
TME205 OpenSource CFD: An OpenFOAM tutorial

A.Berce

Solid and Fluid Mechanics

Chalmers University of Technology, Göteborg, Sweden

Revieved by: M.Hammas and J.Andric

November 3, 2010

Contents

1 icoFoam 3

2 icoErrorEstimate 7

2.1 Error estimation on the cavity case . 7
2.2 A look into icoErrorEstimate . 7

3 refineMesh 12

3.1 Using refineMesh utility tutorial . 12
3.1.1 Refine whole mesh . 12
3.1.2 Refine set . 13

3.2 A look into the source code of refineMesh . 15

4 icoFoamErrorRefine 19

4.1 Goals . 19
4.2 Developments . 20
4.3 Solve cavity case with icoFoamErrorRefine . 26
4.4 Discussion . 27

Abstract

This is the report of the project-course TME205 - CFD with OpenSource software, 2010

given by H̊akan Nilsson, Applied Mechanics, Chalmers. The goal of the project is to get an
understanding of C++ programming in OpenFOAM. I would like to thank the administrators
H̊akan Nilsson and Jelena Andric for all the support during the development. Also, I would
like to thank the reviewers, Martin Hammas and Jelena Andric, for increasing the quality of
this report through good feedback and critique. Going into this project I had no experience of
C++ and it has been a very worthwhile course.

This report will focus on one solver and two utilities. The solver, icoFoam, is an incompressible,
laminar, transient CFD solver and the utilities are icoErrorEstimate and refineMesh. The first
utility is used to estimate the error of the incompressible momentum equation and the second
one is used to refine the mesh according to some specifications. The aim is to eventually combine
these three applications into a solver that automatically refines the computational domain in
the areas where the magnitude of the error is largest.

The applications are first studied in detail and short tutorials of the usage is presented. In
these tutorials the applications are used independently of each other to get an understanding
of their functions. While studying the first three sections in this report the reader should keep
the purpose of this project in mind and try to think about how the different functions can be
integrated. Then in Section 4 the author suggests a solution to the formulated problem.

The developments has been done for OpenFOAM 1.7.x.

1. icoFoam 3

1 icoFoam

Here the Transient CFD solver for incompressible, laminar flow of Newtonian fluids icoFoam

is described in detail. The main code in icoFoam.C and a reasonable amount of sub codes are
gone through in a systematic manner. This is a simple application that solves the incompressible
momentum equation once and a pressure equation a prescribed number of times per timestep.

#include "fvCFD.H"

Code 1: Standard in OpenFOAM codes

Code 1 includes all the standard header files and sets up the basic OpenFOAM environment.
It is not something to consider any closer. After entering the main function a few other header
files are included according to Code 2

int main(int argc, char *argv[])

{

#include "setRootCase.H"

#include "createTime.H"

#include "createMesh.H"

#include "createFields.H"

#include "initContinuityErrs.H"

Code 2: Header files

The setRootCase.H controls that icoFoam is called in the correct directory, namely the case
directory. If that is false it will break the process and return a FOAM FATAL IO ERROR message.
The second include statement createTime.H which defines the runTime and prints a message
”Create time” to the prompt.

The third header file called createMesh.H creates the mesh using the fvMesh class. createFields.H
reads the initial conditions specified in the 0-directory and connect them to the mesh. The final
header initContinuityErrs.H declares and initializes the cumulative continuity error.

Info<< "\nStarting time loop\n" << endl;

Code 3: Information to the user

Code 3 tells the user that the program is now entering the time loop. This loop runs according
to Code 4

while (runTime.loop())

Code 4: Time loop

In Code 4 runTime.loop() is a boolean and the while-loop is run as long as it has a true argu-
ment. Later it will be seen that when the endTime is reached this boolean will be set to false.

1. icoFoam 4

The first line inside the time-loop is an Info statement which prints the current time object
called runTime.timeName() to the prompt, the syntax for this is shown in Code 5.

Info<< "Time = " << runTime.timeName() << nl << endl;

Code 5: Runtime info

Then two more header files are included; one that makes a dictionary called piso and reads
from it, and one that calculates the Courant number on all internal cells and prints it to the
prompt. Now the first equation is defined; the momentum equation. The equation is stated in
regular math notation in Equation 1

∂U

∂t
+∇ · (φU)−∇ · (ν∇U) = −∇p (1)

In Code 6 the OpenFOAM syntax of Equation 1 is stated. It can clearly be seen that ddt

corresponds to a time-derivative, div to a divergence, in this sence the OpenFOAM -syntax is
quite close to regular mathematical notation.

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

- fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

Code 6: OpenFOAM syntax of U-equation

The solve command runs several files that together solve the system of equations, examples of
functions used are fvMatrixSolve.C and gvcGrad.C.

Next the PISO-loop (Pressure Implicit with Splitting of Operators) is implemented. This equa-
tion is iterated inside the time-loop and the number of iterations is specified in fvSolution in
the system directory of the case. In Code 7 the entire PISO-loop is stated.

1. icoFoam 5

67 for (int corr=0; corr<nCorr; corr++)

68 {

69 volScalarField rUA = 1.0/UEqn.A();

70

71 U = rUA*UEqn.H();

72 phi = (fvc::interpolate(U) & mesh.Sf())

73 + fvc::ddtPhiCorr(rUA, U, phi);

74 adjustPhi(phi, U, p);

75 //Debugger info

76 Info << "Debugger info: rUA.dimensions() "<< rUA.dimensions() <<endl;

77 Info << "Debugger info: UEqn.dimensions()"<< UEqn.dimensions()<<endl;

78 Info << "Debugger info: U.dimensions() "<< U.dimensions() <<endl;

79

80

81 for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

82 {

83 fvScalarMatrix pEqn

84 (

85 fvm::laplacian(rUA, p) == fvc::div(phi)

86);

87

88 pEqn.setReference(pRefCell, pRefValue);

89 pEqn.solve();

90

91 if (nonOrth == nNonOrthCorr)

92 {

93 phi -= pEqn.flux();

94 }

95 }

96

97 #include "continuityErrs.H"

98

99 U -= rUA*fvc::grad(p);

100 U.correctBoundaryConditions();

101 }

Code 7: The PISO loop

Note that a few extra lines of code called //Debugger info are included. This will print the
dimensions of the three different variables. In Code 8 the extra part of the resulting logSolve

file when running icoFoamDebugger |tee log_solve is stated. Prior to running this simula-
tion a new solver was compiled, the only difference between the original icoFoam and the revised
one is in these extra information outputs.

Debugger info: rUA.dimensions() [0 0 1 0 0 0 0]

Debugger info: UEqn.dimensions() [0 4 -2 0 0 0 0]

Debugger info: U.dimensions() [0 1 -1 0 0 0 0]

Code 8: Extra output from PISO-loop

1. icoFoam 6

The dimensions shows that rUA has units [s], UEq [m4/s2] etc. according to Table 1

No. Property Unit Symbol
1 Mass kilogram k
2 Length meter m
3 Time second s
4 Temperature kelvin K
5 Quantity moles mole
6 Current ampere A
7 Luminous Intensity candela cd

Table 1: Dimensions in OpenFOAM

Adding similar expressions as the above is a way of debugging the program and it is quite good
for a beginner since it lets the user interact with the program and get some feedback on the
results of the added code.

The piso loop (Code 7) can be summed up into the following steps:

67-68 : Initialize loop, iterate nCorr times
69-71 : Calculate ap (diagonal coefficient) and then U
72-74 : Calculate and adjust the flux
75-80 : Extra code added to get some extra output
81-95 : Define and solve the pressure equation, repeat nNonOrthCorr times

91-94: Correct the flux
96-98 : Calculate continuity error and output to prompt
99-100: Perform momentum corrector step

2. icoErrorEstimate 7

2 icoErrorEstimate

This post processing utility is simple to use. Its purpose is to estimate the error of each time
in a given solution. As implied by its name it is used on the solutions created by the solver
icoFoam. It loops through all the time directories in the case directory, calculates the error and
saves it as a new object. To illustrate the usage of icoErrorEstimate the following tutorial has
been composed.

2.1 Error estimation on the cavity case

First the cavity tutorial is run as usual according to Code 9.

run

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity/ .

cd cavity

blockMesh

icoFoam |tee logSolve

Code 9: Running the cavity case

Now the regular results can be viewed in paraFoam . Lets use the utility to estimate the error,
this is done simply by the syntax icoErrorEstimate inside the case directory. The results can
now be viewed in paraFoam (see Figure 1). The errors are printed to file as a field variable
similar to the velocity- and pressure fields, and hence it appears in the Object Inspector. The
user is now able to visualize the error to see where in the domain the solution is flawed.

Figure 1: Magnitude of error in the cavity case

In the next subsection a deeper look into the code that we just ran is presented.

2.2 A look into icoErrorEstimate

As said, icoErrorEstimate loops through the time directories of a solution and calculates the
error for each time. However, one could question how the error is calculated. Lets have a look
in icoErrorEstimate.C by typing

vim $FOAM_UTILITIES/errorEstimation/icoErrorEstimate/icoErrorEstimate.C

The first piece of code that catches the eye is timeSelector::addOptions();. This calls on a
function inside timeSelector.C located in $FOAM_SRC/OpenFOAM/db/Time/ shown in Code 10

2.2. A look into icoErrorEstimate 8

118 void Foam::timeSelector::addOptions

119 (

120 const bool constant,

121 const bool zeroTime

122)

123 {

124 if (constant)

125 {

126 argList::validOptions.insert("constant", "");

127 }

128 if (zeroTime)

129 {

130 argList::validOptions.insert("zeroTime", "");

131 }

132 argList::validOptions.insert("noZero", "");

133 argList::validOptions.insert("time", "ranges");

134 argList::validOptions.insert("latestTime", "");

135 }

Code 10: timeSelector::addOptions()

As can be seen this member function in class timeSelector takes two boolean arguments, since
none of them are specified when calling upon the function they will both be false and the if-
statements are not entered. The three following argList::validOptions.insert are executed
and their purpose is to add arguments to a list which defines which times will be treated.

Next a function in the same class as Code 10 is called. This takes runTime and args as input
and returns a list of the time-directories. The function is given in Code 11. It can also be seen
that if the directory does not contain any time directories an error message will be returned and
the utility aborted.

2.2. A look into icoErrorEstimate 9

230 Foam::List<Foam::instant> Foam::timeSelector::select0

231 (

232 Time& runTime,

233 const argList& args

234)

235 {

236 instantList timeDirs = timeSelector::select(runTime.times(), args);

237

238 if (timeDirs.empty())

239 {

240 FatalErrorIn(args.executable())

241 << "No times selected"

242 << exit(FatalError);

243 }

244

245 runTime.setTime(timeDirs[0], 0);

246

247 return timeDirs;

248 }

Code 11: timeSelector::select0()

After setting up the rules for the calculations the mesh is defined as discussed in Section 1 with
include "createMesh.H" and some information is displayed to the user through the Info

statement. Before entering the loop through the time directories a dictionary containing the
transport properties is defined. This simply reads the file called transportProperties located
in the constant directory. Then nu is read from the newly created dictionary. Now lets enter
the loop through the time directories. The whole loop is given in Code 12

2.2. A look into icoErrorEstimate 10

69 forAll(timeDirs, timeI)

70 {

71 runTime.setTime(timeDirs[timeI], timeI);

72

73 Info<< "Time = " << runTime.timeName() << endl;

74

75 mesh.readUpdate();

76

77 IOobject pHeader

78 (

79 "p",

80 runTime.timeName(),

81 mesh,

82 IOobject::MUST_READ

83);

84

85 IOobject Uheader

86 (

87 "U",

88 runTime.timeName(),

89 mesh,

90 IOobject::MUST_READ

91);

92

93 if (pHeader.headerOk() && Uheader.headerOk())

94 {

95 Info << "Reading p" << endl;

96 volScalarField p(pHeader, mesh);

97

98 Info << "Reading U" << endl;

99 volVectorField U(Uheader, mesh);

100

101 # include "createPhi.H"

102

103 errorEstimate<vector> ee

104 (

105 resError::div(phi, U)

106 - resError::laplacian(nu, U)

107 ==

108 -fvc::grad(p)

109);

110

111 volVectorField e = ee.error();

112 e.write();

113 mag(e)().write();

114 }

115 else

116 {

117 Info<< " No p or U" << endl;

118 }

119

120 Info<< endl;

121 }

Code 12: icoErrorEstimate.C - Loop over time directories

2.2. A look into icoErrorEstimate 11

The forAll-statement shows that the loop will go through all the times in timeDirs, hence all
the time directories. timeI is the counter. Then the runTime variable is set accordingly. An
Info statement is displayed to the user and then the loop calls upon a function in the mesh class
as mesh.readUpdate();. Let’s look deeper into that.

The function is a member function defined in polyMesh.H and there it states that the function
updates the mesh according to the mesh files saved in time directories. Since, in the cavity case,
we now have the same mesh throughout the time span the mesh.readUpdate(); will do nothing.

Moving further in the loop we see that two objects are defined; pHeader and Uheader. Note
that the MUST_READ is activated which tells OpenFOAM to read the files in the time directories
called "p" and "U". If they exist an Info statement is prompted to the user and the objects U

and p are declared.

The actual error calculation is now about to start, the OpenFOAM -syntax of this can be seen
on line 103-109 in Code 12. Note the similarity to the UEqn in the icoFoam solver, Code 6.
Instead of solving the equation through matrices (as in icoFoam) the error estimation is done by
use of the resError-class which calculates the residual error for each cell (see files in directory
$FOAM_SRC/errorEstimation/errorEstimate). Then the error and the magnitude of the error
are stored in each time directory in the same manner as a regular variable (the files are called
resErrorU and mag(resErrorU))

3. refineMesh 12

3 refineMesh

This sections treats the refineMesh utility, first the usage of it and then the source code. The
aim is to get a good understanding of what is happening when a refinement is made to be able
to translate the vital parts of this utility into a dynamic mesh refinement.

3.1 Using refineMesh utility tutorial

This will be done on the cavity-case. We will first solve on an original coarse mesh and then two
different refinement options will be presented; refining the whole mesh AND refining a section of
the mesh. Let’s start with copying the cavity case and solving it on the original mesh according
to Code 9 in Section 2.1. Now, standing in the cavity-directory, do the following.

run

rm -rf cavity

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity .

mv cavity cavityOrig

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity .

mv cavity cavityRefineWhole

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity .

mv cavity cavityRefineSet

cd cavityOrig

blockMesh

icoFoam

Code 13: Set up refine tutorial

3.1.1 Refine whole mesh

This is a quite easy way to refine the mesh. The standard is to split once in the x- and once in
the y-direction (for a 2D case). We shall now refine the mesh, map the results of the original
mesh and run icoFoam again.

run

cd cavityRefineWhole

rm -rf 0.*

blockMesh |tee logMesh

refineMesh -overwrite

Code 14: Refine whole mesh

The overwrite flag tells the utility to replace the existing polyMesh with the refined one. If
this flag would not be added a new time directory named after the timestep would be created,
this new time directory would only contain the refined polyMesh. Now lets map the original
results to the fine mesh. First we need to make sure that the new solution will start at the
endTime of the previous, hence change the startTime in the controlDict to 0.5 and the endTime
to 0.7. Since the cell length is now half of the previous the timestep should be lowered so
that the solver remains stable (it should not transport properties more than one cell-length
per timestep, Courant number limitation). Set deltaT to 0.0025. One more important note is
that the refineMesh has now created a polyMesh directory (containing a cellMap) inside the 0
directory, this needs to be removed to be able to use mapFields. Now lets map the results from
the original mesh. Run Code 15 standing in the cavityRefineWhole-directory.

3.1. Using refineMesh utility tutorial 13

rm -r 0/polyMesh

mapFields ../cavityOrig -sourceTime latestTime -consistent

icoFoam

Code 15: Map and run refineWhole case

The results can now be viewed in paraFoam .

3.1.2 Refine set

This part of the tutorial is slightly more complicated. We are going to select a part of the mesh
and refine it. This is done by defining a cellSet and calling refineMesh with a dictionary flag.
Go into the cavityRefineSet-directory and copy the dictionary needed.

run

cd cavityRefineSet

cp $FOAM_UTILITIES/mesh/manipulation/refineMesh/refineMeshDict system/

vim system/refineMeshDict

Code 16: refineMeshDict

Inside the refineMeshDict several things are specified. The cellSet we are going to refine will be
called c0 and the directions to refine should be tan1 and tan2 which are the x- and y-directions.
Note that you need to modify this in the refineMeshDict because a third direction is specified
under ”// List of directions to refine” in the original file.

Now the cellSet should be created. There is a utility for this but now we will create it by
hand. First create the sets-directory

mkdir constant/polyMesh/sets/

vim constant/polyMesh/sets/c0

Code 17: Create cellSet

Now the set will be specified. The cells chosen will be the 40 top cells of the domain (two rows
closest to the lid). Copy Code 18 into c0.

3.1. Using refineMesh utility tutorial 14

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.7.x |

| \\ / A nd | Web: www.OpenFOAM.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class cellSet;

location "constant/polyMesh/sets";

object c0;

}

// * //

40 //number of cells to refine

(

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

)

// * //

Code 18: cellSet c0 to refine

3.2. A look into the source code of refineMesh 15

Make sure that blockMesh has been executed in the cavityRefineSet-directory, otherwise there
would be no mesh to refine. Now run refineMesh -dict -overwrite to create the new mesh.
Have a look at the new mesh in paraFoam before mapping the results. Next lets map the results
from cavityOrig on the new mesh. In system/controlDict, set the startTime to 0.5, the
endTime to 0.7, deltaT to 0.0025 and repeat Code 15

This concludes this part of the tutorial. View and compare the results in paraFoam and note
that this refinement is not preferred to graded meshes because of the fact that the area ratio in
the interface between the refined and non-refined cells is inevitably 4. This is not good because
the finite volume schemes in CFD-solvers uses cell length to interpolate the variables in the
cells. The rapid change in cell-size could lead to a small discontinuity in the domain.

(a) cavityOrig (b) cavityRefineWhole (c) cavityRefineSet

Figure 2: Comparison of different refinements

3.2 A look into the source code of refineMesh

The tutorial in the previous section requires no knowledge of the source code of the refineMesh
utility. In this section a not too deep study of the source code of this utility is presented. Main
focus will be put on refineMesh.C since this is the main program of this utility. This file can
be found in $FOAM_UTILITIES/mesh/manipulation/refineMesh/ which is the directory of the
studied utility.

This is a quite long and complicated function so we will focus on the main program. Main starts
at line 291 in refineMesh.C and before that functions for checking edges, axis etc. are declared.
The first few lines of code in the main program is stated in Code 19

3.2. A look into the source code of refineMesh 16

291 int main(int argc, char *argv[])

292 {

293 Foam::argList::validOptions.insert("dict", "");

294 Foam::argList::validOptions.insert("overwrite", "");

295

296 # include "setRootCase.H"

297 # include "createTime.H"

298 runTime.functionObjects().off();

299 # include "createPolyMesh.H"

300 const word oldInstance = mesh.pointsInstance();

301

302 printEdgeStats(mesh);

303

304

305 //

306 // Read/construct control dictionary

307 //

308

309 bool readDict = args.optionFound("dict");

310 bool overwrite = args.optionFound("overwrite");

311

312 // List of cells to refine

313 labelList refCells;

314

315 // Dictionary to control refinement

316 dictionary refineDict;

Code 19: First part of main in refineMesh.C

The first part of Code 19 makes a list of the arguments on which the function is called upon. In
the beginning of Section 3 these arguments have been specified in a few different ways. Then
some includements are made which purposes are to check if the function is called from the
correct case-directory and creating the time object. On line 300 a quite interesting function is
called, its purpose is to create a string that has the name of the directory where the points

file is located, hence the path to the polyMesh-directory. OpenFOAM now knows where the
polyMesh is located.

The printEdgeStats-function is defined in the header of refineMesh.C and when called with
the argument mesh it will print out some statistics of the mesh. In the next step a dictionary
that will control the refinement is to be created/read depending on if refineMesh was called
with the argument -dict or not.

The -overwrite argument specifies if the constant/polyMesh-directory should be replaced by
the new mesh or not. refCells is a list of all the cells, unless a cellSet is specified in the
refineMeshDict (Note: This will be manipulated to contain cells with large error in Section 4).

Code 20 will be executed if the -dict flag was used when calling refineMesh. It will set up a
local dictionary called refineDict that will ultimately be used in the actual refinement. If the
boolean readDict is false the code in the else-box will be executed instead. This part is treated
in Section 4 as it will be used to create a special dictionary for the dynamic mesh refinement.
In the original utility, however, it will use the standard settings to refine all the cells in the

3.2. A look into the source code of refineMesh 17

domain.

318 if (readDict)

319 {

320 Info<< "Refining according to refineMeshDict" << nl << endl;

321

322 refineDict =

323 IOdictionary

324 (

325 IOobject

326 (

327 "refineMeshDict",

328 runTime.system(),

329 mesh,

330 IOobject::MUST_READ,

331 IOobject::NO_WRITE

332)

333);

334

335 word setName(refineDict.lookup("set"));

336

337 cellSet cells(mesh, setName);

338

339 Pout<< "Read " << cells.size() << " cells from cellSet "

340 << cells.instance()/cells.local()/cells.name()

341 << endl << endl;

342

343 refCells = cells.toc();

344 }

345 else

346 { Dictionary will be created from scratch }

Code 20: If -dict flag is used

After setting up the refineDict it will be used to define the refinement. The program then
decides if the old mesh should be overwritten or if the new mesh should be put in a new time-
directory with name one timestep larger than the current one. The overwrite-boolean is used
to accomplish this according to Code 21

415 string oldTimeName(runTime.timeName());

416

417 if (!overwrite)

418 {

419 runTime++;

420 }

Code 21: Overwrite old polyMesh or not

Now all the necessary specifications are set and the code is ready to split the cells. This is done
by calling a function in the class Foam::multiDirRefinement and the input arguments are mesh,

3.2. A look into the source code of refineMesh 18

refCells and refineDict. The third one was specified in Code 20. The syntax of calling the
refinement function is shown in Code 22. This piece of code also writes out the mesh in the (by
boolean overwrite) specified directory. This report will not present the code inside the func-
tion multiDirRefinement since the later modification will only modify the arguments which this
function is using. If the reader wishes to examine the contents of multiDirRefinement the source
code can be found in $FOAM_SRC/dynamicMesh/meshCut/meshModifiers/multiDirRefinement

423 // Multi-directional refinement (does multiple iterations)

424 multiDirRefinement multiRef(mesh, refCells, refineDict);

425

426

427 // Write resulting mesh

428 if (overwrite)

429 {

430 mesh.setInstance(oldInstance);

431 }

432 mesh.write();

Code 22: Calling the refinement function

The rest of the code in refineMesh.C is devoted to storing information. LabelLists of added
cells, a cellSet containing the new cells and a map-list is created.

Enough understanding has now bee gained to make an attempt to create an application which
integrates parts of the treated utilities to a solver that automatically refines the mesh in the
areas where the magnitude of the error is largest.

4. icoFoamErrorRefine 19

4 icoFoamErrorRefine

This section is divided into a few subsections; firstly the demands on the solver are specified in
Section 4.1, the developments are made in Section 4.2, then a short tutorial of how to imple-
ment the code on the cavity case is presented in Section 4.3. Finally a discussion concerning
the modifications and further developments is presented in Section 4.4.

In [1] an adaptive method of mesh refinement and coarsening based on the error has been done
so the application about to be developed in this tutorial will not contribute to anything new
in the world of OpenFOAM . The aim is instead to get a deeper understanding of the built-in
functions of the three treated applications and try to blend them into a new application. Also,
to learn about developing and debugging.

4.1 Goals

The application to be developed should be applicable to an arbitrary 2D mesh created by the
blockMesh utility. The outline of the, so far imaginary, application is specified by the flowchart
in Figure 3.

Time++

Solve

Error

Refine

Where Large?

Update Mesh

Map Results

Figure 3: Flowchart icoFoamDynamicRefine

Described in words this application should firstly solve on an original mesh using the original
icoFoam. Then with parts of the icoErrorEstimate-utility it will estimate the error in each cell
and then we will add some own developed code to find the cells with the largest errors. Here one
of two options should be applicable, either the solver finds the 10 cells with the largest errors
OR it finds all cells with error larger than a specified value errTol.

Identify and put the labels of the cells to be refined in a list for the refinement utility to use.
Then we specify how the refinement shall be done and perform it using parts of the refineMesh

4.2. Developments 20

utility. Finally the program should map the results from the previous mesh to the refined one
and repeat the process.

The refinement should be done once every writeInterval specified in system/controlDict.

4.2 Developments

This section will be formed as a tutorial. The reader should be able to study this chapter, follow
the steps and end up with a new functional solver. The solver will be based on the icoFoam

application, so lets copy that into the user applications directory , see Code 23.

run

cd ../applications/

mkdir -p solvers/incompressible/icoFoamErrorRefine

cd solvers/incompressible/icoFoamErrorRefine

cp -r $FOAM_SOLVERS/incompressible/icoFoam/* .

rm *.dep

rm -r Make/linux*

mv icoFoam.C icoFoamErrorRefine.C

sed -i s/"icoFoam"/"icoFoamErrorRefine"/g Make/files

sed -i s/"FOAM_APPBIN"/"FOAM_USER_APPBIN"/g Make/files

Code 23: Copy icoFoam

In createFields, add Code 24 on line 48 (after the volVectorField U is created).

//*********NEW****************

volVectorField err

(

IOobject

(

"err",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

// ****************************/

Code 24: Add to createFields.C

We are going to create an additional mesh, called newMesh, inside the solver. Hence we need to
use a modified version of createMesh.H. Lets copy it into the icoFoamErrorRefine-directory,
follow Code 25

4.2. Developments 21

cp $FOAM_SRC/OpenFOAM/include/createMesh.H .

mv createMesh.H createNewMesh.H

sed -i s/"mesh"/"newMesh"/g createNewMesh.H

Code 25: Copy createMesh.H

Now we will start to modify icoFoamErrorRefine.C . First, we need a few extra header files for
the additional features. Hence, add Code 26 on line 33 (just after #include "fvCFD.H") inside
icoFoamErrorRefine.C.

// Error Estimation

#include "errorEstimate.H"

#include "resError.H"

// Mesh refinement

#include "multiDirRefinement.H" // For the actual refinement

#include <vector> // For creating standard vectors

// Map Mesh

//#include "fvMesh.H"

//#include "IOobjectList.H"

//#include "meshToMesh.H"

//#include "MapVolFields.H"

//#include "MapConsistentVolFields.H"

//#include "UnMapped.H"

//#include "processorFvPatch.H"

//#include "mapLagrangian.H"

Code 26: Extra headers in icoFoamErrorRefine.C

We will also add an extra function for the mapping in the header of icoFoamErrorRefine.C.
Hence, add Code 27 on line 47 (before main). This function, called mapConsistentMesh, is a
part of the mapFields-utility whos source code can be found in
$FOAM_UTILITIES/preProcessing/mapFields/

It takes two fvMesh-objects and creates interpolation schemes, finds all field-variables (like U

and p) by searching through the case-directories that the two fvMesh-objects belong to. The
difference from the mapFields-utility and the icoErrorRefine-solver is the original mapFields-
utility maps from one case to another and icoErrorRefine should map inside one case. The
two last lines in Code 27 define two object that will be used to define the refinement. Two
different refinement methods can be used. The first alternative refines all cells that have an
error-magnitude larger than errTol and the second alternative refines the 10 cells who have the
largest error-magnitude. If the boolean refine10 is true the second alternative is used. If it is
false the first alternative is used.

4.2. Developments 22

// Define mapConsistentMesh

/*void mapConsistentMesh

(

const fvMesh& meshSource,

const fvMesh& meshTarget

)

{

// Create the interpolation scheme

meshToMesh meshToMeshInterp(meshSource, meshTarget);

Info<< nl

<< "Consistently creating and mapping fields for time "

<< meshSource.time().timeName() << nl << endl;

{

// Search for list of objects for this time

Foam::IOobjectList objects(meshSource, meshSource.time().timeName());

// Map volFields

// ~~~~~~~~~~~~~

MapConsistentVolFields<scalar>(objects, meshToMeshInterp);

MapConsistentVolFields<vector>(objects, meshToMeshInterp);

MapConsistentVolFields<sphericalTensor>(objects, meshToMeshInterp);

MapConsistentVolFields<symmTensor>(objects, meshToMeshInterp);

MapConsistentVolFields<tensor>(objects, meshToMeshInterp);

}

{

// Search for list of target objects for this time

IOobjectList objects(meshTarget, meshTarget.time().timeName());

// Mark surfaceFields as unmapped

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

UnMapped<surfaceScalarField>(objects);

UnMapped<surfaceVectorField>(objects);

UnMapped<surfaceSphericalTensorField>(objects);

UnMapped<surfaceSymmTensorField>(objects);

UnMapped<surfaceTensorField>(objects);

// Mark pointFields as unmapped

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

UnMapped<pointScalarField>(objects);

UnMapped<pointVectorField>(objects);

UnMapped<pointSphericalTensorField>(objects);

UnMapped<pointSymmTensorField>(objects);

UnMapped<pointTensorField>(objects);

}

mapLagrangian(meshToMeshInterp);

}

*/

// Extra objects for setting up refinement

static const scalar errTol = 1E-5;

static bool refine10 = true;

Code 27: Function mapConsistentMesh

4.2. Developments 23

Now we enter main. In the initial includes, add

#include "createNewMesh.H" //Create object newMesh

just after the regular createMesh.H. The original code from icoFoam is not alternated and the
next modification will be done before the end of the time-loop (after the Info statements after
runTime.write()). Add Code 28 in that position, this code is based on the icoErrorEstimate-
utility (see icoErrorEstimate.C). Notice the if-statement at the top. This means that the
error will only be calculated when the code uses runTime.write(), hence every writeInterval

timestep.

//******** Error Estimation *********

if(runTime.write())

{

errorEstimate<vector> ee

(

resError::div(phi, U)

- resError::laplacian(nu, U)

==

-fvc::grad(p)

);

volVectorField err = ee.error();

err.write();

mag(err)().write();

Code 28: Estimate the error

Now it is time to define the refinement. In the same manner as the refineMesh-utility we define
a list of cells to refine and a dictionary that controls the refinement. Lets start with find-
ing out which cells to refine, loop through all cells and pick out the 10 cells with the largest
error-magnitude OR pick all cells with error-magnitude larger than the specified error tolerance
errTol. Add Code 29 after the recently added Code 28

4.2. Developments 24

const cellList& cells = mesh.cells(); //List to loop through

labelList refCells; //List of cells to refine

refCells.clear(); //Clear the list

if(refine10)

{

std::vector<double> refCellsVekt(10,0);

forAll(cells,cellI)

{

int n = 0;

while(n < 10)

{

//Info << "cellI = " << cellI << endl;

//Info << "n = " << n << endl;

//Info << "mag(err[cellI]) = " << mag(err[cellI]) << endl;

//Info << "mag(err[refCellsVekt[n]]) = " << mag(err[refCellsVekt[n]]) << endl;

if(mag(err[cellI]) > mag(err[refCellsVekt[n]]))

{

refCellsVekt[n]=cellI;

//Info << "***BREAKING"<<endl;

break;

}

n++;

if(n==10)

{

//Info << "***"<<endl;

}

}

}

// refCellVekt should now contain the cellnumbers of the 10

// cells that have the largest error

// Now put those cellnumbers in the refCells list

forAll(refCellsVekt,i)

{

refCells.resize(i,refCellsVekt[i]);

}

Info << "10 cells with largest mag(err):" << refCells << endl;

}

else

{

int nRef = 0;

forAll(cells,cellI) //Loop through cells

{

if (mag(err[cellI]) > errTol)

{

//Add to list

nRef++;

refCells.resize(nRef,cellI);

}

}

}

Code 29: Loop and find cellnumbers with largest errors

4.2. Developments 25

Note the Info statements in Code 29, this is a way of visualizing what is happening while the
code is run. They are left as comments for now but if uncommented they will, when running
the application, print out extra information that makes the code in Code 29 easier to understand.

It is now time to refine the cells that have just been selected. The refinement dictionary will first
be defined in the same manner as the refineMesh-utility and then the function multiDirRefinement

will be used to do the cell-splitting. Note that we are still in the if(runTime.write())-
statement. Add Code 30 directly after Code 29.

//******** Cell Refinement **********

// Since this is a pretty long function i would in this section

// like to call upon a function file that refines the mesh.

// That file should be similar to refineMesh.C

// Define refinement dictionary

dictionary refineDict; //Declare

dictionary coeffsDict;

coeffsDict.add("tan1", vector(1, 0, 0));

coeffsDict.add("tan2", vector(0, 1, 0));

wordList directions(2);

directions[0] = "tan1";

directions[1] = "tan2";

refineDict.add("directions", directions); // Add directions to the dictionary

refineDict.add("useHexTopology", "false");// Use standard cutter

refineDict.add("coordinateSystem", "global");

refineDict.add("globalCoeffs", coeffsDict);

refineDict.add("geometricCut", "false");

refineDict.add("writeMesh", "false");

// Multi-directional refinement (does multiple iterations)

Info << "Entering Refinement" << endl;

multiDirRefinement multiRef(newMesh, refCells, refineDict);

Info << "Done with Refinement" << endl;

Info << "Writing new mesh with " << refCells.size() << " refinements" << endl;

mesh.write();

newMesh.write();

Code 30: Mesh refinement

The last step is to map the result from mesh to newMesh. This part has not been completed yet,
the code that follows from here on should be added to icoFoamErrorRefine but it should be
left commented. The reader is urged to try compiling and running the solver with some of the
comments uncommented and study the errormessages to complete this application. Add Code

31 after Code 30. The final } finishes the if-statement mentioned earlier.

4.3. Solve cavity case with icoFoamErrorRefine 26

// Map fields

//mapConsistentMesh(mesh,newMesh);

}

// ***********************************/

Code 31: Mapping

Save and quit icoFoamErrorRefine.

We are about to compile the program, but before doing that we need to add a few references in
the Make/options-file. Make sure it has the same appearance as Code 32

EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/errorEstimation/lnInclude \

-I$(LIB_SRC)/dynamicMesh/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/lagrangian/basic/lnInclude \

-I$(LIB_SRC)/sampling/lnInclude

EXE_LIBS = \

-lmeshTools \

-lfiniteVolume \

-ltopoChangerFvMesh \

-lsampling

Code 32: Make/options

Compile by executing wmake in the icoFoamErrorRefine-directory.

4.3 Solve cavity case with icoFoamErrorRefine

Now it is time to try the new code out to see what it really does. We will solve the cavity

case with the new solver. Note that the mapping has not been implemented yet so we should
not expect the results to be satisfactory. Start with copying the cavity case and renaming it
to cavityErrorRefine according to Code 33. We also need to have an object called err in the
0-directory so we simply copy the U-file and make some minor changes inside of it. Then run
the case and have a look in paraFoam . Note that all volume-fields needs to be unchecked from
the Object inspector in paraFoam since the field variables are not connected to the refined mesh.

4.4. Discussion 27

run

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity .

mv cavity cavityErrorRefine

cd cavityErrorRefine

cp 0/U 0/err

sed -i s/"U"/"err"/g 0/err

sed -i s/"(1 0 0)"/"(0 0 0)"/g 0/err

blockMesh |tee logBlockMesh

icoFoamErrorRefine |tee logIcoFoamErrorRefine

Code 33: run the cavityErrorRefine case

4.4 Discussion

The goal of the solver has not been reached. The final step of mapping the results calculated
on the old mesh to the new mesh was never taken due to lack of time. The resulting solver will
now instead solve on the original mesh for all timesteps and refine a sister-mesh called newMesh

once every writeInterval. This will lead to the same cells being refined over and over again
instead of the result improving in these areas.

However, this work leaves space for further development in form of making the mapping work.
Also an adaptive coarsening could be implemented with the aim of having an error field that is
as smooth as possible.

References

[1] Jasak, H. and Gosman, A. D. ’AUTOMATIC RESOLUTION CONTROL FOR THE

FINITEVOLUME METHOD, PART 2: ADAPTIVE MESH REFINEMENT AND COARS-

ENING’, Numerical Heat Transfer, Part B: Fundamentals, 38: 3, 257 271, URL:

http: // dx. doi. org/ 10. 1080/ 10407790050192762 . 2000.

http://dx.doi.org/10.1080/10407790050192762

	icoFoam
	icoErrorEstimate
	Error estimation on the cavity case
	A look into icoErrorEstimate

	refineMesh
	Using refineMesh utility tutorial
	Refine whole mesh
	Refine set

	A look into the source code of refineMesh

	icoFoamErrorRefine
	Goals
	Developments
	Solve cavity case with icoFoamErrorRefine
	Discussion

