenSource Software, 2017, Edited by

Nilsson. H., http://dx.doi.org/10.17196/OS_CFD#YEAR_2017

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

A description of isoAdvector - a numerical
method for improved surface sharpness in

two-phase flows

Developed for OpenFOAM v1706

Author:
Elin Olsson
Chalmers University of
Technology

Peer reviewed by:
Luofeng Huang

Bercelay Niebles
Mohammad Hossein Arabnejad

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM
and some other OpenSource software are introduced to the students. Any reader should be
aware that it might not be free of errors. Still, it might be useful for someone who would

like learn some details similar to the ones presented in the report and in the accompanying
files. The material has gone through a review process. The role of the reviewer is to go

through the tutorial and make sure that it works, that it is possible to follow, and to some
extent correct the writing. The reviewer has no responsibility for the contents.

January 5, 2018

Learning outcomes

The reader will learn:

How to use it:

• how to use the interIsoFoam solver for two-phase flow cases.

The theory of it:

• The theory of the VOF method.

• The theory of some different surface capturing methods used in CFD, with focus on
the isoAdvector algorithm

How it is implemented:

• The implementation of the isoAdvector algorithm in OpenFOAM is described.

How to modify it:

• The basic steps for modifying the isoAdvector source code are given.

1

Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this
report:

• Knowledge of fluid dynamics and computational fluid dynamics methods.

• How to run and modify existing tutorial cases in OpenFOAM.

2

Contents

1 Introduction 4

2 Theory 5
2.1 VOF method . 5

2.1.1 Governing equations . 6
2.2 Surface representation . 6

2.2.1 MULES scheme . 7
2.2.2 Geometric reconstruction scheme . 8
2.2.3 isoAdvector scheme . 9

3 Description of the source code 13

4 Set-up of tutorial case 22
4.1 weirOverflow tutorial case . 22

5 Modification of source code 27

References 30

3

Chapter 1

Introduction

A popular numerical method for two-phase flows is the volume of fluids (VOF) method. A
drawback of the method is that it is difficult to obtain a sharp interface between the phases.
Instead a smeared interphase appears between the regions. This problem is avoided by
using additional methods for surface capturing. This project is focusing on describing a
new such method developed for OpenFOAM, the isoAdvector method.

A main part of the project is to describe the theory behind this method. To give background
and context, also the theory for the VOF method is presented, as well as theory behind two
other surface capturing methods, MULES and the geometric reconstruction scheme.

The theory is followed by a thorough description of how the theory of isoAdvector is
implemented in OpenFOAM. The solver called interIsoFoam is a modification of the VOF
solver interFoam that uses the isoAdvector method. An overview of the source code of the
solver is given. This is followed by a short description of how to modify a tutorial case using
interFoam so that it uses interIsoFoam instead.

Finally, the steps for how to modify the source code of the isoAdvector method are provided.
This leads to a solver called interIsoFoamMod. No further functionality is added in
this solver, however this provide a basis for implementing new code and improving the
isoAdvector method.

4

Chapter 2

Theory

In this chapter the theory behind the VOF method is described to give a background
and context to the surface capturing methods. The VOF theory is followed by theoretical
descriptions of three surface methods, with emphasis on the isoAdvector scheme.

2.1 VOF method

Two-phase flows where the majority of the phases are located in two separate domains, and
the surface between them is confined to a small region of the total domain, are referred
to as separated free surface flows. Separated free surface flows can be modelled using
several different Eulerian methods. In Eulerian methods the fluid properties are calculated
in a fixed coordinate system, and the flow is observed at fixed coordinates [1]. The fixed
Eulerian coordinate system corresponds to a fixed mesh. The Eularian methods for free
surface flows can be classified as surface methods (interface-tracking) or volume methods
(interface-capturing).

Surface methods explicitly track the interface between the phases and do in general give a
sharp representation of the surface. However, they suffer from drawbacks such as problems
with complex surfaces like breaking waves or bubbles [2]. An alternative is to use volume
methods, which instead track the two fluid volumes separated by the interface. This
enables representation of complex surfaces, however to obtain a sharp surface resolution
computationally expensive additional steps are required [3]. A common volume method is
the marker and cell (MAC) method [3]. The fluid volume is represented by Lagrangian fluid
particles that are distributed over the volume and moved through the Eulerian mesh. The
vast number of tracked variables required makes this method significantly more computation-
ally expensive than the surface methods [2]. A computationally inexpensive option that still
can handle complex surfaces is the VOF method.

The VOF method is an Eularian volume tracking method where a step function is used to
mark the location of the phases (water and air) [2]. This report is limited to two-phase flows
with water as the tracked phase and air as the second phase. The step function α marks
the volume fraction of the tracked phase in a control volume, so that α = 1 corresponds to
a control volume entirely occupied by water and α = 0 corresponds to a control volume not

5

2.2. SURFACE REPRESENTATION CHAPTER 2. THEORY

containing any water, only air. The value of α is averaged in each of the mesh cells. The
interface between the phases is found in cells where 0 < α < 1.

The function α makes it possible to use only one set of equations in the entire flow domain
for describing the local properties, instead of one set of equations for each phase. Fluid
properties are calculated using α as a weight. If for example ρwater and ρair are the densities
of the two phases, the density in the entire domain ρ can be described by [3]

ρ = αρwater + (1− α)ρair (2.1)

Similarly, the dynamic viscosity µ can be obtained by

µ = αµwater + (1− α)µair (2.2)

2.1.1 Governing equations

The flow studied in this project is considered incompressible and the fluids are considered
Newtonian. The governing equation for mass (the continuity equation) for a control volume
can then be expressed as

∂ρ

∂t
+∇ · (ρu) = 0 (2.3)

where u is the fluid velocity. The momentum equation is expressed as

∂(ρu)

∂t
+∇ · (ρuu) = −∇ · p+∇ · T + ρf + fσ (2.4)

where p is the pressure, T is the stress tensor, f represents the body forces and fσ is the
surface tension [4]. In this case, the only present body force is gravity so f can be replaced
by g, the gravity vector. The VOF method adds one governing equation for the transport
of the volume fraction α, the advection equation [3]

∂α

∂t
+∇ · (αu) = 0 (2.5)

In the above equation, the second term is reffered to as the advection term [5]. In OpenFOAM
a family of solvers called interFoam uses the VOF method. In OpenFOAM version 1706 the
group of solvers derived from interFoam use the VOF method as described above together
with additional methods for surface capturing.

2.2 Surface representation

The main drawback of the VOF method is the smearing of the water surface. Without any
additional surface capturing method the surface will be represented as a region where α
gradually changes from 1 to 0. The cells containing volume fractions of both phases will not
have a sharp surface separating the phase fractions inside the cell, instead the entire cell
will be filled with a uniform mixture of the two phases, see Figure ??. For free surface flows
with a sharp interface separating the phases this smeared representation is not physical.
After identifying the cells where the surface is present, the challenge lies in determining
more precisely where these cells are cut by the surface.

6

2.2. SURFACE REPRESENTATION CHAPTER 2. THEORY

Since the introduction of the VOF method several improvements have been done, especially
to the surface resolution. The basic VOF solver interFoam uses a scheme called MULES
for improving the surface sharpness. In the most recent release of OpenFOAM the newly
developed method isoAdvector was introduced, together with the solver interIsoFoam.
Another common method used in the software ANSYS Fluent is the geometric reconstruction
scheme. These methods will be described and compared in more detail in the following
sections.

2.2.1 MULES scheme

MULES is a numerical scheme where the advection term in Equation 2.5 is modified to
compress the surface and thereby reduce the smearing [5]. The scheme is obtained by
firstly rewriting the advection equation to integral form∫

Ωi

∂α

∂t
dV +

∫
∂Ωi

αu · ndS = 0 (2.6)

where Ωi represents each cell, ∂Ωi is the cell boundary and n is the cell boundary normal.
The equation is then discretized, using any time-stepping scheme for the first term (here
forward Euler is used) and writing the second term as a sum over each face of the cell

αn+1
i − αni

∆t
= − 1

|Ωi|
∑
f∈∂Ωi

(Fu + λMFc)
n (2.7)

where Fu and Fc are the advective fluxes and λM is the delimiter taking the value 1 at the
surface and 0 elsewhere. These advective fluxes are expressed as

Fu = Φfαf,upwind (2.8)

and
Fc = Φfαf + Φrfαrf (1− α)rf − Fu (2.9)

where Φf is the volumetric face flux. The subscript f denotes that the quantity is evaluated
as the face, upwind that an upwind scheme is used and the quantities with the subsrcipt
rf are given below. Φrf is given by

Φrf = min

(
Cα
|Φf |
|Sf |

,max

[
|Φf |
|Sf |

])
(nf · Sf) (2.10)

where Cα is a user specified parameter reducing interface smearing, Sf is the cell face area
vector, and nf is the face centered interface normal vector.

αrf is given by

αrf = αP +
αN − αP

2
[1− χ(Φf)(1− λαr)] (2.11)

where N and P denotes the upwind and downwind neighbour respectively, λαr is a limiter
and χ is a step function taking the value 1 where volumetric face flux i positive and -1
where it is negative.

For λM = 0 which is away from the interface, the expression inside the sum in Equation
2.7 reduces to Fu, which uses a simple upwind scheme for the advection term. For λM = 1

7

2.2. SURFACE REPRESENTATION CHAPTER 2. THEORY

which is at the interface, the expression inside the sum becomes a combination of a higher
order scheme for the advection represented by the term Φfαf and a compressive flux term
represented by the term Φrfαrf (1 − α)rf . The higher order scheme gives a more accurate
advection at the surface and the compression flux term reduces the surface smearing. At
the same time computational effort is reduced away from the surface. Numerical diffusion
at the interface is also reduced.

2.2.2 Geometric reconstruction scheme

The commercial software ANSYS Fluent provides a couple of different schemes for represent-
ing the interface shape. The most general and accurate method is the geometric reconstruct-
ion scheme [6]. The interface is represented as a piecewise linear surface, meaning that the
surface is linear within each cell. The linear surface of a quadratic mesh in 2 dimensions is
constructed as follows [7]

1. The phase fractions for all cells are assumed to be known at the beginning of a time
step. The face phase fractions of the faces j of cell i are calculated using the phase
fractions of the cells neighbouring each face j. The face phase fraction is calculated
as the average of the cell phase fractions. Exceptions are made for faces where this
not holds, for example the top and bottom faces in Figure 2.1.

2. The slope of the interface is constructed as the hypotenuse of a right-angled triangle
whose other sides are calculated using the face phase fractions. The height is calculated
as the difference between the phase fractions of the vertical faces and the width is
calculated as the difference between the horizontal faces.

3. Finally the position of the interface is adjusted to match the cell phase fraction.

The above description is illustrated in Figure 2.1 and Figure 2.2.

(a) Phase fractions are known in all
cells at the beginning of the time
step.

(b) Using the known cell phase
fractions the face phase fractions are
calculated for the faces of each cell.
This is the middle cell from (a)

Figure 2.1: The first step of the geometric reconstruction scheme.

8

2.2. SURFACE REPRESENTATION CHAPTER 2. THEORY

(a) The slope of the surface is
calculated as the hypotenuse of a
triangle using the difference in face
phase fractions.

(b) The position of the surface is
adjusted to match the known cell
phase fraction.

Figure 2.2: The second and third steps of the geometric reconstruction scheme.

2.2.3 isoAdvector scheme

The isoAdvector method uses the concept of isosurfaces to calculate more accurate face
fluxes for the cells containing the interface [8]. The value for the phase fraction in cell i at
time t, αi(t), is calculated from a function H(x, t) describing the continuous phase fraction
field

αi =
1

Vi

∫
Ωi

H(x, t)dV (2.12)

where Vi is the volume of cell i and Ωi represents each cell. Knowing the phase fraction
in each cell at time t, it is desired to calculate the phase fractions at the next time step
using the following equation, where the flux of α over each cell face is integrated in time
and added together

αi(t+ ∆t) = αi(t)−
1

Vi

∑
j∈Bi

sij

∫ t+∆t

t

∫
Fj

H(x, τ)u(x, τ)dSdτ (2.13)

where Bi is the list of all faces Fj belonging to cell i, sij is used to orient the flux to going out
from the cell and τ is the variable of integration used in the time step. dS is the differential
area vector pointing out of the volume. sij is either +1 or −1 to ensure that the product
sijdS is always in the direction out form the cell boundary even when the orientation of face
j makes dS point into the cell. The integrals inside the sum can be replaced by ∆Vj(t,∆t)
which describes the total volume of fluid A transported across face j during one time step

∆Vj(t,∆t) =

∫ t+∆t

t

∫
Fj

H(x, τ)u(x, τ)dSdτ (2.14)

This is the quantity that is estimated in the isoAdvector method. It is estimated using the
quantities αi, ui and Φj which are known at time t, where Φj is the face flux across face j.

Φj(t) =

∫
Fj

u(x, t)dS (2.15)

The following algorithm describes the isoAdvector method in more detail.

9

2.2. SURFACE REPRESENTATION CHAPTER 2. THEORY

isoAdvector algorithm

1. For each cell face j, let ∆Vj = αupwind,jΦj∆t at time t. αupwind,j is the face value of
α of the upwind cells.

2. Find the surface cells where 0 < αi(t) < 1. For all cells not containing the surface
the advection is trivial, and the rest of the algorithm described here is used for the
surface cells.

3. For each surface cell:

3.1. Calculate the initial isosurface. The isovalue f which cuts the cell into the correct
phase fractions of A and B is sought, so that α̃(f) = αi for each cell. α̃(f) is the
volume fraction of A when the isovalue f is used to construct the isosurface.

In order to find f , first the cell volume fractions must be interpolated to the cell
vertices. The value is weighed by the inversed cell center-cell vertex distances.
These vertex fractions are denoted f1...fN for each cell, where N is the number
of vertices for the cell. The vertex fractions are used to calculate where the cell
is cut by the isosurface f .

A cell edge is cut if the isovalue f is between the vertex fractions fk and fl of
that edge, fk < f < fl. The location where the edge is cut by the isosurface is
calculated using linear interpolation:

xcut = xk +
f − fk
fl − fk

(xl − xk) (2.16)

Then α̃ is calculated for each vertex fraction f1...fN . The results are used to
construct a polynomial expression for α̃. The sought isovalue can then be found
using the iterative Newton’s root finding algorithm and |α̃(f)− αi| < tol with a
specific tolerance.

Figure 2.3 shows the initial isosurface in a cell where one corner is submerged in
the tracked phase. The locations where the edges are cut by the isosurface are
marked.

Figure 2.3: The figure shows the initial isosurface in a hexahedral cell where one corner is submerged
in the tracked phase. The locations where the edges are cut by the isosurface are marked with circles.

10

2.2. SURFACE REPRESENTATION CHAPTER 2. THEORY

3.2. Estimate the movement of the isosurface during a time step. First, the isosurface
center xs and normal vector ns are calculated. Then the cell velocity ui is
interpolated to xs, giving the velocity vector Us. Finally, the isosurface motion
normal to itself is calculated as

Us = Us · ns (2.17)

This velocity is assumed to be constant during a time step.

Figure 2.4 shows the propagating isosurface.

Figure 2.4: The figure shows the propagating isosurface.

3.3. Calculate submerged face area. Using the isosurface velocity calculated above,
it can be estimated when the isosurface will reach the face vertex points. The
time when vertex k of face j is reached by the isosurface is estimated as

tk ≈ t+ (Xk − xs)
ns
Us

(2.18)

This can be used to calculate the total face area of one cell that is inside fluid A
during one time step Aj(τ), where τ is the time variable within one time step.

Figure 2.5 shows the propagation of the isosurface on one of the cell faces.

3.4. The time integral of Aj(τ) over the time step from t to t+ ∆t multiplied by the
face flux gives the sought estimate for ∆Vj(t,∆t).

4. To avoid values of α that are < 0 or > 1 a bounding procedure is required. This
is done by letting excess of phase A be redistributed to downwind cells in the case
of α > 1. If α < 0, the equations are rewritten in terms of phase B and excess of
phase B is redistributed to downwind cells. Redistribution is done to ensure volume
conservation. In rare cases strict clipping of the value might be required, however this
does not give volume conservation.

After construction the surface, the volumetric flux across each face is divided into flux of A
and flux of B proportional to the phase fractions.

In comparative studies isoAdvector is faster and can operate with higher Courant numbers
than MULES and still be accurate [8].

11

2.2. SURFACE REPRESENTATION CHAPTER 2. THEORY

Figure 2.5: The figure shows the propagation of the isosurface on one of the cell faces. Equation
2.18 is used to estimate when the face vertices are reached. The marked region represents the area
that is swept between the time when vertex 2 is reached and the time when vertex 3 is reached.
This is used to calculate the submerged face area.

12

Chapter 3

Description of the source code

This chapter describes how the isoAdvector method is implemented in the OpenFOAM
solver interIsoFoam. interIsoFoam is a modified version of the solver interFoam which
is a solver for incompressible, immiscible and isothermal two-phase flows using the VOF
method. In interIsoFoam the surface method isoAdvector is added. The implementation
is presented with extracts from the code in OpenFOAM and compared with the theoretical
description in section 2.2.3.

The source code of the solver interIsoFoam is found in the directory $FOAM_SOLVERS/

multiphase/interIsoFoam.

The following files can be found in this directory:

alphaControls.H correctPhi.H Make

alphaCourantNo.H createFields.H pEqn.H

alphaEqn.H createIsoAdvection.H setDeltaT.H

alphaEqnSubCycle.H interIsoFoam.C UEqn.H

The file interIsoFoam.C begins with including a number of files in the header

Listing 3.1: interIsoFoam.C

56 #include "isoAdvection.H"

57 #include "fvCFD.H"

58 #include "subCycle.H"

59 #include "immiscibleIncompressibleTwoPhaseMixture.H"

60 #include "turbulentTransportModel.H"

61 #include "pimpleControl.H"

62 #include "fvOptions.H"

63 #include "CorrectPhi.H"

Some of these require further explanation. The class isoAdvection.H calculates the new
VOF alpha field (i.e. the phase distribution) after a time step given the VOF field
alpha, velocity field U and face fluxes phi at the beginning of the time step. It uses
the isoAdvector algorithm described in section 2.2.3. The implementation of the algorithm
in OpenFOAM will be described further later. The isoAdvection.H class is located in
$WM_PROJECT_DIR/src/finiteVolume/fvMatrices/solvers/isoAdvection/

isoAdvection

13

CHAPTER 3. DESCRIPTION OF THE SOURCE CODE

The class immiscibleIncompressibleTwoPhaseMixture.H contains member functions for
calculating transport and interface properties. This class is a model for a mixture of two
phases that are immiscible and incompressible, and can be found in $WM_PROJECT_DIR/src/

transportModels/immiscibleIncompressibleTwoPhaseMixture

turbulentTransportModel.H contains typedefs for the laminar, RAS and LES turbulence
models and is located in $WM_PROJECT_DIR/src/TurbulenceModels/incompressible/

turbulentTransportModels

pimpleControl.H provides member functions for modifying the pimple algorithm in the
fvSolutions dictionary. This file is found in $WM_PROJECT_DIR/src/finiteVolume/

cfdTools/general/solutionControl/pimpleControl/

After the header, the main function in interIsoFoam.C begins with initializing the case

Listing 3.2: interIsoFoam.C

67 int main(int argc , char *argv [])

68 {

69 #include "postProcess.H"

70

71 #include "setRootCase.H"

72 #include "createTime.H"

73 #include "createMesh.H"

74 #include "createControl.H"

75 #include "createTimeControls.H"

76 #include "initContinuityErrs.H"

77 #include "createFields.H"

78 #include "createFvOptions.H"

79 #include "correctPhi.H"

80

81 turbulence ->validate ();

82

83 #include "readTimeControls.H"

84 #include "CourantNo.H"

85 #include "setInitialDeltaT.H"

Most of these files are not specific for the interIsoFoam solver, but are general files for
initializing variables required for e.g. the time stepping. The file createFields.H is
included from the interIsoFoam solver directory. This file initializes all the variables.
The content of this file is presented below

Listing 3.3: createFields.H

1 Info << "Reading field p_rgh\n" << endl;

2 volScalarField p_rgh

3 (

4 IOobject

5 (

6 "p_rgh",

7 runTime.timeName (),

8 mesh ,

9 IOobject ::MUST_READ ,

10 IOobject :: AUTO_WRITE

11),

12 mesh

14

CHAPTER 3. DESCRIPTION OF THE SOURCE CODE

13);

14

15 Info << "Reading field U\n" << endl;

16 volVectorField U

17 (

18 IOobject

19 (

20 "U",

21 runTime.timeName (),

22 mesh ,

23 IOobject ::MUST_READ ,

24 IOobject :: AUTO_WRITE

25),

26 mesh

27);

28

29 #include "createPhi.H"

30

31

32 Info << "Reading transportProperties\n" << endl;

33 immiscibleIncompressibleTwoPhaseMixture mixture(U, phi);

34

35 volScalarField& alpha1(mixture.alpha1 ());

36 volScalarField& alpha2(mixture.alpha2 ());

37

38 const dimensionedScalar& rho1 = mixture.rho1();

39 const dimensionedScalar& rho2 = mixture.rho2();

40

41

42 // Need to store rho for ddt(rho , U)

43 volScalarField rho

44 (

45 IOobject

46 (

47 "rho",

48 runTime.timeName (),

49 mesh ,

50 IOobject :: READ_IF_PRESENT

51),

52 alpha1*rho1 + alpha2*rho2

53);

54 rho.oldTime ();

55

56

57 // Mass flux

58 surfaceScalarField rhoPhi

59 (

60 IOobject

61 (

62 "rhoPhi",

63 runTime.timeName (),

64 mesh ,

65 IOobject ::NO_READ ,

66 IOobject :: NO_WRITE

67),

68 fvc:: interpolate(rho)*phi

69);

70 // Construct incompressible turbulence model

71 autoPtr <incompressible :: turbulenceModel > turbulence

15

CHAPTER 3. DESCRIPTION OF THE SOURCE CODE

72 (

73 incompressible :: turbulenceModel ::New(U, phi , mixture)

74);

75

76

77 #include "readGravitationalAcceleration.H"

78 #include "readhRef.H"

79 #include "gh.H"

80

81

82 volScalarField p

83 (

84 IOobject

85 (

86 "p",

87 runTime.timeName (),

88 mesh ,

89 IOobject ::NO_READ ,

90 IOobject :: AUTO_WRITE

91),

92 p_rgh + rho*gh

93);

94

95 label pRefCell = 0;

96 scalar pRefValue = 0.0;

97 setRefCell

98 (

99 p,

100 p_rgh ,

101 pimple.dict(),

102 pRefCell ,

103 pRefValue

104);

105

106 if (p_rgh.needReference ())

107 {

108 p += dimensionedScalar

109 (

110 "p",

111 p.dimensions (),

112 pRefValue - getRefCellValue(p, pRefCell)

113);

114 p_rgh = p - rho*gh;

115 }

116

117 mesh.setFluxRequired(p_rgh.name());

118 mesh.setFluxRequired(alpha1.name());

119

120 #include "createMRF.H"

121 #include "createIsoAdvection.H"

First, the dynamic pressure p_rgh and the velocity U are initialized in the domain. Then
the file createPhi which calculates and initializes the relative face-flux field phi is included.
After that an object of the class immiscibleIncompressibleTwoPhaseMixture called
mixture is created. Then alpha1 and alpha2 are created, which are references to alpha1_

and alpha2_. alpha1_ and alpha2_ are the phase fraction of each phase 1 and 2. References
are also created for the density of each phase. These are then used to calculate the density

16

CHAPTER 3. DESCRIPTION OF THE SOURCE CODE

rho for the entire mixture as seen in line 52:

alpha1*rho1 + alpha2*rho2

The rest of the file createFields.H contains code for calculating the mass flux, constructing
the turbulence model and calculating the absolute pressure p. In the final line the file
createIsoAdvection.H is included. This file is also located in the interIsoFoam solver
directory and creates an object of the class isoAdvection called advector.

The remaining part of interIsoFoam is the following time loop

Listing 3.4: interIsoFoam.C

89 Info << "\nStarting time loop\n" << endl;

90

91 while (runTime.run())

92 {

93 #include "readTimeControls.H"

94

95 #include "CourantNo.H"

96 #include "alphaCourantNo.H"

97 #include "setDeltaT.H"

98

99 runTime ++;

100

101 Info << "Time = " << runTime.timeName () << nl << endl;

102

103 // --- Pressure -velocity PIMPLE corrector loop

104 while (pimple.loop())

105 {

106 #include "alphaControls.H"

107 #include "alphaEqnSubCycle.H"

108

109 mixture.correct ();

110

111 if (pimple.frozenFlow ())

112 {

113 continue;

114 }

115

116 #include "UEqn.H"

117

118 // --- Pressure corrector loop

119 while (pimple.correct ())

120 {

121 #include "pEqn.H"

122 }

123

124 if (pimple.turbCorr ())

125 {

126 turbulence ->correct ();

127 }

128 }

129

130 runTime.write();

131

132 Info << "ExecutionTime = " << runTime.elapsedCpuTime () << " s"

133 << " ClockTime = " << runTime.elapsedClockTime () << " s"

17

CHAPTER 3. DESCRIPTION OF THE SOURCE CODE

134 << nl << endl;

135 }

136

137 Info << "End\n" << endl;

138

139 return 0;

140 }

The time loop begins with the inclusion of some more header files, the most interesting
in this case is alphaCourantNo.H. It calculates the interface Courant number. Then the
current time is printed to the screen.

Within each time step the pressure-velocity PIMPLE corrector loop is run. In the beginning,
two files are included for calculating the phase fractions alpha1 and alpha2. The first,
alphaControls.H, is used to look up the number of sub-cycles that are specified for the
alpha calculation. In the second, alphaEqnSubCycle.H, alpha is calculated using the
specified number of sub-cycles. The calculation is done in the file alphaEqn.H (included in
alphaEqnSubCycle.H) which is also located in the interIsoFoam directory.
alphaEqnSubCycle.H ends with updating the density rho.

The file alphaEqn.H contains the following lines for updating the phase fraction alpha1

and the mass flux field rhoPhi:

Listing 3.5: alphaEqn.H

16 // Update alpha1

17 advector.advect ();

18

19 // Update rhoPhi

20 rhoPhi = advector.getRhoPhi(rho1 , rho2);

21

22 alpha2 = 1.0 - alpha1;

Two member functions of the advector object are called, advector.advect() and
advector.getRhoPhi(rho1, rho2). Both are found in the isoAdvection.H class

Listing 3.6: isoAdvection.H

301 //- Advect the free surface. Updates alpha field , taking into account

302 // multiple calls within a single time step.

303 void advect ();

.

.

.

345 //- Return mass flux

346 tmp <surfaceScalarField > getRhoPhi

347 (

348 const dimensionedScalar rho1 ,

349 const dimensionedScalar rho2

350) const

351 {

352 return tmp <surfaceScalarField >

18

CHAPTER 3. DESCRIPTION OF THE SOURCE CODE

353 (

354 new surfaceScalarField

355 (

356 "rhoPhi",

357 (rho1 - rho2)*dVf_/mesh_.time().deltaT () + rho2*phi_

358)

359);

360 }

The function getRhoPhi returns the calculated mass flux. The advect function which
calculates the alpha1 field is however only declared in the isoAdvection.H file. The
definition can be found in the part of the file isoAdvection.C presented below.

Listing 3.7: isoAdvection.C

973 void Foam:: isoAdvection :: advect ()

974 {

975 DebugInFunction << endl;

976

977 scalar advectionStartTime = mesh_.time().elapsedCpuTime ();

978

979 // Initialising dVf with upwind values

980 // i.e. phi[facei]* alpha1[upwindCell[facei]]*dt

981 dVf_ = upwind <scalar >(mesh_ , phi_).flux(alpha1_)*mesh_.time().deltaT ();

982

983 // Do the isoAdvection on surface cells

984 timeIntegratedFlux ();

985

986 // Synchronize processor patches

987 syncProcPatches(dVf_ , phi_);

988

989 // Adjust dVf for unbounded cells

990 limitFluxes ();

991

992 // Advect the free surface

993 alpha1_ -= fvc:: surfaceIntegrate(dVf_);

994 alpha1_.correctBoundaryConditions ();

995

996 // Apply non -conservative bounding mechanisms (clipping and snapping)

997 // Note: We should be able to write out alpha before this is done!

998 applyBruteForceBounding ();

999

1000 // Write surface cell set and bound cell set if required by user

1001 writeSurfaceCells ();

1002 writeBoundedCells ();

1003

1004 advectionTime_ += (mesh_.time().elapsedCpuTime () - advectionStartTime);

1005 }

Inside this function step 1 of the algorithm in section 2.2.3 can be found on line 981, that is,
the initialization of the transported volume dVf. The bounding and clipping taking place in
step 4 can be found on line 990 and line 998, where limitFluxes is the bounding function
and applyBruteForceBounding is the clipping function. Both these functions are defined
in the current file, isoAdvection.C. The rest of the algorithm steps can be found in the
function called by the advect function on line 984, the timeIntegratedFlux function. It

19

CHAPTER 3. DESCRIPTION OF THE SOURCE CODE

is defined earlier in the file isoAdvection.C. This function is however too long to include
here, and its content is instead summarized below.

The timeIntegratedFlux function starts at the beginning of the time step with interpolating
the cell center phase fraction alpha1 to the cell vertices, using the volPointInterpolation
class. This is corresponding to the beginning of step 3.1 of the algorithm. The isosurface is
constructed using functions from the file isoCutCell.C located in

$WM_PROJECT_DIR/src/finiteVolume/fvMatrices/solvers/isoAdvection/isoCutCell

This file is included in isoAdvection.H which is included in isoAdvection.C. isoCutCell.C
is also too long to include here. This file defines the functions used by timeIntegratedFlux

to construct the isosurface.

The cells which are cut by the surface are identified using the vofCutCell function on
isoCutCell_ which is an object of the class isoCutCell

Listing 3.8: isoAdvection.C

263 // Calculate cell status (-1: cell is fully below the isosurface , 0:

264 // cell is cut , 1: cell is fully above the isosurface)

265 label cellStatus = isoCutCell_.vofCutCell

The vofCutCell function is also the function where the construction of the isosurface, as
described in step 3.1, is done. The vofCutCell function constructs the polynomial which
is used to find the desired value of alpha1 so that the cell is cut into the right volume
fractions. This function returns the cellStatus, that is, whether a cell is cut or not by the
isosurface. The isovalue itself is accessed by the function isoValue of the isoCutCell.C

file.

For the cells that are cut and thereby located on the isosurface, the isosurface center and
normal are calculated. This is done using the functions isoFaceCentre and isoFaceArea

in the isoCutCell.C file. These functions returns the result of the function
calcIsoFaceCentreAndArea.

Then the motion of the isosurface is calculated as the dot product between the velocity and
the isosurface normal, as described in step 3.2. This is done inside the timeIntegratedFlux
function. The time integrated face flux, corresponding to ∆Vj is then calculated by the
function timeIntegratedFaceFlux as in step 3.4. Inside this function, the
timeIntegratedArea function of the isoCutFace.C file is called. isoCutFace is found next
to the isoCutCell files and is also included in the isoAdvection.H file. The
timeIntegratedArea function calculates the submerged face area by estimating when the
face vertex points are reached by the isosurface, as described in step 3.3.

Returning to the pimple loop in interIsoFoam.C, the phase fractions have now been
updated. The function mixture.correct() on line 109 calculates the interface curvature
and the laminar viscosity of the mixture. In the rest of the loop the velocity and pressure
fields are calculated in the files UEqn.H and pEqn.H. These are both found in the interIsoFoam
solver directory. The entire process is summarized in the flowchart below.

20

CHAPTER 3. DESCRIPTION OF THE SOURCE CODE

interIsoFoam.C

Include header files

Initialize case

New time step

Calculate Courant number

Set number of alpha sub-cycles

Solve alpha equation

Correct number of sub-cycles executed?

Calculate surface curvature

Solve momentum equation

Solve pressure equation (pressure corrector step)

End PIMPLE loop?

Finished

isoadvection:advect() function

Initialize dVf

timeIntegratedFlux function

Functions in isoCutCell.C

timeIntegratedFaceFlux function

isoCutFace::timeIntegratedArea function

yes

no

21

Chapter 4

Set-up of tutorial case

The solver interIsoFoam is used for incompressible, immiscible and isothermal two-phase
flow cases. It can be applied to similar cases as the original interFoam solver. This chapter
provides instructions for how to modify a case using the solver interFoam so that it uses
interIsoFoam instead.

4.1 weirOverflow tutorial case

The weirOverflow tutorial case can be found in $WM_PROJECT_DIR/tutorials/multiphase/

interFoam/RAS and uses the RAS turbulence model kEpsilon. Both interFoam and
interIsoFoam can be run as laminar or using LES and RAS turbulence models. This
tutorial is copied to the run directory and renamed to weirOverflowIso

cp -R $WM_PROJECT_DIR/tutorials/multiphase/interFoam/RAS/weirOverflow/ $FOAM_RUN

mv weirOverflow/ weirOverflowIso

The directory structure of the tutorial case is as follows:
weirOverflowIso

0.orig

alpha.water.orig

epsilon

include

initialConditions

k

nut

p rgh

U

Allclean

Allrun

constant

g

polyMesh

boundary

faces

22

4.1. WEIROVERFLOW TUTORIAL CASECHAPTER 4. SET-UP OF TUTORIAL CASE

neighbour

owner

points

transportProperties

turbulenceProperties

system

blockMeshDict

controlDict

fvSchemes

fvSolution

setFieldsDict

In the 0.orig directory initial and boundary conditions for the variables can be found.
These are not affected by the choice of surface method and can be kept as they are. Before
running the case the content of the directory must be copied to a directory named 0 in
the case directory. This is just to ensure that clean versions of these files are kept in case
modifications are done. The file alpha.water.orig must also be copied and renamed to
alpha.water inside the 0 directory. The original alpha.water.orig file is kept so that the
boundary and initial conditions used for alpha.water can be found after the setFields

command has been executed. This command adds the initial alpha.water field at the top
of the file, placing the boundary conditions far down in the file. IF changes are required
for the alpha.water conditions, these are made in the file alpha.water.orig which is
the copied and renamed to alpha.water before setFields is executed. The content of
alpha.water.orig can be seen below just to give an example of what the files in the 0

directory look like.

Listing 4.1: alpha.water.orig

1 /* --------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: plus |

5 | \\ / A nd | Web: www.OpenFOAM.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object alpha.water;

14 }

15 // * //

16

17 #include "include/initialConditions"

18

19 dimensions [0 0 0 0 0 0 0];

20

21 internalField uniform 0;

22

23 boundaryField

24 {

25 inlet

23

4.1. WEIROVERFLOW TUTORIAL CASECHAPTER 4. SET-UP OF TUTORIAL CASE

26 {

27 type variableHeightFlowRate;

28 lowerBound 0;

29 upperBound 1;

30 value uniform 0;

31 }

32

33 outlet

34 {

35 type zeroGradient;

36 }

37

38 lowerWall

39 {

40 type zeroGradient;

41 }

42

43 atmosphere

44 {

45 type inletOutlet;

46 inletValue uniform 0;

47 value uniform 0;

48 }

49

50 defaultFaces

51 {

52 type empty;

53 }

54 }

55

56 // *** //

Moving on to the constant directory, also the content of this directory is unmodified. As
mentioned laminar, RAS or LES turbulence models can be chosen and here the RAS model
kEpsilon is used. The turbulence model is chosen in the file turbulenceProperties.

Inside the system directory the files blockMeshDict, decomposeParDict and setFieldsDict

are kept unmodified as they are not solver dependent. Changes must however be done to
the remaining files in this directory.

In the controlDict the application must be changed to interIsoFoam.

In fvSchemes a requiredFlux object must be added, see the following lines:

fluxRequired

{

default no;

p_rgh;

pcorr;

alpha.water;

}

The fluxRequired section makes the face fluxes of the listed variables available to the
solver after the solution of the transport equation. This is necessary for the isoAdvection
scheme.

24

4.1. WEIROVERFLOW TUTORIAL CASECHAPTER 4. SET-UP OF TUTORIAL CASE

In fvSolution some variables must be added to alpha.water

isofaceTol 1e-6; // Error tolerance on alpha when cutting surface

// cells into sub-cells

surfCellTol 1e-6; // Only cells with surfCellTol < alpha < 1-

// surfCellTol are treated as surface cells

nAlphaBounds 3; // Number of times the ad-hoc bounding step should

// try to correct unboundedness. Strictly volume

// conserving (provided that sum(phi) = 0 for a cell).

snapTol 1e-12; // Optional: cells with alpha < snapAlphaTol are

// snapped to 0 and cells with 1 - alpha <

// snapAlphaTol are snapped to 1

clip true; // Optional: clip remaining unboundedness

however these variables have default values and the solver runs without them being specified
as well. If present, the following variables can be removed from alpha.water in fvSolution

nAlphaCorr

MULESCorr

nLimiterIter

solver

smoother

tolerance

relTol

as they were used for the MULES scheme. This was the minimum required alterations
necessary to run a tutorial case with the interIsoFoam solver. More optional changes can
be done to e.g. the type of solvers used in fvSolution to obtain better results. To run the
case, run blockMesh and setFields to generate the mesh and initial alpha.water field,
followed by executing interIsoFoam.

Both the weirOverflowIso tutorial case and the original weirOverflow tutorial case were
run using default settings for the solvers interIsoFoam and interFoam respectively. Apart
from using different solvers all settings were the same for the tutorial cases. The results for
three different time steps are shown below. This is to illustrate the difference between the
surface method MULES used by interFoam and isoAdvector used by interIsoFoam.

In Figures 4.1, 4.2 and 4.3 the phase fraction field is shown for the two solvers at the times
2s, 8 s and 60 s. No obvious improvement of the surface resolution is visible for the figures
obtained from the weirOverflowIso case. To improve the surface sharpness further fine
tuning of the solver parameters are probably required. It is however interesting to note
that for the interIsoFoam solver the water flows along the angled wall after passing the
weir whereas for the interFoam solver it flows out from the wall. Also, some small regions
of phase fractions below 1 are observed near the inlet to the left for the weirOverflowIso

case at later time steps. For many time steps the interFoam solver shows regions detached
from the rest of the water domain with phase fractions of water between 0 and 1, as can be
seen in Figure 4.2. This occurs more rarely for the interIsoFoam solver, indicating that
the surface sharpening method acts to remove such regions.

More thorough comparisons between MULES and isoAdvector, as well as some other
methods, can be found in [8].

25

4.1. WEIROVERFLOW TUTORIAL CASECHAPTER 4. SET-UP OF TUTORIAL CASE

(a) MULES (b) isoAdvector

Figure 4.1: Distribution of the phases at time t=2 s using (a) MULES (interFoam) and (b)
isoAdvector (interIsoFoam).

(a) MULES (b) isoAdvector

Figure 4.2: Distribution of the phases at time t=8 s using (a) MULES (interFoam) and (b)
isoAdvector (interIsoFoam).

(a) MULES (b) isoAdvector

Figure 4.3: Distribution of the phases at time t=60 s using (a) MULES (interFoam) and (b)
isoAdvector (interIsoFoam).

26

Chapter 5

Modification of source code

As previously mentioned, the source code of the isoAdvector method is located in the
directory $WM_PROJECT_DIR/src/finiteVolume/fvMatrices/solvers/isoAdvection

Inside this directory, the subdirectories isoAdvection, isoCutFace and isoCutCell are
located. Each subdirectory contains the .H and .C files for classes with the same name as
te directory. A modification of the solver could be achieved by making a change inside the
isoAdvection.C file. First, some preparatory work must be done.

To keep the original source code, a copy of the code to be modified is made. Since the Make

directory is located at a higher level, in the finiteVolume directory, this entire directory
is copied to the user src directory, and renamed.

cd $WM_PROJECT_USER_DIR/src

cp -R $WM_PROJECT_DIR/src/finiteVolume .

mv finiteVolume myFiniteVolume

cd myFiniteVolume

Inside the Make/files file in the myFiniteVolume directory, the final row must be changed
to:

LIB = $(FOAM_USER_LIBBIN)/libmyFiniteVolume

Then, compile using wmake while standing in the myfFiniteVolume directory. This takes a
long time since this directory contains many files.

Descend into the isoAdvection directory and copy and rename the isoAdvection source
code:

cd fvMatrices/solvers/isoAdvection/isoAdvection

cp -R isoAdvection isoAdvectionMod

Inside the isoAdvectionMod directory, rename all files so that the key string ”isoAdvection”
is followed by ”mod”

mv isoAdvection.C isoAdvectionMod.C

mv isoAdvection.H isoAdvectionMod.H

mv isoAdvectionTemplates.C isoAdvectionModTemplates.C

27

CHAPTER 5. MODIFICATION OF SOURCE CODE

Then make sure the same change is done inside all of these files:

sed -i s/isoAdvection/isoAdvectionMod/g isoAdvection*

Go back to the myFiniteVolume directory. Inside Make/files, add the following line below
the line fvMatrices/solvers/isoAdvection/isoAdvection/isoAdvection.C:

fvMatrices/solvers/isoAdvection/isoAdvectionMod/isoAdvectionMod.C

Compile with wmake libso.

Changes can now be made to the file isoAdvectionMod.C, followed by recompiling with
wmake. To be able to use the modified source code, the string isoAdvection must be
altered to isoAdvectionMod in the files that use this class. These are all located in the
interIsoFoam solver directory. It is suitable to create a new solver to keep the original
source code. This is done by copying the original interIsoFoam solver to the user directory:

foam

cp -r --parents applications/solvers/multiphase/interIsoFoam $WM_PROJECT_

USER_DIR

cd $WM_PROJECT_USER_DIR/applications/solvers/multiphase

mv interIsoFoam interIsoFoamMod

cd interIsoFoamMod

wclean

mv interIsoFoam.C interIsoFoamMod.C

Use again the following command to change the name of the modified source code inside
all files in the solver directory:

sed -i s/isoAdvection/isoAdvectionMod/g *

Inside Make/files (in the solver directory), change isoAdvection to isoAdvectionMod so
that the file content is:

interIsoFoamMod.C

EXE = $(FOAM_USER_APPBIN)/interIsoFoamMod

Inside Make/options, some more changes need to be done. Add the following line at the
top to define a new environment variable:

LIB_USER_SRC = $(WM_PROJECT_USER_DIR)/src

In EXE_INC, add the line

-I$(LIB_USER_SRC)/myFiniteVolume/lnInclude \

In EXE_LIBS, add the lines

-L$(FOAM_USER_LIBBIN) \ -lmyFiniteVolume\

Finally, compile with wmake standing inside the solver directory.

28

Study questions

1. In short, how does the VOF method simulate two phases?

2. How is the correct isovalue found for each cell in the isoAdvector method?

3. How is the total volume of fluid A transported across a face during one time step
calculated in the isoAdvector method, theoretically?

4. How are the files alphaEqn.H and alphaEqnSubCycle.H related?

5. What is advector that appears in the source code used by the interIsoFoam solver?

6. What is done by the function timeIntegratedFaceFlux and where is it called for?

7. Where can settings for the isoAdvector method be specified for an OpenFOAM case?

8. In what directory is the source code located, that must be modified to modify the
isoAdvector method?

29

Bibliography

[1] M. Ishii and T. Hibiki. Thermo-fluid dynamics of two-phase flow. 9th ed. New York,
USA: Springer Science+Business Media, Inc., 2006. isbn: 0-387-28321-8.

[2] C. W. Hirt and B. D. Nichols. Volume of fluid (VOF) method for the dynamics of free
boundaries. Journal of Computational Physics 39 (1981), 201–25.

[3] V. R. Gopala and B. G. van Wachem. Volume of fluid methods for immiscible-fluid
and free-surface flows. Chemical Engineering Journal 141.1 (2008), 204–21.

[4] J. H. Ferziger and M. Perić. Computational methods for fluid dynamics. 5th ed. New
York, USA: Springer, 2002. isbn: 3-540-42074-6.

[5] S. S. Deshpande, L. Anumolu, and M. F. Trujillo. Evaluating the performance of the
two-phase flow solver interFoam. Computational Science Discovery 5 (2012).

[6] FLUENT 6.3 Documentation. 2006. url: https://www.sharcnet.ca/Software/

Fluent6/index.htm (visited on 10/10/2017).

[7] D. L. Youngs. “Time-dependent multi-material flow with large fluid distortion”. Numerical
methods for fluid dynamics. Ed. by K. W. Morton and M. J. Baines. Academic Press,
1982.

[8] J. Roenby, H. Bredmose, and H. Jasak. A computational method for sharp interface
advection. Royal Society Open Science 11.3 (2016).

30

