
Cite as: Arabnejad, M. H.: Implementation of HLLC-AUSM low-Mach scheme in a density-based

compressible solver in FOAM-extend. In Proceedings of CFD with OpenSource Software, 2016, Edited by

Nilsson. H., http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2016

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Project work:

Implementation of HLLC-AUSM low-Mach
scheme in a density-based compressible solver in

FOAM-extend

Developed for FOAM-extend 4.0

Author:
Mohammad Hossein Arabnejad
Chalmers University of Technology
mohammad.h.arabnejad@chalmers.se

Peer reviewed by:
Navdeep Kumar
Håkan Nilsson

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone

through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

February 14, 2017

Learning outcomes

The reader will learn:

How to use it:

• How to use the dbnsFoam solver

The theory of it:

• The theoretical background of the dbnsFoam solver.

How it is implemented:

• The implementation of the flux calculation procedure in the dbnsFoam solver

How to modify it:

• How to implement a new flux scheme in the dbsnFoam solver

1

Contents

1 Theoretical Background 3
1.1 Introduction . 3
1.2 Governing Equations . 3
1.3 The HLLC-AUSM Scheme . 4

1.3.1 The HLLC Scheme . 5
1.3.2 AUSM+-up for all speeds scheme . 5

1.4 Low storage Runge-Kutta time integration . 6
1.5 Higher Order Reconstruction . 6

2 Flux calculation in dbnsFoam 8
2.1 dbnsFoam.C . 8
2.2 createFields.H . 10
2.3 The basicNumericFlux class . 10
2.4 numericFlux class . 12
2.5 The numericFluxes.H file . 13

3 Implementation of HLLC-AUSM low mach scheme 15

4 Test Case 19
4.1 Pre-processsing . 19

4.1.1 Boundary conditions . 19
4.1.2 controlDict . 19
4.1.3 Flux scheme and limiter function . 20

4.2 Results . 20

2

Chapter 1

Theoretical Background

1.1 Introduction

Numerical methods in Computational Fluid Dynamic are divided into two groups, pressure-based
methods and density-based methods. In pressure-based methods, the pressure is calculated from
the pressure correction equation which is derived by combining the momentum equation and the
continuity equation. Pressure-based methods are originally developed for low-mach number in-
compressible flows where the pressure is a weak function of density. In density-based methods,
the density is calculated from the continuity equation while the pressure is given by an equation
of state. Density-based methods are well-suited for high speed compressible flows and flows with
shock waves. In foam-extend-4.0, two density based solvers have been implemented: dbnsFoam and
dbnsTurboFoam. In this chapter, the theoretical background of the dbnsFoam solver is described.

1.2 Governing Equations

In dbnsFoam, the compressible Euler equations are used as the governing equations. These equations
include continuity, momentum, and energy equations and are in the integral conservative form given
as

∂

∂t

∫∫∫
V

U dV +

∫∫
∂V

~F (U) · ~n d∂V = 0 (1.1)

where U = [ρ, ρu, ρv, ρw, ρE]
T

represents the vector of conserved variables with ρ the density,

~u = [u, v, w]
T

the velocity vector, E = e+ 1
2~u · ~u the specific total energy,and e the specific internal

energy. In equation 1.1, ~n = [nx, ny, nz]
T

denotes the unit normal vector of surface ∂V and the

inviscid fluxes vector ~F (U) · ~n is given by

~F (U) · ~n =


ρû

ρûu+ pnx
ρûv + pny
ρûw + pnz
ρû(E + p/ρ)

 (1.2)

where û is the velocity component normal to the surface ∂V ,

û = ~u · ~n = unx + vny + wnz (1.3)

In the finite volume formulation, equation 1.1 should be solved for each cell, e.g. cell i in figure 1.1.
For cell i with the boundaries fj , equation 1.1 becomes

∂

∂t

∫∫∫
Vi

U dV +

∫∫
∂Vi

~F (U) · ~n d∂Vi = 0 (1.4)

3

1.3. THE HLLC-AUSM SCHEME CHAPTER 1. THEORETICAL BACKGROUND

The average of the conserved variables over the volume of cell i, |Vi|, is defined as

Ūi =
1

|Vi|

∫∫∫
Vi

U dV (1.5)

Substituting equation 1.5 into equation 1.4 yields

∂Ūi

∂t
+

1

|Vi|

Nfi∑
j=1

~F (U) · ~nfi dSfi = 0 (1.6)

where ~F (U)· ~nfi is the flux over the face fi. The solution of equation 1.6 requires a flux discretization
scheme which calculates the flux of over each face. In the following section, one of these flux
discretization scheme is described.

Figure 1.1: The sketch of two finite volume cells and their common face

1.3 The HLLC-AUSM Scheme

The HLLC-AUSM Scheme [1] belongs to the group of Godunov schemes [2] where the flux at each
face is calculated by solving a Riemann problem for the face. A Riemann problem is an initial
problem with initial conditions given by

U(x, 0) =

{
UL for x ≤ 0
UR for x > 0

(1.7)

In Godonve schemes, the face is assumed to be at x = 0, therefore the solution of the Riemann
problem at x = 0 is used to calculate the flux through the face. The exact solution of the Riemann
problem requires an iterative numerical procedure due to the non-linearity of the governing equations.
This iterative numerical procedure is computationally expensive, especially for simulations with a
large number of cells. One way to avoid the iterations is to use an approximate solution of the
Riemann problem instead of the exact one. The HLLC-AUSM scheme follows this approach by
combining the solution of two approximate Riemann solvers, HLLC and AUSM. It is based on the
main idea of the AUSM scheme in which the numerical flux ~F (U) ·~nij is decomposed into two parts:
a convective component and a pressure vector as

~F (U) · ~nij = ṁFconv + Fpressure (1.8)

where the convective and pressure vectors are defined as

Fconv =


1

uL,R

vL,R

wL,R

HL,R

 , Fpressure =


0
p̄nx
p̄ny
p̄nz
0

 (1.9)

Depending on the sign of the mass flux, the convective vector Fconv is computed using the left
state values or right state values. For the positive mass flux, the left state values are used for the
calculation of Fconv, otherwise the right state values are used. In HLLC-AUSM scheme, the mass
ṁ is calculated with the HLLC scheme while p̄ is calculated according to the AUSM scheme.

4

1.3. THE HLLC-AUSM SCHEME CHAPTER 1. THEORETICAL BACKGROUND

1.3.1 The HLLC Scheme

In the HLLC (Harten-Lax-van Leer-Contact) scheme[3], the solution of the Riemann problem is
approximated by three wave structures. These waves divide the solution into four constant regions.
Figure 1.2 shows the three-wave structure of the HLLC scheme and the corresponding four constant
regions. Here we are looking for the mass flux at x = 0, which corresponds to the mass flux through
the faces. The HLLC mass flux is given by,

ṁ =


ρLuL 0 ≤ SL

ρLuL + SL

(
ρL

SL−uL

SL−S∗ − ρL
)

SL < 0 ≤ S∗
ρRuR + SR

(
ρR

SR−uR

SR−S∗ − ρR
)

S∗ < 0 ≤ SR

ρRuR SR < 0

(1.10)

where the three waves are calculated using

Figure 1.2: three-wave structure of the HLLC scheme

SL ≡ min (uL − cL, uR − cR) (1.11)

SR ≡ max (uL + cL, uR + cR) (1.12)

S∗ ≡
ρRûR(SR − ûR)− ρLûL(SR − ûL) + pL − pR

ρR(SR − ûR)− ρL(SR − ûL)
(1.13)

In above equations, cL and cR are the left and right speed of sound respectively.

1.3.2 AUSM+-up for all speeds scheme

As mentioned before, the main idea of the AUSM scheme is to split the numerical flux into a
convective flux part and a pressure flux part(equation 1.8). Several variants of AUSM scheme have
been proposed in the literature. In the HLLC-AUSM scheme, the pressure flux part is calculated
based on the AUSM+-up for all speeds scheme[4] which is developed to improve the accuracy of
AUSM schemes for low-Mach number flows. The pressure part is given by a fifth-order polynomial
as

p̄ = P+
(5)(ML)pL + P−(5)(MR)pR −KuP+

(5)(ML)P−(5)(MR)(ρL + ρR)(uR − uL)fc
cL + cR

2
(1.14)

In this polynomial, the pressure functions P and split Mach numbers M are defined as

P±(5) =

{
(1/M)M±(1) |M | ≥ 1

M±(2)
[
(±2−M)∓ 16γMM∓(2)

]
|M | < 1

(1.15)

5

1.4. LOW STORAGE RUNGE-KUTTA TIME INTEGRATIONCHAPTER 1. THEORETICAL BACKGROUND

M±(1) =
1

2
(M ± |M |) (1.16)

M±(2) = ±1

4
(M ± 1)2 (1.17)

where

ML =
2uL

(cL + cR)
, MR =

2uR
(cL + cR)

(1.18)

The additional variables are found by

fc = M0(2−M0)

M0 = min(1,max(M̄2,M2
∞))

M̄2 =
u2L + u2R

2(cL+cR
2)2

γ =
3

16
(−4 + 5f2c)

(1.19)

1.4 Low storage Runge-Kutta time integration

In dbnsFoam, the semi-descretized form of the governing equations ,equation1.6, are integrated in
time using Runge-Kutta schemes. The basic idea of this scheme is to calculate several values of Ūi in
interval time between t and t+∆t and then combine them to obtain the higher order approximation

of Ū
n+1
i . The number of times that Ūi is evaluated during each time step corresponds to the stage

of the Runge-Kutta schemes. In dbnsFoam, a 4-stage low-storage Runge-Kutta method is applied
as the time integration scheme as

Ū
(1)
i = Ū

(n)
i − 0.11

∆t

|Vi|

Nfi∑
j=1

∫∫
Sij

~F (Un) · ~nij dSij (1.20)

Ū
(2)
i = Ū

(1)
i − 0.2766

∆t

|Vi|

Nfi∑
j=1

∫∫
Sij

~F
(
U(1)

)
· ~nij dSij (1.21)

Ū
(3)
i = Ū

(2)
i − 0.5

∆t

|Vi|

Nfi∑
j=1

∫∫
Sij

~F
(
U(2)

)
· ~nij dSij (1.22)

Ū
n+1
i = Ū

(3)
i −

∆t

|Vi|

Nfi∑
j=1

∫∫
Sij

~F
(
U(3)

)
· ~nij dSij (1.23)

where |Vi| is the volume of the cell and ∆t is the time step.

1.5 Higher Order Reconstruction

As mentioned earlier, the numerical flux is calculated using the approximate solution of a Riemann
problem which is a function of left and right states at the interface. The left and right state are
unknown and should be calculated using the states at the cell centers. The simplest way is to assume
that the left and right states at interface are equal to the state at the center of left and right cells.

UL = ŪI ,UR = ŪJ (1.24)

This method leads to a first-order spatial accuracy while a second order spatial accuracy is more
desirable in many applications. A second-order spatial accuracy can be achieved by the piece-wise
linear reconstruction method

givenbyUL = Ūi + Φi [(∇U)cg,i(~xij − ~xcg,i)] (1.25)

6

1.5. HIGHER ORDER RECONSTRUCTION CHAPTER 1. THEORETICAL BACKGROUND

UR = Ūj + Φj [(∇U)cg,j(~xij − ~xcg,j)] (1.26)

Here, Φ ∈ [0, 1] is the limiter function. In Foam extend, the limiters are located in

$FOAM_SRC/finiteVolume/finiteVolume/gradientLimiters

7

Chapter 2

Flux calculation in dbnsFoam

This chapter describes the procedure of flux calculation in the dbnsFoam solver. The dbnsFoam
solver is described as a density-based compressible flow solver with explicit time-marching according
to the source code. $FOAM/SOLVERS/compressible/dbnsFoam is the location of the top-level folder.
The following files and directory can be found in this folder.

createFields.H

dbnsFoam.C

Make

files

options

The Make folder contains the paths to the location of the included header files and also the list
of source files that must be compiled. The dbnsFoam.C file has the source code of the dbnsFoam
solver and createFields.H is included in dbnsFoam.C to create fields, eg. velocity, pressure, etc., and
the object of classes related to thermophysical modeling and flux calculation method.

2.1 dbnsFoam.C

The dbnsFoam.C file is the top level source file of the dbsnFoam solver and it contains several include
statements which add the required functionalities to the dbnsFoam solver. The main class for flux
calculation is the numericFlux class which is included in dbnsFoam.C by the following line:

#include "numericFlux.H"

This class is described in Section 2.4. The main function of dbnsFoam.C is shown below:

int main(int argc, char *argv[])1

{2

include "setRootCase.H"3

include "createTime.H"4

include "createMesh.H"5

include "createFields.H"6

include "createTimeControls.H"7

8

// * //9

10

Info<< "\nStarting time loop\n" << endl;11

12

// Runge-Kutta coefficient13

scalarList beta(4);14

beta[0] = 0.1100;15

beta[1] = 0.2766;16

8

2.1. DBNSFOAM.C CHAPTER 2. FLUX CALCULATION IN DBNSFOAM

beta[2] = 0.5000;17

beta[3] = 1.0000;18

19

// Switch off solver messages20

lduMatrix::debug = 0;21

22

while (runTime.run())23

{24

include "readTimeControls.H"25

include "readFieldBounds.H"26

include "compressibleCourantNo.H"27

include "setDeltaT.H"28

29

runTime++;30

31

Info<< "\n Time = " << runTime.value() << endl;32

33

// Low storage Runge-Kutta time integration34

forAll (beta, i)35

{36

// Solve the approximate Riemann problem for this time step37

dbnsFlux.computeFlux();38

39

// Time integration40

solve41

(42

1.0/beta[i]*fvm::ddt(rho)43

+ fvc::div(dbnsFlux.rhoFlux())44

);45

46

solve47

(48

1.0/beta[i]*fvm::ddt(rhoU)49

+ fvc::div(dbnsFlux.rhoUFlux())50

);51

52

solve53

(54

1.0/beta[i]*fvm::ddt(rhoE)55

+ fvc::div(dbnsFlux.rhoEFlux())56

);57

58

include "updateFields.H"59

}60

61

runTime.write();62

63

Info<< " ExecutionTime = "64

<< runTime.elapsedCpuTime()65

<< " s\n" << endl;66

}67

68

Info<< "\n end \n";69

70

9

2.2. CREATEFIELDS.H CHAPTER 2. FLUX CALCULATION IN DBNSFOAM

return(0);71

}72

In the main function, the code includes createFields.H at line 6. The functionality of this file
is described in 2.2. Line 14-15 of the code create a scalarList that contains the coefficients of the
4-stage low-storage Runge-Kutta time integration method. This scalarList is then used when the
code performs the time integration using the 4-stage low-storage Runge-Kutta scheme at lines 35-60.
Inside the loop for time integration, the computeFlux() function of the class numericFlux is called.
This function updates the fluxes of all faces using the selected flux scheme and limiter function. At
line 59, the code includes the updateFields.H file which computes the primitive variables using
the conserved variables and updates the primitive variables at the boundaries using the boundary
conditions.

2.2 createFields.H

As mentioned earlier, the createFields.H file is included in the dbnsFoam.C file inside the main
function. In this file, the code creates a pointer to the thermophysical model that is specified in
thermophysicalProperties dictionary. Then it constructs the fields for the primitive variables and
the conserved variables. At the end of the createFields.H file, an object for the numerical flux is
constructed. This is done by the following snippet of code where the function New is called:

// Create numeric flux

autoPtr<basicNumericFlux> dbnsFluxPtr = basicNumericFlux::New

(

p,

U,

T,

thermo()

);

The New function belongs to the basicNumericFlux class and it is referred to as a selector function
in OpenFOAM’s run-time selection mechanism. The New function takes p, U, T, and thermo() as
arguments and returns the pointer to the object of the NumericFlux class. This pointer is stored in
the dbnsFluxPtr object. The thermo() is a reference to the selected thermophysical model and is
constructed in the createFields.H file. At the final line of createFields.H, the dbnsFlux object is
created to store a reference to the object pointed at by dbnsFluxPtr.

basicNumericFlux& dbnsFlux = dbnsFluxPtr();

As the New function is a member function of the basicNumericFlux class, this class is described in
2.3.

2.3 The basicNumericFlux class

The basicNumericFlux class is the base class for run-time selectable numerical flux methods which
are implemented as subclasses of the basicNumericFlux class. Using basicNumericFlux and based on
the parameters specified at run-time, the solver can decide which flux method and limiter functions
should be used for the flux calculation. Run-time selectability is achieved by defining a hash table
of pointers to the constructors of the basicNumericFlux subclasses. This is done by the following
lines in basicNumericFlux.H

declareRunTimeSelectionTable

(

autoPtr,

basicNumericFlux,

10

2.3. THE BASICNUMERICFLUX CLASSCHAPTER 2. FLUX CALCULATION IN DBNSFOAM

state,

(

const volScalarField& p,

const volVectorField& U,

const volScalarField& T,

basicThermo& thermo

),

(p, U, T, thermo)

);

and the following lines in basicNumericFlux.C,

defineRunTimeSelectionTable(basicNumericFlux, state);

The next step is to define a selector function in the basicNumericFlux class. This function reads
the parameters during the run-time and determines which subclass of basicNumericFlux must be
constructed. In the basicNumericFlux class, this function is named New. The implementation of
the New function is shown below:

Foam::autoPtr<Foam::basicNumericFlux> Foam::basicNumericFlux::New1

(2

const volScalarField& p,3

const volVectorField& U,4

const volScalarField& T,5

basicThermo& thermo6

)7

{8

const dictionary& subDict =9

p.mesh().schemesDict().subDict("divSchemes").subDict("dbns");10

11

word name = word(subDict.lookup("flux")) + "Flux"12

+ word(subDict.lookup("limiter")) + "Limiter";13

14

Info<< "Selecting numericFlux " << name << endl;15

16

stateConstructorTable::iterator cstrIter =17

stateConstructorTablePtr_->find(name);18

19

if (cstrIter == stateConstructorTablePtr_->end())20

{21

FatalErrorIn("basicNumericFlux::New(const fvMesh&)")22

<< "Unknown basicNumericFlux type " << name << nl << nl23

<< "Valid basicNumericFlux types are:" << nl24

<< stateConstructorTablePtr_->sortedToc() << nl25

<< exit(FatalError);26

}27

28

return autoPtr<basicNumericFlux>(cstrIter()(p, U, T, thermo));29

}30

The verb!New! function reads the name of the flux scheme and limiter function from the dbns

subdictionary of divSchemes in the fvScheme file (Lines 9-13,). Then it combines the names of
flux scheme and limiter functions into one word and prints this word in the output. At lines 17-27,
the function uses this combined name to look up the appropriate constructor in the hash table of
available constructors for the basicNumericFlux subclasses. Finally, if the function can find the
combined name in the hash table, it returns the pointer to the selected constructor.

11

2.4. NUMERICFLUX CLASS CHAPTER 2. FLUX CALCULATION IN DBNSFOAM

2.4 numericFlux class

As mentioned earlier, the numerical flux methods are implemented as subclasses of the basicNumer-
icFlux class. The numericFlux class is the main class for the flux calculation and it’s implementation
is located in \$FOAM_SRC/dbns/numericFlux/. This class is a template class with two templated
parameters, Flux and Limiter. The Flux parameter is related to the flux method and the Limiter

parameter is related to the limiter function. In dbnsFoam.C the following member functions of
numericFlux are called.

• computeFlux()

• rhoFlux()

• rhoUFlux()

• rhoEFlux()

Here, the implementation of these function are briefly described.

computeFlux()

The implementation of the computeFlux() function is in numericFlux.C and it updates the fluxes
based on the current state. This function constructs the limter functions for the pressure, velocity,
and temperature fields based on the Limiter parameter.

MDLimiter<scalar, Limiter> scalarPLimiter

(

this->p_,

gradP

);

MDLimiter<vector, Limiter> vectorULimiter

(

this->U_,

gradU

);

MDLimiter<scalar, Limiter> scalarTLimiter

(

this->T_,

gradT

);

// Get limiters

const volScalarField& pLimiter = scalarPLimiter.phiLimiter();

const volVectorField& ULimiter = vectorULimiter.phiLimiter();

const volScalarField& TLimiter = scalarTLimiter.phiLimiter();

Then the function updates the fluxes rhoFlux_, rhoUFlux_, and rhoEFlux_ for all of the internal
and boundary faces by calling Flux::evaluteFlux.

Flux::evaluateFlux

(

rhoFlux_[faceI],

rhoUFlux_[faceI],

rhoEFlux_[faceI],

p_[own] + pLimiter[own]*(deltaRLeft & gradP[own]),

12

2.5. THE NUMERICFLUXES.H FILE CHAPTER 2. FLUX CALCULATION IN DBNSFOAM

p_[nei] + pLimiter[nei]*(deltaRRight & gradP[nei]),

U_[own] + cmptMultiply(ULimiter[own], (deltaRLeft & gradU[own])),

U_[nei] + cmptMultiply(ULimiter[nei], (deltaRRight & gradU[nei])),

T_[own] + TLimiter[own]*(deltaRLeft & gradT[own]),

T_[nei] + TLimiter[nei]*(deltaRRight & gradT[nei]),

R[own],

R[nei],

Cv[own],

Cv[nei],

Sf[faceI],

magSf[faceI]

);

In the evaluateFlux function, the first three arguments are the fluxes that are updated when the
function is called. The next ten arguments are the current left and right states of the face. For
example, the left state for the pressure is assigned by the line,

p_[own] + pLimiter[own]*(deltaRLeft & gradP[own])

where deltaRLeft represents the distance between the face center and the center of left cell, pLimiter
is the limiter function value and gradP is the gradient of the pressure. The value of pLimiter
determines the accuracy of thr left state reconstruction . If pLimiter is zero, the left state of the
face is assumed to be the same as the state at the center of left cell which corresponds to first order
of accuracy. If pLimiter is non-zero, then the left state is calculated based on a piece-wise linear
reconstruction method according to equation 1.25. This reconstruction method leads to the second
order of accuracy. The implementation of the evaluteFlux function based on different flux schemes
is in \$FOAM_SRC/dbns/dbnsFlux.

rhoFlux(), rhoUFlux(), and rhoEFlux()

The rhoFlux(), rhoUFlux(), and rhoEFlux() functions return the updated fluxes.

//- Return density flux

virtual const surfaceScalarField& rhoFlux() const

{

return rhoFlux_;

}

//- Return velocity flux

virtual const surfaceVectorField& rhoUFlux() const

{

return rhoUFlux_;

}

//- Return energy flux

virtual const surfaceScalarField& rhoEFlux() const

{

return rhoEFlux_;

}

2.5 The numericFluxes.H file

As a part of the runtime-selectable mechanism, it is required to add the constructors of the basic-
NumericFlux subclasses to the hash table of constructors. This task is done in numericFluxes.H.
In this file, the makeBasicNumericFluxForAllLimiters macro is executed for all of the implemented
flux schemes.

13

2.5. THE NUMERICFLUXES.H FILE CHAPTER 2. FLUX CALCULATION IN DBNSFOAM

makeBasicNumericFluxForAllLimiters(rusanovFlux);

makeBasicNumericFluxForAllLimiters(betaFlux);

makeBasicNumericFluxForAllLimiters(roeFlux);

makeBasicNumericFluxForAllLimiters(hllcFlux);

The makeBasicNumericFluxForAllLimiters macro inserts the constructor of the NumericalFlux class
instances into the hash table. These instances are created by assigning different flux schemes and
limiter functions to the template arguments of NumericalFlux class.

14

Chapter 3

Implementation of HLLC-AUSM
low mach scheme

In this chapter, the implementation of the HLLC-AUSM scheme is explained step by step. The
implementation is done in foam-extend-4.0. Since the dbns library already has the implementation
of the HLLC scheme in $FOAM_SRC/dbns/dbnsFlux/hllcFlux/, we use the files related to this
scheme as a starting point. First, we go to $WM_PROJECT_USER_DIR/src and create a folder with
the name hllcAusmFlux and copy the following files from dbns library into it.

mkdir hllcAusmFlux

cp $FOAM_SRC/dbns/dbnsFlux/hllcFlux/hllcFlux.H hllcAusmFlux/

cp $FOAM_SRC/dbns/dbnsFlux/hllcFlux/hllcFlux.C hllcAusmFlux/

cp $FOAM_SRC/dbns/numericFlux/numericFluxes.C hllcAusmFlux/

We rename hllcFlux.H and hllcFlux.C to hllcAusmFlux.H and hllcAusmFlux.C and replace hllcFlux
with hllcAusmFlux in the files using the sed command

sed -i s/hllcFlux/hllcAusmFlux/g hllcAusmFlux*

sed -i s/hllcFlux/hllcAusmFlux/g numericFluxes.C

We delete the following files in numericFluxes.C

#include "rusanovFlux.H"

#include "roeFlux.H"

#include "betaFlux.H"

#include "hllcALEFlux.H"

makeBasicNumericFluxForAllLimiters(rusanovFlux);

makeBasicNumericFluxForAllLimiters(betaFlux);

makeBasicNumericFluxForAllLimiters(roeFlux);

and create the Make folder containing files and options files in the hllcAusmFlux folder

mkdir hllcAusmFlux/Make

touch hllcAusmFlux/Make/options

touch hllcAusmFlux/Make/files

Then we copy the following lines into files

hllcAusmFlux.C

numericFluxes.C

LIB = $(FOAM_USER_LIBBIN)/libhllcAusmFlux

and copy the following lines into options

15

CHAPTER 3. IMPLEMENTATION OF HLLC-AUSM LOW MACH SCHEME

EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \

-I$(LIB_SRC)/dbns/lnInclude

LIB_LIBS = \

-lfiniteVolume \

-lmeshTools \

-ldbns

The next step is to change the implementation of the evaluateFlux function in hllcAusmFlux.C.
This function updates the fluxes based on the current left and right states of the face. At this point,
hllcAusmFlux.C has the implementation of evaluteFlux based on the HLLC scheme. We keep the
following lines and remove the rest of the code in the implementation of evaluateFlux function.

// decode left and right:

// normal vector

const vector normalVector = Sf/magSf;

// Ratio of specific heat capacities

const scalar kappaLeft = (RLeft + CvLeft)/CvLeft;

const scalar kappaRight = (RRight + CvRight)/CvRight;

// Compute conservative variables assuming perfect gas law

// Density

const scalar rhoLeft = pLeft/(RLeft*TLeft);

const scalar rhoRight = pRight/(RRight*TRight);

// DensityVelocity

const vector rhoULeft = rhoLeft*ULeft;

const vector rhoURight = rhoRight*URight;

// DensityTotalEnergy

const scalar rhoELeft = rhoLeft*(CvLeft*TLeft+0.5*magSqr(ULeft));

const scalar rhoERight = rhoRight*(CvRight*TRight+0.5*magSqr(URight));

// Compute left and right total enthalpies:

const scalar HLeft = (rhoELeft + pLeft)/rhoLeft;

const scalar HRight = (rhoERight + pRight)/rhoRight;

// Compute qLeft and qRight (q_{l,r} = U_{l,r} \bullet n)

const scalar qLeft = (ULeft & normalVector);

const scalar qRight = (URight & normalVector);

// Speed of sound, for left and right side, assuming perfect gas

const scalar aLeft =

Foam::sqrt(max(0.0,kappaLeft * pLeft/rhoLeft));

const scalar aRight =

Foam::sqrt(max(0.0,kappaRight * pRight/rhoRight));

To update the fluxes based on the HLLC-AUSM scheme, we need to calculate the HLLC mass

16

CHAPTER 3. IMPLEMENTATION OF HLLC-AUSM LOW MACH SCHEME

flux from equation 1.10. As this equation has the signal speeds as parameters, we need to calculate
them first. This can be done by adding the following lines to the code.

// compute signal speeds for face:

const scalar SLeft = min(qLeft-aLeft, qRight-aRight);

const scalar SRight = max(qLeft+aLeft, qRight+aRight);

const scalar SStar = (rhoRight*qRight*(SRight-qRight)

- rhoLeft*qLeft*(SLeft - qLeft) + pLeft - pRight)/

stabilise((rhoRight*(SRight-qRight)-rhoLeft*(SLeft-qLeft)),VSMALL);

Then, we can calculate the HLLC mass flux by the following lines

scalar m_dot = 0.0;

if (pos(SLeft))

{

m_dot = rhoLeft*qLeft;

}

else if (pos(SStar))

{

scalar omegaLeft = scalar(1.0)/stabilise((SLeft - SStar), VSMALL);

m_dot = rhoLeft*qLeft + SLeft*(rhoLeft*omegaLeft*(SLeft-qLeft)-rhoLeft);

}

else if (pos(SRight))

{

scalar omegaRight = scalar(1.0)/stabilise((SRight - SStar), VSMALL);

m_dot = rhoRight*qRight + SRight*(rhoRight*omegaRight*(SRight-qRight)-rhoRight);

}

else if (neg(SRight))

{

m_dot = rhoRight*qRight;

}

else

{

Info << "Error in HLLC Riemann solver" << endl;

}

The next step is to calculate the pressure component of the fluxes from AUSM+-up for all speeds
scheme. First, we need to calculate split Mach numbers (equation 1.16 and equation 1.17) and the
pressure functions (equation 1.15). This can be done by adding the following lines:

const scalar beta = 1.0/8.0;

const scalar Kp = 0.25;

const scalar Ku = 0.75;

const scalar sigma = 1.0;

const scalar aTilde = 0.5*(aLeft+aRight);

const scalar rhoTilde = 0.5*(rhoLeft+rhoRight);

const scalar sqrMaDash = (sqr(qLeft)+sqr(qRight))/(2.0*sqr(aTilde));

const scalar MaInf = 0.01;

const scalar sqrMaZero = min(1.0,max(sqrMaDash,sqr(MaInf)));

const scalar MaZero = Foam::sqrt(sqrMaZero);

const scalar fa = MaZero*(2.0-MaZero);

const scalar alpha = 3.0/16.0*(-4.0+5.0*sqr(fa));

const scalar MaRelLeft = qLeft /aTilde;

const scalar MaRelRight = qRight/aTilde;

17

CHAPTER 3. IMPLEMENTATION OF HLLC-AUSM LOW MACH SCHEME

const scalar magMaRelLeft = mag(MaRelLeft);

const scalar magMaRelRight = mag(MaRelRight);

const scalar Ma1PlusLeft = 0.5*(MaRelLeft +magMaRelLeft);

const scalar Ma1MinusRight = 0.5*(MaRelRight-magMaRelRight);

const scalar Ma2PlusLeft = 0.25*sqr(MaRelLeft +1.0);

const scalar Ma2PlusRight = 0.25*sqr(MaRelRight+1.0);

const scalar Ma2MinusLeft = -0.25*sqr(MaRelLeft -1.0);

const scalar Ma2MinusRight = -0.25*sqr(MaRelRight-1.0);

const scalar P5alphaPlusLeft = ((magMaRelLeft >= 1.0) ?

(Ma1PlusLeft/MaRelLeft) : (Ma2PlusLeft *((2.0-MaRelLeft)

-16.0*alpha*MaRelLeft *Ma2MinusLeft)));

const scalar P5alphaMinusRight = ((magMaRelRight >= 1.0) ?

(Ma1MinusRight/MaRelRight) : (Ma2MinusRight*((-2.0-MaRelRight)

+16.0*alpha*MaRelRight*Ma2PlusRight)));

Then the pressure component of the flux can be computed based on equation 1.14 by adding the
following lines:

const scalar pU = -Ku*P5alphaPlusLeft*P5alphaMinusRight*(rhoLeft+rhoRight)

*(fa*aTilde)*(qRight-qLeft);

scalar pTilde = pLeft*P5alphaPlusLeft + pRight*P5alphaMinusRight + pU;

The last step is to update the fluxes using the computed mass flux and pressure according to
equations 1.8 and 1.9

if(m_dot>0)

{

rhoFlux = m_dot * magSf;

rhoUFlux = (m_dot * ULeft + pTilde * normalVector) *magSf;

rhoEFlux = (m_dot * HLeft) *magSf;

}

else

{

rhoFlux = m_dot * magSf;

rhoUFlux = (m_dot * URight + pTilde * normalVector) *magSf;

rhoEFlux = (m_dot * HRight) *magSf;

}

Now the implementation is complete and the code is ready to be compiled using wmake libso. If
the code compiles without any errors, the new library named libhllcAusmFlux, could be found in
FOAM_USER_LIBBIN. We can check this by running the following command.

ls $FOAM_USER_LIBBIN/libhllcAusmFlux.so

18

Chapter 4

Test Case

This section represents the simulation of a 1D Riemann problem for gas flow is presented. The
purpose of this simulation is to check the capability of the implemented method in capturing shock
waves in compressible flows.

4.1 Pre-processsing

The computational domain and initial conditions are shown in figure 4.1. The computational domain
is a channel with length of 1 meter and width of 0.1 m, filled with gas. Initially, the gas is at zero
velocity and uniform temperature of 293k. The initial pressure is set 105 pa for x ≥ 0.5 and 104 pa
for x < 0.5. The mesh is created with the blockMesh utility and it consists of 100 uniformly spaced
nodes in x-direction and 1 node in y-direction.

Figure 4.1: Computational domain and initial conditions for 1D Riemann problem for gas flow

4.1.1 Boundary conditions

Figure 4.2 shows the mesh and the boundary conditions for the 1D Riemann problem. For the
inlet and outlet boundaries, the zeroGradient boundary condition is used. The top and bottom
boundary are defined using the symmetryPlane boundary conditions and the side boundaries are
empty boundary condition.

4.1.2 controlDict

In the controlDict file, the compiled library of the HLLC-AUSM scheme must be linked to dbnsFoam
solver at run-time. This is done by adding the following line to the end of controlDict file.

libs ("libhllcAusmFlux.so");

19

4.2. RESULTS CHAPTER 4. TEST CASE

Figure 4.2: Mesh and boundary conditions for 1D Riemann problem for gas flow

4.1.3 Flux scheme and limiter function

In the flux calculation procedure, the solver reads the dbns subdictionay in the system/fvSchemes

file. This subdictionary contains two keywords, flux and limiter. The entry of the flux keyword
specifies the flux scheme and the entry of the limiter keyword specifies the limiter function. In this
case, the HLLC-AUSM scheme and the Venkatakrishnan limiter are used for the flux calculation.

dbns

{

flux hllcAusm;

limiter Venkatakrishnan;

}

4.2 Results

The solution of this Riemann problem includes a left-running expansion wave, a contact surface,
and a right-running shockwave. The numerical solution at different instances is plotted in figure
4.3, which shows that the implemented numerical methods are able to capture expansion and shock
waves.

Figure 4.3: Solution of Riemann problem at tN = N∆t (left: pressure, right: velocity, ∆t =
2 × 10−4).

20

References

[1] A.H. Koop , Numerical Simulation of Unsteady Three Dimensional Sheet Cavitation, PhD thesis,
University of Twente, 2008.

[2] S. K. Godunov. A Difference Scheme for Numerical Solution of Discontinuous Solution of Hy-
drodynamic Equations. Math. Sbornik, Math. Sbornik, 47, 271â306, translated US Joint Publ.
Res. Service, JPRS 7226, 1969.

[3] E.F. Toro, M. Spruce, and W. Speares. Restoration of the Contact Surface in the HLL-Riemann
Solver. Shock Waves, 4:25â34, 1994.

[4] M.S. Liou. A sequel to AUSM, Part II: AUSM+-up for all speeds. Journal of Computational
Physics, 214:137â170, 2006.

21

Study questions

1. In pressure-based solvers and density-based solvers, How is the pressure calculated?

2. What are the functionalites of createFields.H file in the dbnsFoam solver?

3. What is the purpose of New function in the basicNumericFlux class?

4. In dbnsFoam.C, which member functions of numericFlux are called? Briefly, describe the
purpose of them.

5. What is the purpose of makeBasicNumericFluxForAllLimiters macro?

6. How can we link the compiled library of HLLC-AUSM scheme to dbnsFoam solver at run-time?

22

	Theoretical Background
	Introduction
	Governing Equations
	The HLLC-AUSM Scheme
	The HLLC Scheme
	AUSM+-up for all speeds scheme

	Low storage Runge-Kutta time integration
	Higher Order Reconstruction

	Flux calculation in dbnsFoam
	dbnsFoam.C
	createFields.H
	The basicNumericFlux class
	numericFlux class
	The numericFluxes.H file

	 Implementation of HLLC-AUSM low mach scheme
	Test Case
	Pre-processsing
	Boundary conditions
	controlDict
	Flux scheme and limiter function

	Results

