
Division of Combustion

Department of Applied Mechanics

Chalmers University of Technology

CFD with OpenSource software, project

Dynamic mesh refinement in
dieselFoam

Developed for OpenFOAM-1.6.x
Requires: dieselFoam

Author:
Anne Kösters

Peer reviewed by:

Anton Persson
Jelena Andric

November 3, 2010

Contents

1 Dynamic mesh refinement in dieselFoam 2
1.1 Introduction . 2
1.2 Solvers and Libraries . 3
1.3 Mesh refinement in the interDyMFoam solver 3
1.4 Mesh refinement in the dieselFoam solver: dieselDyMFoam 6

1.4.1 General set-up to get a new solver 6
1.4.2 dieselDyMFoam.C . 6
1.4.3 createFields.H . 9
1.4.4 YEqn.H . 9
1.4.5 Make/options . 9

2 Tutorial, step by step 10
2.1 Solver dieselDyMFoam . 10
2.2 Setting up the case . 13

3 Results 15
3.1 Mesh . 15
3.2 Vapor and liquid penetration . 18
3.3 Sensitivity studies . 18

3.3.1 Initial cell size . 18
3.3.2 Refinement range of Ytf . 20
3.3.3 CPU time . 20

A 21
A.1 dynamicRefineFvMesh.C.save . 21

1

Chapter 1

Dynamic mesh refinement in
dieselFoam

1.1 Introduction

The idea of this tutorial is to implement a dynamic mesh refinement in the die-
selFoam solver. The results of simulations of several spray properties are grid
dependent. A grid that gives satisfied results with acceptable computation time
is needed. For spray simulations the cell size is getting important if a droplet/
parcel or vapor phase occurs in a cell, since in these cells the gas and liquid phase
are interacting. A dynamic mesh refinement would allow to start with a relatively
coarse mesh what will be refined during the simulation in regions where smaller
cells are needed. Hence the computation time would be reduced and the results are
less depdendent on the initial cell size. Figure 1.1 shows the results of vapor and
liquid penetration using two different meshes, while vapor penetration is given by
the continiously increasing curve. As can be seen the results differ using different
grid sizes.

Figure 1.1: Results of vapor and liquid penetration of a Diesel spray using two different
grids

2

Dynamic mesh refinement in dieselFoam 3

1.2 Solvers and Libraries

The solvers and libraries used in this tutorial for comparisons or modifications are:

- interDyMFoam
- dieselFoam
- dynamicFvMesh
- dieselEngineFoam

1.3 Mesh refinement in the interDyMFoam solver

The interDyMFoam solver in OpenFOAM-1.6.x has a mesh refinement implemeta-
tion at the phase interface between two different phases. All cells where the phase
interface exist are refined. This solver is used as an example how to modify the
dieselFoam solver. Since the mesh refinement in the dieselFoam solver should take
place if a droplet or vapor occurs in a cell, the volume fraction of the evaporated
fuel will be used to define the cells that should be refined. The mesh refinement in
the interDyMFoam is achieved using the dynamicFvMesh library and is initialized
with a function called update() (mesh.update()), compare the source code of the
interDyMFoam solver below.

#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "MULES.H"
#include "subCycle.H"
#include "interfaceProperties.H"
#include "twoPhaseMixture.H"
#include "turbulenceModel.H"

// * //

int main(int argc, char *argv[])
{

#include "setRootCase.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"
#include "readGravitationalAcceleration.H"
#include "readPISOControls.H"
#include "initContinuityErrs.H"
#include "createFields.H"
#include "readTimeControls.H"
#include "correctPhi.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"

// * //
Info<< "\nStarting time loop\n" << endl;

while (runTime.run())
{

#include "readControls.H"
#include "CourantNo.H"

Dynamic mesh refinement in dieselFoam 4

// Make the fluxes absolute
fvc::makeAbsolute(phi, U);

#include "setDeltaT.H"

runTime++;

Info<< "Time = " << runTime.timeName() << nl << endl;

scalar timeBeforeMeshUpdate = runTime.elapsedCpuTime();

// Do any mesh changes
mesh.update();

if (mesh.changing())
{

Info<< "Execution time for mesh.update() = "
<< runTime.elapsedCpuTime() - timeBeforeMeshUpdate
<< " s" << endl;

}

if (mesh.changing() && correctPhi)
{

#include "correctPhi.H"
}

// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);

if (mesh.changing() && checkMeshCourantNo)
{

#include "meshCourantNo.H"
}

twoPhaseProperties.correct();

#include "alphaEqnSubCycle.H"

#include "UEqn.H"

// --- PISO loop
for (int corr=0; corr<nCorr; corr++)
{

#include "pEqn.H"
}

turbulence->correct();

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;

Dynamic mesh refinement in dieselFoam 5

}

Info<< "End\n" << endl;

return 0;
}

The function called mesh.update() is defined in the dynamicFvMesh library and can
be found in the file
/OpenFOAM/OpenFOAM-1.6.x/src/dynamicFvMesh/dynamicRefineFvMesh/dynamicRefineFvMesh.C.save.

This function defines the mesh refinement and is shown in the appendix. The main
steps in this function can be summarized as follows:

- read the dynamicMeshDict (located in the constant folder of the case)
- interpolation to get the point values of the field on which the refinement should
happen
- definition of all points that are within the refinement range
- definition of cells that should be refined
- if there are cells that should be refined, do the refinement
- definition of points (cells) that will be unrefined
- if there are cells that should be unrefined, do the unrefinement
- return hasChanged to the code after the refinement is done

The dictionary that defines some values that are needed for the refinement must be
located in the constant folder of a case. The dicitionary is called dynamicMeshDict
and reads:

dynamicFvMesh dynamicRefineFvMesh;

dynamicRefineFvMeshCoeffs
{

refineInterval 1;
field alpha1;
lowerRefineLevel 0.001;
upperRefineLevel 0.999;
unrefineLevel 10;
nBufferLayers 1;
maxRefinement 2;
maxCells 200000;
correctFluxes
(

(
phi
U

)
);
dumpLevel true;

}

The field that is used to define the cells that should be refined is alpha1. The refine
interval has to be greater or equal to one. The lower and upper refine level set the
range for the refinement. After some modification with the point values of the field
gamma, the values depending on the field gamma have to be in the range of the

Dynamic mesh refinement in dieselFoam 6

refine level, otherwise the cell is defined to be not refined. The entry nBufferLayers
stands for the number of buffer layers that will be extended. Maximal refinement
means the number of refinements that are allowed for one cell. Also the fluxes that
need to be corrected after the refinement are defined.

1.4 Mesh refinement in the dieselFoam solver: dieselDyM-
Foam

1.4.1 General set-up to get a new solver

First step is to copy the dieselFoam in the user directory and modify the solver
name and due to this the file Make/files and the name of the .C file. Also be sure
you save the new solver in the user library.

1.4.2 dieselDyMFoam.C

To achieve a mesh refinement in dieselFoam a more detailed look on the solver
has to be done. Where and how can the function mesh.update() be added and
are there any modifications needed in the solver? The dieselEngineFoam is very
similar to the dieselFoam solver, just a moving mesh is applied. So actually the
mesh is changed during the simulation. The same should happen in the dieselFoam
solver, or actually in the new solver called dieselDyMFoam, but cells will be refined
and not moved. In the dieselEngineFoam solver the changes to the mesh happen
before the spray is evolved (dieselspray.evolve()), hence the mesh.update() will be
placed before the function dieselSpray.evolve(). We also need to make the fluxes
absolute as it is done in the interDyMFoam solver, so that they can be divided due
to the cell refinement. Also the file createMesh.H needs to be interchanged with
createDynamicMesh.H and dynamicFvMesh.H has to be included as well. The new
file dieselDyMFoam.C in the solver dieselDyMFoam reads:

#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "hCombustionThermo.H"
#include "turbulenceModel.H"
#include "spray.H"
#include "psiChemistryModel.H"
#include "chemistrySolver.H"
#include "multivariateScheme.H"
#include "IFstream.H"
#include "OFstream.H"
#include "Switch.H"

// * //

int main(int argc, char *argv[])
{

#include "setRootCase.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"$
#include "createFields.H"
#include "readGravitationalAcceleration.H"
#include "readCombustionProperties.H"
#include "createSpray.H"

Dynamic mesh refinement in dieselFoam 7

#include "initContinuityErrs.H"
#include "readTimeControls.H"
#include "compressibleCourantNo.H"
#include "setInitialDeltaT.H"

// * //

Info<< "\nStarting time loop\n" << endl;

while (runTime.run())
{

#include "readPISOControls.H"
#include "compressibleCourantNo.H"
#include "setDeltaT.H"

//***
//**
// Make the fluxes absolute
fvc::makeAbsolute(phi, U);
//**
//***

runTime++;}
Info<< "Time = " << runTime.timeName() << nl << endl;

Info<< "Evolving Spray" << endl;

//***
//***
//start mesh refinement

scalar timeBeforeMeshUpdate = runTime.elapsedCpuTime();

// Do any mesh changes
mesh.update();

if (mesh.changing())
{
Info<< "Execution time for mesh.update() = "
<< runTime.elapsedCpuTime() - timeBeforeMeshUpdate
<< " s" << endl;
}

//end mesh refinement
//***
//***

dieselSpray.evolve();

Dynamic mesh refinement in dieselFoam 8

Info<< "Solving chemistry" << endl;

chemistry.solve
(

runTime.value() - runTime.deltaT().value(),
runTime.deltaT().value()

);

// turbulent time scale
{

volScalarField tk =
Cmix*sqrt(turbulence->muEff()/rho/turbulence->epsilon());

volScalarField tc = chemistry.tc();

// Chalmers PaSR model
kappa = (runTime.deltaT() + tc)/(runTime.deltaT()+tc+tk);

}

chemistrySh = kappa*chemistry.Sh()();

#include "rhoEqn.H"
#include "UEqn.H"

for (label ocorr=1; ocorr <= nOuterCorr; ocorr++)
{

#include "YEqn.H"
#include "hsEqn.H"

// --- PISO loop
for (int corr=1; corr<=nCorr; corr++)
{

#include "pEqn.H"
}

}

turbulence->correct();

#include "spraySummary.H"

rho = thermo.rho();

if (runTime.write())
{

chemistry.dQ()().write();
}

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;

}

Info<< "End\n" << endl;

Dynamic mesh refinement in dieselFoam 9

return 0;
}

1.4.3 createFields.H

Also the createFields.H file needs to be modified. The original file can be found
in the dieselEngineFoam solver. This file must be copied to the new solver and
a new field called Ytf needs to be created. Ytf stands for the volume fraction of
evaporated fuel. This volume fraction is used to define the cells where the mesh
should be refined. The definition of pcorrTypes is taken from the interDyMFoam
solver and somehow defines a pressure correction at the boundaries.

1.4.4 YEqn.H

The file YEqn.H needs to be copied from the dieselEngineFoam solver and modified.
In the YEqn.H file the transport equation for the species is defined. We need to
add the transport equation for the evaporated fuel.

1.4.5 Make/options

Finally also the file Make/options need to be modified. The second line needs to
be changed to have the right path to the dieselEngineFoam solver directory:

-I$(LIB_SRC)/../applications/solvers/combustion/dieselEngineFoam \

Also the new libraries that are needed for the mesh refinement process need to be
added. See the new libraries below:

EXE_INC = \

[...]

-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude \

[...]

EXE_LIBS = \

[...]

-lmeshTools \
-ldynamicFvMesh \
-ltopoChangerFvMesh \

[...]

Chapter 2

Tutorial, step by step

2.1 Solver dieselDyMFoam

A new solver will be defined, based on the dieselFoam solver. So the dieselFoam
solver is copied in the user directory and renamed to the new solver name dieselDyM-
Foam. Also the name of the solver in all the files is changed.

sol

cp -r combustion/dieselFoam/ $WM_PROJECT_USER_DIR/applications/solvers/

cd $WM_PROJECT_USER_DIR/applications/solvers

mv dieselFoam dieselDyMFoam

cd dieselDyMFoam

mv dieselFoam.C dieselDyMFoam.C

sed -i s/dieselFoam/dieselDyMFoam/g dieselDyMFoam.C

sed -i s/dieselFoam/dieselDyMFoam/g Make/files

To set the library path right, do following change in Make/files:
change

EXE = $(FOAM_APPBIN)/dieselDyMFoam

to

EXE = $(FOAM_USER_APPBIN)/dieselDyMFoam

And also change in Make/options:

-I../dieselEngineFoam \

to

-I$(LIB_SRC)/../applications/solvers/combustion/dieselEngineFoam \

10

Dynamic mesh refinement in dieselFoam 11

Try to compile the solver.

wclean
wmake

Now the solver will be modified to achieve the mesh refinement during simulation.
First the function YEqn.H will be copied from the dieselEngineFoam solver:

cp $FOAM_SOLVERS/combustion/dieselEngineFoam/YEqn.H .

A new field that defines the source term of the volume fraction of the evaporated
volume is needed. Also the transport equation of the evaporated volume fraction
Ytf is needed. This is done by adding following lines in the end of the YEqn.H file:

volScalarField YtfSource
(

IOobject
(

"kappa",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE

),
mesh,
dimensionedScalar("zero",dieselSpray.evaporationSource(0)().dimensions() , 0.0)

);

forAll(composition.Y(), i)
{

YtfSource += dieselSpray.evaporationSource(i);
}

solve
(

fvm::ddt(rho, Ytf)
+ mvConvection->fvmDiv(phi, Ytf)
- fvm::laplacian(turbulence->muEff(), Ytf)
==
YtfSource,
mesh.solver("Yi")

);

Since we need a new field that defines the volume fraction of the evaporated fuel
the file createFields.H, located in the dieselEngineFoam solver, needs to be copied
and modified in our new solver by doing:

cp $FOAM_SOLVERS/combustion/dieselEngineFoam/createFields.H .

Modify the file by adding following lines in the end then:

Dynamic mesh refinement in dieselFoam 12

volScalarField Ytf
(

IOobject
(

"Ytf",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE

),
mesh

);

wordList pcorrTypes
(

p.boundaryField().size(),
zeroGradientFvPatchScalarField::typeName

);

for (label i=0; i<p.boundaryField().size(); i++)
{

if (p.boundaryField()[i].fixesValue())
{

pcorrTypes[i] = fixedValueFvPatchScalarField::typeName;
}

}

label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, pRefValue);

Finally the .C file of our new solver needs to be modified. We need to do several
modifications that are shown below:
1. change the line

#include "createMesh.H"

to

#include "createDynamicFvMesh.H"

2. add in the beginning of the file following line:

#include "dynamicFvMesh.H"

3. before runTime++; following lines need to be added:

//***************************************
// Make the fluxes absolute
fvc::makeAbsolute(phi, U);
//***************************************

4. before the line dieselSpray.evolve(); the function doing the mesh refinement has
to be called by adding:

Dynamic mesh refinement in dieselFoam 13

//***
//start mesh refinement
//***

scalar timeBeforeMeshUpdate = runTime.elapsedCpuTime();

// Do any mesh changes
mesh.update();

if (mesh.changing())
{
Info<< "Execution time for mesh.update() = "
<< runTime.elapsedCpuTime() - timeBeforeMeshUpdate
<< " s" << endl;
}
//***
//end mesh refinement
//***

The last step is to change the Make/options. Following lines need to be added:
1. add in EXE INC following three lines:

-I$(LIB_SRC)/dynamicMesh/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/dynamicFvMesh/lnInclude \

2. add in EXE LIBS following lines:

-lmeshTools \
-ldynamicFvMesh \
-ltopoChangerFvMesh \

Finally the new solver can be compiled by doing:

wclean
wmake

2.2 Setting up the case

We also need to set up a case where the new solver can be applied. First we enter
our run directory by typing:

run

The following lines copy the aachenBomb case from the tutorials and add the dy-
namicMeshDict in the constant folder of the case.

cp -r $FOAM_TUTORIALS/combustion/dieselFoam/aachenBomb/ .
cd aachenBomb
cp $FOAM_TUTORIALS/multiphase/interDyMFoam/ras/damBreakWithObstacle/constant/ \
dynamicMeshDict constant/

Now we need to apply our field that we want to do the refinement on in the dynam-
icMeshDict. In constant/dynamicMeshDict change

alpha1

Dynamic mesh refinement in dieselFoam 14

to

Ytf

We also need to add the field Ytf in the 0 directory. This can easily be done by
doing:

cp 0/Ydefault 0/Ytf

and also change Tdefault to Ytf in the file Ytf.
In system/fvSolution following lines need to be added in the PISO loop :

pRefPoint (0 0 0);
pRefValue 0;

So the PISO loop in the end of the file will read:

PISO
{

nCorrectors 2;
nNonOrthogonalCorrectors 0;
pRefPoint (0 0 0);
pRefValue 0;

}

Now all changes that are necessary to get the case running are done. Last step is
to run blockMesh, after that the case can be started with the command dieselDyM-
Foam. But spray simulations are very sensitive to different set-ups and also the
spray model implemented in OpenFOAM is not always very robust. A crash during
the simulation can happen and the set-ups need to be modified to avoid it. Sug-
gestions are to modify the blockMeshDict, so that the initial cell size is good to use
cell refinement. Also the Courant number, the time step and the unrefineLevel in
the dynamicMeshDict are a good start to modify the case. These modifications are
connected to spray modeling in general and will not be explained in more detail.

Chapter 3

Results

3.1 Mesh

Figure 3.1-3.3 show the mesh at several time steps after starting the injection of
the fuel. As can be seen the grid refines in a certain region during the simulation.
Figure 3.4-3.6 show the mesh at different times after start of injection, colored by
the field Ytf. This field also traces back to the shape of the spray. As can be seen
the refinement happens in the cells where the field occurs.

Figure 3.1: Mesh t=0 ms

15

Dynamic mesh refinement in dieselFoam 16

Figure 3.2: Mesh t=1 ms

Figure 3.3: Mesh t=2 ms

Figure 3.4: Mesh t=0 ms

Dynamic mesh refinement in dieselFoam 17

Figure 3.5: Mesh t=1 ms

Figure 3.6: Mesh t=2 ms

Dynamic mesh refinement in dieselFoam 18

3.2 Vapor and liquid penetration

Figure 3.7 shows the results of vapor and liquid penetration using different grids
(0.5x0.5x1.0mm, 1.0x1.0x2.0mm and a grid starting with 1.0x1.0x2.0mm and refined
to 0.5x0.5x1.0mm), while vapor penetration is given by the continiously increasing
curve. With the dynamic mesh refinement the liquid penetration is calculated
the same as with the finer grid, but the computation time is lower. The vapor
penetration differs for all three grids. The vapor penetration is more sensitive due
to several set-ups of the several spray submodels, especially the turbulence models
and their constant.

Figure 3.7: Vapor and liquid penetration

3.3 Sensitivity studies

3.3.1 Initial cell size

Since the results of simulations of sprays are grid size dependent, the final cell size
after the mesh refinement should be constant. The advantage of dynamic mesh
refinement is that the initial cell size can be changed. Figure 3.8 shows the results
for vapor and liquid penetration using different initial cell sizes by keeping the final
cell size after mesh refinement constant with around 0.5x0.5x1.0 mm. The results of
vapor and liquid penetration are not depending between the grids that were tested
here.
Figure 3.9 and 3.10 show the grid of two different simulations at t=1 ms. The first
figure (Fig. 3.9) shows the grid with an initial cell size of around 1.0x1.0x2.0mm
and a minimum cell size in the refined region of around 0.5x0.5x1.0mm. Figure 3.10
shows the grid with an initial cell size of around 4.0x4.0x8.0mm and a minimum cell
size in the refined region of around 0.5x0.5x1.0mm. As can be seen the cell number
of the mesh with an initial cell size of 4.0x4.0x8.0mm is less in the region around
the spray, but at it was shown in figure 3.8 the results are the same.

Dynamic mesh refinement in dieselFoam 19

Figure 3.8: Vapor and liquid penetration, different initial grid sizes

Figure 3.9: Initial cell size = 1.0x1.0x2.0 mm, t=1 ms

Figure 3.10: Initial cell size = 4.0x4.0x8.0 mm, t=1 ms

Dynamic mesh refinement in dieselFoam 20

3.3.2 Refinement range of Ytf

Figure 3.11 shows the results of vapor and liquid penetration using different lower
limits for the refinement range of Ytf. The results are independent up to an lower
limit of Ytf=0.001. If the limit is further increased (Ytf=0.01) the results of the
liquid penetration start to differ slightly. The vapor penetration is less sensitive on
the lower refinement range limit of Ytf.

Figure 3.11: Vapor and liquid penetration, different refinement range of Ytf

3.3.3 CPU time

The CPU time for the different grids are shown in table 3.1.

Table 3.1: Comparison different CPU times

mesh CPU time [s]
0.5 25583

initial 1.0 14135
initial 2.0 8588
initial 4.0 8468

As can be seen the CPU time is decreasing more than 65% (for initial cell size of
around 4.0x4.0x8.0mm) using dynamic mesh refinement. To increase the initial cell
size from 2.0x2.0x4.0mm to 4.0x4.0x8.0mm does not influence the CPU time very
much anymore, so an initial cell size of 2.0x2.0x4.0mm could be a good choice for
further simulations.

Appendix A

A.1 dynamicRefineFvMesh.C.save

bool dynamicRefineFvMesh::update()
{

// Re-read dictionary. Choosen since usually -small so trivial amount
// of time compared to actual refinement. Also very useful to be able
// to modify on-the-fly.
dictionary refineDict
(

IOdictionary
(

IOobject
(

"dynamicMeshDict",
time().constant(),
*this,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false

)
).subDict(typeName + "Coeffs")

);

label refineInterval = readLabel(refineDict.lookup("refineInterval"));

if (refineInterval == 0)
{

return false;
}
else if (refineInterval < 0)
{

FatalErrorIn("dynamicRefineFvMesh::update()")
<< "Illegal refineInterval " << refineInterval << nl
<< "The refineInterval setting in the dynamicMeshDict should"
<< " be >= 1." << nl
<< exit(FatalError);

}

bool hasChanged = false;

21

Dynamic mesh refinement in dieselFoam 22

// Note: cannot refine at time 0 since no V0 present since mesh not
// moved yet.

if (time().timeIndex() > 0 && time().timeIndex() % refineInterval == 0)
{

label maxCells = readLabel(refineDict.lookup("maxCells"));

if (maxCells <= 0)
{

FatalErrorIn("dynamicRefineFvMesh::update()")
<< "Illegal maximum number of cells " << maxCells << nl
<< "The maxCells setting in the dynamicMeshDict should"
<< " be > 0." << nl
<< exit(FatalError);

}

label maxRefinement = readLabel(refineDict.lookup("maxRefinement"));

if (maxRefinement <= 0)
{

FatalErrorIn("dynamicRefineFvMesh::update()")
<< "Illegal maximum refinement level " << maxRefinement << nl
<< "The maxCells setting in the dynamicMeshDict should"
<< " be > 0." << nl
<< exit(FatalError);

}

const volScalarField& gamma = lookupObject<volScalarField>
(

refineDict.lookup("field")
);

const scalar minLevel = readScalar(refineDict.lookup("minLevel"));
const scalar maxLevel = readScalar(refineDict.lookup("maxLevel"));
const label nBufferLayers =

readLabel(refineDict.lookup("nBufferLayers"));

// Points marked for refinement
PackedList<1> refinePoint(nPoints(), 0);

{
// Do naive interpolation to get point values
// ~~

scalarField pointGamma(nPoints(), 0.0);
labelList nPointGamma(nPoints(), 0);

forAll(pointCells(), pointI)
{

const labelList& pCells = pointCells()[pointI];

forAll(pCells, i)

Dynamic mesh refinement in dieselFoam 23

{
pointGamma[pointI] += gamma[pCells[i]];
nPointGamma[pointI]++;

}
}

syncTools::syncPointList
(

*this,
pointGamma,
plusEqOp<scalar>(), // combine op
0.0, // null value
false // no separation

);
syncTools::syncPointList
(

*this,
nPointGamma,
plusEqOp<label>(), // combine op
0, // null value
false // no separation

);

forAll(pointGamma, pointI)
{

pointGamma[pointI] /= nPointGamma[pointI];
}

// Mark all points with gamma witin refine range
markRefinePoints
(

pointGamma,
minLevel,
maxLevel,
refinePoint

);
}

{
labelList cellsToRefine
(

selectRefineCells
(

maxCells,
maxRefinement,
refinePoint

)
);

label nCellsToRefine = returnReduce
(

cellsToRefine.size(), sumOp<label>()

Dynamic mesh refinement in dieselFoam 24

);

if (nCellsToRefine > 0)
{

// Refine/update mesh and map fields
autoPtr<mapPolyMesh> map = refine(cellsToRefine);

// Update the interpolated field such that newly created points
// don’t get unrefined.
const labelList& pointMap = map().pointMap();
const labelList& reversePointMap = map().reversePointMap();

// Map refinePoint. Set new points to a refine level
{

PackedList<1> newRefinePoint(pointMap.size());

forAll(pointMap, pointI)
{

label oldPointI = pointMap[pointI];

if (oldPointI < 0)
{

newRefinePoint.set(pointI, 1);
}
else if (reversePointMap[oldPointI] != pointI)
{

newRefinePoint.set(pointI, 1);
}
else
{

newRefinePoint.set(pointI, refinePoint.get(pointI));
}

}
refinePoint.transfer(newRefinePoint);

}

hasChanged = true;
}

}

// Extend with a buffer layer to prevent neighbouring points being
// unrefined.
for (label i = 0; i < nBufferLayers; i++)
{

extendMarkedPoints(refinePoint);
}

{
// Select unrefineable points that are not marked in refinePoint
labelList pointsToUnrefine
(

selectUnrefinePoints
(

Dynamic mesh refinement in dieselFoam 25

refinePoint
)

);

label nSplitPoints = returnReduce
(

pointsToUnrefine.size(),
sumOp<label>()

);

if (nSplitPoints > 0)
{

// Refine/update mesh
unrefine(pointsToUnrefine);

hasChanged = true;
}

}

if ((nRefinementIterations_ % 10) == 0)
{

// Compact refinement history occassionally (how often?).
// Unrefinement causes holes in the refinementHistory.
const_cast<refinementHistory&>(meshCutter().history()).compact();

}
nRefinementIterations_++;

}

mesh.changing(hasChanged);

return hasChanged;
}

