
CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 1

A walk through some OpenFOAM code: Vector

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 2

A walk through some OpenFOAM code: Vector

Prerequisites

• You have a basic knowledge in object oriented C++ programming.

• You have a basic knowledge in the structure of OpenFOAM programming.

Learning outcomes

• You will gain experience in reading OpenFOAM classes and figure out how they work.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 3

The Vector directory

• Let’s have a look at some examples in the OpenFOAM Vector class:

$FOAM_SRC/OpenFOAM/primitives/Vector

(go there while looking at the following slides)

To which library does it belong?

• We find (version dependent):

boolVector doubleVector labelVector vector VectorI.H

complexVector floatVector lists Vector.H

- The Vector* files are for the templated Vector class (capital first letter V means that

it is a templated class). Same name as directory means that they are the main files!

- Inline functions must be implemented in the class declaration file, since they must be

inlined without looking at the class definition file. In OpenFOAM there are usually files

named as VectorI.H containing inline functions, and those files are included in the

corresponding Vector.H file. There is no *.C file in the Vector class, since all functions

are inlined.

- Directories *{V,v}ector (except bool*) are typedef for Vector of complex, double,

float, label and scalar. The directory lists defines lists of vectors.

What is a scalar? See $FOAM_SRC/OpenFOAM/primitives/Scalar/scalar/scalarFwd.H

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 4

Vector description

Let’s have a close look at the Vector class!

It is usually good to read the class description, in Vector.H:

Description

Templated 3D Vector derived from VectorSpace adding construction from

3 components, element access using x(), y() and z() member functions and

the inner-product (dot-product) and cross product operators.

A centre() member function which returns the Vector for which it is called

is defined so that point which is a typedef to Vector\<scalar\> behaves as

other shapes in the shape hierarchy.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 5

Vector.H file header and footer
The Vector.H file header is given by:

#ifndef Vector_H

#define Vector_H

#include "contiguous.H"

#include "VectorSpace.H"

// * //

namespace Foam

{

// Forward Declarations

template<class T> class List;

You already know what all of this means.

The footer shows that we can think of VectorI.H as a part of Vector.H:

#include "VectorI.H"

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 6

Vector inheritance

The class declaration shows that the Vector class inherits from (read: “is a”) VectorSpace:

template<class Cmpt>

class Vector

:

public VectorSpace<Vector<Cmpt>, Cmpt, 3>

{

The VectorSpace class is found in $FOAM_SRC/OpenFOAM/primitives/VectorSpace, where

(in VectorSpace.H) the tree template parameters are defined as:

template<class Form, class Cmpt, direction Ncmpts>

I.e., a Vector has 3 components of type Cmpt, and it has all the attributes of the VectorSpace

class with the same visibility of those attributes.

We will not look at all the details of the VectorSpace class now, but it is important to remem-

ber this inheritance and later check up what needs to be checked up in that class!

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 7

Some Vector member data
In Vector.H, all new attributes are public, and some new member data is defined:

public:

// Typedefs

//- Equivalent type of labels used for valid component indexing

typedef Vector<label> labelType;

// Member Constants

//- Rank of Vector is 1

static constexpr direction rank = 1;

//- Component labeling enumeration

enum components { X, Y, Z };

constexpr: See https://en.cppreference.com/w/cpp/language/constexpr

direction: Integer, See: $FOAM_SRC/OpenFOAM/primitives/direction/direction.H

enum: See https://en.cppreference.com/w/cpp/language/enum

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 8

Vector constructor declarations
Default and specialized constructor declarations are found in Vector.H:

// Generated Methods

//- Default construct

Vector() = default;

//- Copy construct

Vector(const Vector&) = default;

//- Copy assignment

Vector& operator=(const Vector&) = default;

// Constructors

//- Construct initialized to zero

inline Vector(const Foam::zero);

//- Copy construct from VectorSpace of the same rank

template<class Cmpt2>

inline Vector(const VectorSpace<Vector<Cmpt2>, Cmpt2, 3>& vs);

//- Construct from three components

inline Vector(const Cmpt& vx, const Cmpt& vy, const Cmpt& vz);

//- Construct from Istream

inline explicit Vector(Istream& is);

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 9

Vector constructor definitions

• The constructor definitions are usually found in the corresponding .C file, but since the
constructors for the Vector are inlined they are found in the VectorI.H file, e.g.:

template<class Cmpt>

inline Foam::Vector<Cmpt>::Vector

(

const Cmpt& vx,

const Cmpt& vy,

const Cmpt& vz

)

{

this->v_[X] = vx;

this->v_[Y] = vy;

this->v_[Z] = vz;

}

Here, this is a pointer to the object that is being constructed, i.e. we set the member

data v_ (inherited from class VectorSpace) to the values supplied as arguments to the

constructor, using enumerators X, Y and Z for the three components.

• It is here obvious that the member function Vector belongs to the class Vector, which is

templated with Cmpt, and that it is a constructor since it has the same name as the class.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 10

Vector access functions

• Some access functions are declared in Vector.H, e.g.:

inline const Cmpt& x() const;

inline Cmpt& x();

and defined in VectorI.H:

template<class Cmpt>

inline const Cmpt& Foam::Vector<Cmpt>::x() const

{

return this->v_[X];

}

template<class Cmpt>

inline Cmpt& Foam::Vector<Cmpt>::x()

{

return this->v_[X];

}

Again, the pointer this points at the object that is used to call the function.

The first one is for const objects, and the second one can manipulate non-const objects.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 11

Vector member functions
Two member functions are declared in Vector.H:

//- Normalise the vector by its magnitude

inline Vector<Cmpt>& normalise();

//- Return *this (used for point which is a typedef to Vector<scalar>.

inline const Vector<Cmpt>& centre

(

const Foam::List<Vector<Cmpt>>&

) const;

and defined in VectorI.H (not shown, since we don’t care about the definitions at the moment).

We will get back to the last ("Traits") part of Vector.H later.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 12

Vector operators

• Some Vector operators are defined in VectorI.H, e.g.:

template<class Cmpt>

inline typename innerProduct<Vector<Cmpt>, Vector<Cmpt>>::type

operator&(const Vector<Cmpt>& v1, const Vector<Cmpt>& v2)

{

return Cmpt(v1.x()*v2.x() + v1.y()*v2.y() + v1.z()*v2.z());

}

template<class Cmpt>

inline Vector<Cmpt> operator^(const Vector<Cmpt>& v1, const Vector<Cmpt>& v2)

{

return Vector<Cmpt>

(

(v1.y()*v2.z() - v1.z()*v2.y()),

(v1.z()*v2.x() - v1.x()*v2.z()),

(v1.x()*v2.y() - v1.y()*v2.x())

);

}

They can be changed for a specific type of vector, such as in complexVectorI.H.

We will get back to the strangely written return type of innerProduct later ("Traits").

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 13

Specialization of the Vector class - vector (Vector<scalar>)

The Vector class is templated, so it can work for different component types. The most common

one is Vector<scalar>. This is implemented in the vector directory, which has the files:

vector.C vector.H

The most important line in vector.H is:

typedef Vector<scalar> vector;

saying that a vector is mainly a Vector<scalar>.

The rest of that file contains "Traits", which will be discussed later.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 14

Specialization of the Vector class - vector (Vector<scalar>)

The base class VectorSpace has declared (in VectorSpace.H) that the sub-classes should

have some static member data:

// Static Data Members

static const char* const typeName;

static const char* const componentNames[];

static const Form zero;

static const Form one;

static const Form max;

static const Form min;

static const Form rootMax;

static const Form rootMin;

These are not given any value in neither the VectorSpace nor the Vector classes, since they

depend on the type of component.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 15

Specialization of the Vector class - vector (Vector<scalar>)
The so far un-set static members of base class VectorSpace are set in vector.C:

template<>

const char* const Foam::vector::vsType::typeName = "vector";

template<>

const char* const Foam::vector::vsType::componentNames[] = {"x", "y", "z"};

template<>

const Foam::vector Foam::vector::vsType::zero(vector::uniform(0));

template<>

const Foam::vector Foam::vector::vsType::one(vector::uniform(1));

template<>

const Foam::vector Foam::vector::vsType::max(vector::uniform(VGREAT));

template<>

const Foam::vector Foam::vector::vsType::min(vector::uniform(-VGREAT));

template<>

const Foam::vector Foam::vector::vsType::rootMax(vector::uniform(ROOTVGREAT));

template<>

const Foam::vector Foam::vector::vsType::rootMin(vector::uniform(-ROOTVGREAT));

We will not go into the details of this now.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 16

Other specialization of the Vector class

The other specializations are defined in a similar way:

complexVector

doubleVector

floatVector

labelVector

However, boolVector is implemented another way, since it "does not share very many vector-

like characteristics".

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 17

Traits

At the end of Vector.H we see a section named "Traits".

Traits is a way to specialize a templated class.

The section starts with (e.g.):

//- Data are contiguous if component type is contiguous

template<class Cmpt>

struct is_contiguous<Vector<Cmpt>> : is_contiguous<Cmpt> {};

This says that if the Cmpt is contiguous (composed only of Foam::scalar elements), also
Vector<Cmpt> is contiguous. Those structures (classes) are defined in:

$FOAM_SRC/OpenFOAM/primitives/contiguous/contiguous.H

E.g.:

// Base definition for (integral | floating-point) as contiguous

template<class T>

struct is_contiguous

:

std::is_arithmetic<T>

{};

See: https://en.cppreference.com/w/cpp/types/is_arithmetic

Search: grep -r "if (is_contiguous" $FOAM_SRC

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 18

Traits

We also see e.g.:

template<class Cmpt>

class typeOfRank<Cmpt, 1>

{

public:

typedef Vector<Cmpt> type;

};

This declares a class named typeOfRank, templated with Cmpt (any type of component) and

rank 1 (for a vector, which would be 2 for a tensor). The class only defines a typedef such that

type means Vector<Cmpt>.

The class is just waiting to be used.

If there is one for vector, there should be one for each rank?

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 19

Traits
Search for declarations of class typeOfRank:

$ grep -r "class typeOfRank" $FOAM_SRC

$FOAM_SRC/OpenFOAM/primitives/Tensor/Tensor.H:class typeOfRank<Cmpt, 2>

$FOAM_SRC/OpenFOAM/primitives/Vector/Vector.H:class typeOfRank<Cmpt, 1>

$FOAM_SRC/OpenFOAM/primitives/VectorSpace/products.H:class typeOfRank

$FOAM_SRC/OpenFOAM/primitives/VectorSpace/products.H:class typeOfRank<Cmpt, 0>

We see that VectorSpace/products.H declares the existence of the class:

template<class Cmpt, direction rank>

class typeOfRank

{};

It also defines the specialization for rank 0:

template<class Cmpt>

class typeOfRank<Cmpt, 0>

{

public:

typedef Cmpt type;

};

Then the Vector and Tensor classes add ranks 1 and 2.

So, how can it be used?

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 20

Traits
Copy $FOAM_APP/test/vector and change Test-vector.C to:

#include "vector.H"

#include "tensor.H"

#include "IOstreams.H"

using namespace Foam;

int main(int argc, char *argv[])

{

Info<< typeOfRank<scalar, 0>::type(1)<<endl;

Info<< typeOfRank<scalar, 1>::type(1,2,3)<<endl;

Info<< typeOfRank<bool, 1>::type(true,false,true)<<endl;

Info<< typeOfRank<vector, 1>::type(vector(1,2,3),vector(1,2,3),vector(1,2,3))<<endl;

Info<< typeOfRank<scalar, 2>::type(1,2,3,4,5,6,7,8,9)<<endl;

return 0;

}

Compile and run!

We see that the class::type can be used as a type, e.g. scalar(1), vector(1,2,3).

So, where is it used?

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 21

Traits
Search for typeOfRank (where we get in addition to the declarations):

$ grep -r "typeOfRank" $FOAM_SRC

...

$FOAM_SRC/OpenFOAM/primitives/VectorSpace/products.H: typedef typename typeOfRank

$FOAM_SRC/OpenFOAM/primitives/VectorSpace/products.H: typedef typename typeOfRank

$FOAM_SRC/OpenFOAM/primitives/VectorSpace/products.H: typedef typename typeOfRank

...

One of those is:

template<class arg1, class arg2>

class innerProduct

{

public:

typedef typename typeOfRank

<

typename pTraits<arg1>::cmptType,

direction(pTraits<arg1>::rank) + direction(pTraits<arg2>::rank) - 2

>::type type;

};

This class also makes a typedef of type, which it gets from the class typeOfRank, using

the cmptType of arg1 and the ranks of both arguments (yielding type and rank of an inner

product of arguments of that type).

There are also outerProduct and crossProduct, differing in the calculated rank.

This class is also just waiting to be used.

A quick look at pTraits...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 22

Traits
In $FOAM_SRC/OpenFOAM/primitives/pTraits/pTraits.H, we see:

template<class PrimitiveType>

class pTraits

:

public PrimitiveType

{

public:

// Constructors

//- Copy construct from primitive

explicit pTraits(const PrimitiveType& p)

:

PrimitiveType(p)

{}

//- Construct from Istream

explicit pTraits(Istream& is)

:

PrimitiveType(is)

{}

};

The class inherits from the class of the template argument, which may be Vector<Cmpt>,

which inherits from VectorSpace.

In VectorSpace.H we see: typedef Cmpt cmptType;

In Vector.H we see: static constexpr direction rank = 1;

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 23

Traits

In VectorI.H we see the definition of the inner product as:

template<class Cmpt>

inline typename innerProduct<Vector<Cmpt>, Vector<Cmpt>>::type

operator&(const Vector<Cmpt>& v1, const Vector<Cmpt>& v2)

{

return Cmpt(v1.x()*v2.x() + v1.y()*v2.y() + v1.z()*v2.z());

}

I.e., the returned type is specified above by:

typename innerProduct<Vector<Cmpt>, Vector<Cmpt>>::type

This uses the "trait" classes innerProduct and typeOfRank to determine the returned type

depending on the types of the arguments to the inner product.

Please help me design an example of why it needs to be done this way!

We will not investigate the "Traits" of vector.H now.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 24

The Vector class in Doxygen

• Use Doxygen to search for Vector, click on Vector, and click on Vector< Cmpt >

• Find all member data and member functions, including inherited ones.

	A walk through some OpenFOAM code: Vector

