Cite as: Siggeirsson, E.M.V.: Force based motion of a submerged object using immersed boundary metod.
In Proceedings of CFD with OpenSource Software, 2016,
http://www.tfd.chalmers.se/ hani/kurser/0S_CFD_2016

CFD wiTH OPENSOURCE SOFTWARE

A COURSE AT CHALMERS UNIVERSITY OF TECHNOLOGY
TAUGHT BY HAKAN NILSSON

Project work:

Force based motion of a submerged object
using immersed boundary method

Developed for Foam Extend-4.x

Author: Peer reviewed by:
Elias Mikael Vagn SIGGEIRSSON IsHAA MARKALE
eliass@chalmers.se

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone
through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no
responsibility for the contents.

January 19, 2017

Contents

1 Tutorial submerged object 3
1.1 Imtroduction L 3
1.2 Theory o . e e 3

1.21 Bodymotion 3
1.2.2 Immersed boundary method oL 3
1.3 Code modification 4
1.3.1 The forceBased class 5
1.4 Case Setup e 10
1.5 Running the code e 13
1.6 Post-processing L 13
1.6.1 Results 13
1.7 Conclusion e 14
1.7.1 Future Work Lo 15

Learning outcomes

The main requirements of a tutorial is that it should teach the four points: How to use it, The
theory of it, How it is implemented, and How to modify it. Therefore the list of learning outcomes
is organized with those headers.

The reader will learn:

How to use it:
e How to change and modify a specific tutorial from the foam extend tutorials
e How to use the immersed boundary solver
The theory of it:
e The basic theory of the immersed boundary method
How it is implemented:
e How to implement a new class into the solidBodyMotion library
e How to use information in one library from a different one
How to modify it:

e How to modify the movingCylinderInChallerIco tutorial case to simulate a force based
motion

e How to modify a already existing class

Chapter 1

Tutorial submerged object

1.1 Introduction

The purpose of this tutorial is to describe how to set up a simulation for a submerged object in
water. The immersed boundary method is used in OpenFOAM to be able to handle large movements
of the object along with calculating the fluid forces. A new class is defined in the solidBodyMotion
library, named forceBased. There the motion, based on the forces is calculated. Only translation is
considered for simplicity reasons as including rotation as well would increase the complexity of the
coupling between the fluid and body motion solvers. This allows a simple form of the Newton’s second
law to be used. This tutorial handles the implementation of the new class along with describing
which libraries are needed and how to set up the test case.

1.2 Theory

The tools needed for this tutorial are quite common CFD tools. The one that might be less common
than the others is the immersed boundary method. For the solid body motion the Newton’s second
law is used.

1.2.1 Body motion

For calculating the movement of the solid body, Newton’s second law is used. That states that
F = ma. Integrating twice over time gives the following equation for translation

1’2:(E1+'[}0*At+a*(At)2

where x5 is the position calculated, x; is the position of previous time step, vy is the velocity
calculated from previous time step, At is the time step and a is the acceleration calculated from
the external forces on the object and the object mass. The forces are then obtained through the
immersed boundary class in OpenFOAM. The forces that the immersed boundary class calculates
exclude the gravitational force and needs to be added if to be included.

1.2.2 Immersed boundary method

The immersed boundary method (IBM) is a technique for defining boundary conditions in a grid that
does not necessarily need to be fitted to the geometry. For more detailed description see references
[1, 2, 3]. The method was originally developed for simulation of cardiac mechanics and associated
blood flow by by Charles Peskin [4]. There are two main approaches in implementing the IBM
for CFD simulations. Forcing methods and Reconstruction methods. In OpenFoam the former one
is used. The forcing methods define a source term in the governing equation to account for the

1.3. CODE MODIFICATION CHAPTER 1. TUTORIAL SUBMERGED OBJECT

effect of the immersed boundary. By applying the forcing method to the Navier-Stokes equations
the following form is obtained:

0P

B + convection(x,t,®) = diffusion(x,t,®) + F(x,t,P)

where F(x,t,®) is the source term for the immersed boundary. The forcing method will introduce a
smeared boundary between the solid and fluid domains which means the interface between the two

domains will not be a clear sharp line.
The advantages of the IBM over the body fitted method are:

e A substantially simpler grid can be generated for complex geometry and large body movements
without having to rely on unstructured solvers. Figure 1.1 is an example of an immersed
boundary and a non-geometry fitted grid.

e Inclusion of body motion or deformation is relatively simple as the background grid is station-
ary and non-deforming. Therefore the IBM does not need a specific time meshing strategy.

e Implementing the IBM should be easy as the source terms are added to existing code.

Fluid T

Solid

L}

Figure 1.1: Immersed boundary on a structured grid

The disadvantages are however
e Special techniques are needed to implement the boundary condition.
e Lack of control over local meshing.
e Difficult to use the forcing methods when Neumann boundary conditions are needed.

The IBM is implemented into OpenF0AM using discrete forcing approach with direct imposition of
boundary conditions. For a certain variable the value in the immersed boundary cell is calculated
by interpolating the neighbouring cells and the specified boundary conditions for the immersed
boundary point. The points and cells configurations can be seen in Figure 1.2.

1.3 Code modification

When browsing through the tutorials available in foam extend an obvious initial step is to build
upon the movingCylinderInChannelIco tutorial as it simulates a moving cylinder in a channel
oscillating back and forth according to a prescribed sinus wave. The tutorial is located at

movingCylinderInChannelIco tutorial
cd $FOAM_TUTORIALS/immersedBoundary/movingCylinderInChannelIco

1.3. CODE MODIFICATION CHAPTER 1. TUTORIAL SUBMERGED OBJECT

e} e} [} [} [} [} o Fluid cells

» Solid cells

| |Bcells
o |B points
& & o o o
[N [N b Q Q
[N [N [N e} 0

Figure 1.2: Implementation of IBM

By looking through the libraries used in the tutorial it can been seen that the solidBodyMotion
library is the one that controls the movement of the object. The library however has no class which
offers force based motion. The only available classes are dependent on a specific function which
describes the object motion. Therefore a new class is created, called forceBased, which is built on
the translation class. The solidBodyMotion library is located at

solidBodyMotion
cd $FOAM_SRC/dynamicMesh/meshMotion/solidBodyMotion

where all the classes already available can be found.

What the new class needs to do is to read the immersed boundary forces from the immersedBoundaryForce
library and transfer that information to the solidBodyMotion library. From the forces the transla-

tion of the object can be calculated based on Newton’s second law like described above.

1.3.1 The forceBased class

For simplicity reasons and to keep the original classes and libraries unchanged the translation
class in the soldiBodyMotion library is copied to the users source directory. Both the class it self
is copied as well as the Make directory but that is necessary to compile the class later on.

mkdir -p $WM_PROJECT_USER_DIR/src/dynamicMesh/meshMotion/solidBodyMotion/

cd $WM_PROJECT_USER_DIR/src/dynamicMesh/meshMotion/solidBodyMotion/

cp -r $FO0AM_SRC/dynamicMesh/meshMotion/solidBodyMotion/translation forceBased
cp -r $FO0AM_SRC/dynamicMesh/meshMotion/solidBodyMotion/{Make, 1nInclude} .

Then the translation class is renamed to the forceBased class.

mv forceBased/translation.C forceBased/forceBased.C
mv forceBased/translation.H forceBased/forceBased.H

In the new forceBased.x* files few modifications are needed. Changing the class names in both
classes can easily be done with the following command

sed -i -e '/translation/forceBased/g' forceBased/forceBased.x*

First, start with the forceBased.H file. To include the immersedBoundaryForces library in the
forceBased class, add immersedBoundaryForces.H to the forceBased.H file, bellow the inclusion
of solidBodyMotionFunction.H. This makes sure that the new class can take information from

both libraries.
forceBased.H

#include "solidBodyMotionFunction.H"
#include "immersedBoundaryForces.H"

1.3. CODE MODIFICATION CHAPTER 1. TUTORIAL SUBMERGED OBJECT

Now to the data and functions. Instead of the following data declaration
forceBased.H

//- Velocity
vector velocity_;

//- Ramoing time scale
scalar rampTime_;

the following is needed instead
forceBased.H

vector g_;

scalar still_;

scalar mass_;

mutable vector velocity_;
mutable vector oldPosition_;
mutable scalar currentTime_;

For the functions the following function declaration

forceBased.H

//- Velocity ramping factor resulting form rampTime_value
scalar rampFactor() const

has to be replaced with the following declaration
forceBased.H

//- Position calculations
vector newPosition() const;
vector newVelocity() const;

Now to the forceBased.C file. A new function that calculates the position of the object each
iteration is needed. For simplicity reasons that function replaces the rampTime () function that was
defined in the translation class. The follwing

forceBased.C

Foam: :scalar
Foam: :solidBodyMotionFunctions: :translation: :rampFactor() const

{

const scalar t = time_.value();

if (t < rampTime_)

{
// Ramping region
return sin(pi/(2*rampTime_)*t);
}
else
{
// Past ramping region
return 1;
}

has to be replaced with the new newPosition() function, which is defined as
forceBased.C

Foam: :vector
Foam: :solidBodyMotionFunctions: :forceBased: :newPosition() const

{

1.3. CODE M

ODIFICATION CHAPTER 1. TUTORIAL SUBMERGED OBJECT

scal

ar t = time_.value();

scalar dT = time_.deltaT(.value());

if (¢ <
{

}
else if

{
if (

else

(still_»dT+currentTime_))

return oldPosition_;

(t< 2% (still_xdT))

t > currentTime_)
{
currentTime_ = t;
vector gravityForce = mass_x*g_;
Info << "Gravity: " << g_ << endl;
Info << "Gravitational Force: " << gravityForce << endl;
vector pressureForces = imBForces_.calcForcesMoment().first().firs
vector viscousForces = imBForces_.calcForcesMoment().first() .secon
vector totalForce = gravityForce+pressureForces+viscousForces;
Info << "Pressure Force: " << pressureForces << endl;
Info << "Viscous Force: " << viscousForces << endl;
Info << "total force: " << totalForce << endl;
Info << "Delta t: " << dT << endl;
Info << "old positon: " << oldPosition_ << endl;
vector velocity(0.01,0,0);
vector dx = velocity*dT;
Info << "old velocity: " << velocity_ << endl;
velocity_ = vector(0,0,0);//dx/dT;//velocity_+totalForce/mass_*dT;
Info << "new velocity: " << velocity_ << endl;
vector newPos=o0ldPosition_+dx;
Info << "new position: " << newPos << endl;
Info << "new old positon: " << oldPosition_ << endl;
oldPosition_ = newPos;
return oldPosition_;
}
else
{
return oldPosition_;
}

if (¢t > currentTime_)

{
currentTime_ = t;
vector gravityForce = mass_x*g_;
Info << "Gravity: " << gravityForce << endl;

vector pressureForces = imBForces_.calcForcesMoment(.first(.first()));
vector viscousForces = imBForces_.calcForcesMoment(.first(.second()));
vector totalForce = gravityForce+pressureForces+viscousForces;

t();
d();

1.3. CODE MODIFICATION CHAPTER 1. TUTORIAL SUBMERGED OBJECT

Info << "Force first: " << pressureForces << endl;
Info << "Force second: " << viscousForces << endl;
Info << "total force pos: " << totalForce << endl;
Info << "Delta t: " << dT << endl;

Info << "old position: " << oldPosition_ << endl;
vector velocity_ = velocity_+totalForcex*dT;

vector newPos=o0ldPosition_+velocity_*dT+0.5*totalForce/mass_*pow(dT,2)|;

oldPosition_ = newPos;
Info << "new position: " << newPos << endl;
Info << "old position: " << oldPosition_ << endl;

Info << "velocity, pos: " << velocity_ << endl;
oldPosition_ = newPos;
return oldPosition_;
}

else

{

return oldPosition_;

}

The forcebased.C file is set to run with a stationary object for the first still_ time steps and then
with a constant velocity of 0.01 for the next still_ time steps and then to be set loose.

The whole constructor then needs to be changed to the following

forceBased.C
Foam: :solidBodyMotionFunctions: :forceBased: :forceBased

(

const dictionary& SBMFCoeffs,
const Time& runTime

solidBodyMotionFunction(SBMFCoeffs, runTime),
g_(0,0,0),
velocity_(0,0,0),
oldPosition_(0,0,0),
currentTime_(0.0),
imBForces_("test", time_.lookupObject<objectRegistry>(polyMesh::defaultR
egion), SBMFCoeffs_, true)

{
read (SBMFCoeffs) ;

}

Since the new position is calculated in a separated function the transformation function is changed

to
forceBased.C

Foam: :septernion
Foam: :solidBodyMotionFunctions: :forceBased: :transformation() const

{

1.3. CODE MODIFICATION CHAPTER 1. TUTORIAL SUBMERGED OBJECT

septernion TR;

TR = septernion

(
newPosition(),
quaternion::I

)

return TR;

and the velocity function changed to
forceBased.C

Foam: :septernion
Foam: :solidBodyMotionFunctions: :forceBased: :velocity() const

{
septernion TV
(
velocity_,
quaternion::I/time_.deltaT().value()
)3
Info<< "solidBodyMotionFunctions::forceBased: :transformation(): "
<< "Time = " << time_.value() << " velocity: " << TV << endl;
return TV;
}

To be able to read in the values that are specified in the input file a small modification to the read

class is needed.
forceBased.C

rampTime_ = readScalar(SBMFCoeffs_.lookup("rampTime"));

is replaced with

forceBased.C
SBMFCoeffs_.lookup("gravity") >> g_;
SBMFCoeffs_.lookup("mass") >> mass_;
SBMFCoeffs_.lookup("stationary") >> still_;

to be able to read in the object mass and to define how many timesteps the object is set to be still
before taking the next movement.

To be able to compile the new class some modifications are needed to the Make directory. A new
Make/files file is needed that only refers to the new class.

Make/files

forceBased/forceBased.C
LIB = $(FOAM_USER_LIBBIN)/libforceBasedMotion

Few additions are then needed to the Make/options file to be able to read in the immersed boundary
forces into the new class. After those additions the file looks like this

Make/options

EXE_INC = \
-I$(LIB_SRC)/dynamicMesh/dynamicMesh/InInclude \
-I$(LIB_SRC)/immersedBoundary/immersedBoundaryForce/lnInclude \

1.4. CASE SETUP CHAPTER 1. TUTORIAL SUBMERGED OBJECT

-I$(LIB_SRC)/finiteVolume/1nInclude \

-I$(LIB_SRC) /postProcessing/functionObjects/forces/1lnInclude \
-I$(LIB_SRC)/surfMesh/1lnInclude \

-I$(LIB_SRC)/meshTools/1lnInclude \

-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/immersedBoundary/immersedBoundaryTurbulence/1lnInclude \
-I$(LIB_SRC) /dynamicMesh/meshMotion/solidBodyMotion/1nInclude

LIB_LIBS = \
-1forces \
-lincompressibleTransportModels \
-lincompressibleRASModels \
-lincompressibleLESModels \
-1lbasicThermophysicalModels \
-1lspecie \
-lcompressibleRASModels \
-lcompressibleLESModels \
-1finiteVolume \
-lmeshTools \
-lsurfMesh \
-lsampling \
-ldynamicMesh \
-L$ (FOAM_USER_LIBBIN) \
-limmersedBoundary \
-limmersedBoundaryTurbulence \
-limmersedBoundaryForceFunctionObject

Now the new class should be ready for compilation. That is done through the wmake command along
with the 1ibso tag which tels the compiler to compile it as a library.

compile library

wmake libso

1.4 Case Setup

To set up the simulation the tutorial movingCylinderInChannelIco is used since it is close to what
is needed and only simple modifications are performed. Begin by copying the tutorial to the users
run directory (note that the first two lines are one command)

cp -r $FOAM_TUTORIALS/immersedBoundary/movingCylinderInChannelIco
$FOAM_RUN/movingCylinderInChannelForceBasedIco
cd $FOAM_RUN/movingCylinderInChannelIco

For the immersed boundary force calulations to take place, libforceBasedMotion.so has to be
added to the libraries in the controlDict file. All the libraries included in the controlDict file are
then

controlDict

"liblduSolvers.so"
"libimmersedBoundary.so"
"libimmersedBoundaryDynamicFvMesh.so"
"libforceBasedMotion.so"

10

1.4. CASE SETUP CHAPTER 1. TUTORIAL SUBMERGED OBJECT

To be able to see each time step in post-processing the write interval in the controlDict file has to
be changed. The time step in the test case is a bit to large and therefore it is decreased by a factor
of 10

controlDict
deltaT 0.01;
writeControl runTime;
writeInterval 0.01;

The other file where a modification is needed is the dynamicMeshDict file. The settings for the
ibCylinder are then changed to the following

dynamicMeshDict
ibCylinder
{
solidBodyMotionFunction forceBased;
forceBasedCoeffs
{
gravity (0 0 0);
mass 1;
stationary 20;
patches (ibCylinder);
pName P;
UName U;
rhoName rholnf;
rhoInf 1000;
log true;
CofR (000);
// Aref 0.5;
Uref 1;
}
}

The settings that are specified here are defined in a way that there is no gravity included, the mass
is 1kg and the stationary is set to 20 which means that the simulations will take 20 time steps before
moving the object with a constant velocity for the next 20 time steps and then sets the object loose
after that. This is done so the flow will be fully developed before moving the object. Additionally
the density is changed to represent water or 1000.

Now the boundary conditions are next as the tutorial case that is used is for a channel flow. For this
case however a larger domain with zero gradient is used instead of the walls. Also the inlet velocity
is lowered to account for the increase in density to ensure that the Reynolds number is not to high.

Under the boundary field the following boundaries are needed to be changed to the following
0_org/U

in
{
type fixedValue;

value uniform (0.01 0 0);
out

type inletOutlet;
inletValue uniform (0 0 0);

11

1.4. CASE SETUP CHAPTER 1. TUTORIAL SUBMERGED OBJECT

value uniform (0.01 0 0);
I
top
{
type zeroGradient;
X
bottom
{
type zeroGradient;
X

The other boundary file, 0_org/p is unchanged from the tutorial case.

In the save directory there are two files. One is the boundary file which defines the boundary
patches of the domain while the other is the blockMeshDict which defines the size and the number
of nodes in the domain. As the domain is changed, through the blockMeshDict file, the patches
definition in boundary has to be changed correspondingly. For this specific tutorial the following
changes are needed

save/blockMeshDict
vertices
(
(-2 -1.0 0
(2 -1.0 0)
(2 1.0 0)
(-2 1.0 0)
(-2 -1.0 0.1)
(2 -1.0 0.1)
(2 1.0 0.1)
(-2 1.0 0.1)
)3
blocks
(
hex (0123456 7) (200 100 1) simpleGrading (1 1 1)
)3
After doing this modification the blockMeshDict file has to be moved to the polyMesh directory.
constant/polyMesh/blockMesh
cp save/blockMeshDict constant/polyMesh/

Then due to the fact that the total number of grid points has been changed the patches definition
has to be recalculated

save/boundary
ibCylinder
{
type immersedBoundary;
nFaces 0;
startFace 3650;
internalFlow no;
}
in
{

12

1.5. RUNNING THE CODE CHAPTER 1. TUTORIAL SUBMERGED OBJECT

type patch;
nFaces 25;
startFace 3650;
}
out
{
type patch;
nFaces 25;
startFace 3675;
}
top
{
type patch;
nFaces 75;
startFace 3700;
}
bottom
{
type patch;
nFaces 75;
startFace 3775;
}
frontAndBack
{
type empty;
nFaces 3750;
startFace 3850;
}

The modification of the boundary file is moved to the right location when the Allrun script is
executed. The modifications to the blockMeshDict and boundary files are not necessary to be able
to run the code and can be done in a different manner than described above. The changes only have
to be consistent

1.5 Running the code

It is quite simple to run this case as the only thing needed is to run the provided script called A1lrun

Allrun

./Allrun

1.6 Post-processing

To post-process the results in Paraview the following command can be used
paraFoam

paraFoam -nativeReader

All the needed data should be imported by pressing the green Apply button in Paraview. Then the
variable that is shown can be changed to cellIbMask so the immersed boundary is shown like in
Figure 1.3.

13

1.7. CONCLUSION CHAPTER 1. TUTORIAL SUBMERGED OBJECT

O

cellbMask

0.000e+00 025 05 075 1.000e+00
TILLLLLLL Ll

Figure 1.3: The case setup

1.6.1 Results

As mentioned before the forces oscillate but the reason for that is unknown for me as I have spent
quite some time trying to figure it out. I however know that other openFoam users have experienced
similar problems using this solver for similar things. Lee et al [5 | discusses a similar behavior where
oscillations are giving problems when using the immersed boundary method. The simulations that
generates the results from Figure 1.4 are set up in a way that the object is stationary for the 20
first time steps, then the object is set to have a constant velocity which is of the same magnitude
as the main flow and then after of total of 40 time steps the object is set loose and the forces
define the motion. The figure is created by using the plot.py code given as part of the tutorial
files. The reason for the oscillations are that when the object is set loose there is a force in the
negative x-direction which causes the object to move upstream. This generates force pushing the
object downstream with a much higher velocity than the main flow velocity. That again causes the
forces to be in the negative x-direction and move the object upstream, resulting in an oscillation of
the objects movement.

Constant velocity

Force [N]
L
|

20| No motiona allowed

-40

0.0 0.1 0.2 0.3 04 0.5
Time [s]

Figure 1.4: Force based motion of the object

For comparison the force signal from the tutorial case is shown in Figure 1.5. As can be seen in the
figure the forces are oscillating in that case but since the motion is prescribed it has no effect.

1.7 Conclusion
Originally the purpose of this project was to simulate s submerged wing using the immersed boundary

method but due to challenges during the project work the simulated geometry was simplified to a
cylinder as the methodology should be the same regardless off the geometry used. Using the cylinder

14

1.7. CONCLUSION CHAPTER 1. TUTORIAL SUBMERGED OBJECT

Force [N]

] i 2 3 4 5
Time [s]

Figure 1.5: Forces for tutorial case

meant as well that the force should only be in the defined x-direction and therefore a bit easier to
debug the code as well as to find some fundamental errors. The simulations however were not
without troubles as they diverged due to the oscillating force, resulting in non-physical movements.
The work however shows how to couple the solidBodyMotion and the immersedBoundaryForce
libraries to calculate the forces acting on the object using the immersed boundary solver.

1.7.1 Future Work

As the project was not successful in its original plan it leaves room for future improvements.
e Find the source of the oscillations in the current code
e Couple an inbuilt 6Dof solver to the immersedBoundaryForce library

e Replace the cylinder with a with a wing to see if the wing can ”float” due to the fluid forces
and gravity

15

Study questions

1. Describe the Immersed Boundary Method (IBM) briefly.

2. How is the IBM accounted for in the governing equations i.e. the Navier-Stokes equations?
(Just a simple answer)

3. What files need a modification to be able to compile a new class in a user workspace?

16

Use attached files

Copy the forceBased to the user workspace using following commands
Copy class

cp -r forceBased $WM_PROJECT_USER_DIR/src/dynamicMesh/meshMotion/solidBodyMotion/
cp -r Make $WM_PROJECT_USER_DIR/src/dynamicMesh/meshMotion/solidBodyMotion/

and the test case
Copy test

cp -r movingCylinderInChannelIco $FOAM_RUN

After doing this the new class needs to be compiled

Compile class
cd $WM_PROJECT_USER_DIR/src/dynamicMesh/meshMotion/solidBodyMotion/

wmake libso

Now the class should be ready to use.

17

Bibliography

[1]

2]

A. Pinelli, Immersed boundary method-fluid structure interaction. (2016). Lecture. KTH, Stock-

holm. URL: http://www.flow.kth.se/sites/flow.kth.se/files/FLOW-School-IBandFluidStr.pdf

Wim-Paul Breugem, Lecutre 1: A first introduction to Immersed bound-
ary method. Lecture. Delft University of Technology, The Netherlands. URL:
http://www.flow.kth.se/sites/flow.kth.se/files/slides_ibm.pdf

H. Jasak and Z. Tukovic, Immersed boundary method in FOAM, theory, im-
plementation, and use, (2015). Lecture. Chalmers University of Technology. URL

http://www.tfd.chalmers.se/ hani/kurser/0S_CFD_2015/HrvojeJasak/ImmersedBoundary.pdf

C.S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25 (1977) 220-252

J. Lee, J. Kim, H. Choi and K. Yang, Soruces of spurious force oscillations from an immersed
boundary method for moving-body problems, J. Comput. Phys. 230 (2011) 2677-2695

18

