Cite as: Aryal, P.. Modeling free surface thermal flow with relative motion of heat source and drop injector
with respect to a liquid pool. In Proceedings of CFD with OpenSource Software, 2019, Edited by Nilsson.
H., http://dx.doi.org/10.17196/0S_CFD#YEAR_2019

CFD wiTH OPENSOURCE SOFTWARE

A COURSE AT CHALMERS UNIVERSITY OF TECHNOLOGY
TAUGHT BY HAKAN NILSSON

Modeling free surface thermal flow with
relative motion of heat source and drop
injector with respect to a liquid pool

Developed for OpenFOAM-3.0.x

Author: P wed b
P d ARYAL eer reviewe y
radip MuYE GE

University West

pradip.aryal@hv.se MICHAEL BERTSCH

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone
through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no
responsibility for the contents.

January 20, 2020

Learning outcomes

The main goal of the tutorial is to learn how to use and modify interFoam solver by adding the
energy conservation equation formulated with the temperature. The reader will also learn to derive
the governing equations when considering a moving control volume case. The reader will also learn
the implementation of newly formulated governing equations in a new solver. Additionally, the
reader will learn to formulate and implement new boundary conditions that are time dependent.

The reader will learn:

How to use it:

e ...Description of the interFoam solver with an accompanying test case is presented. The em-
phasis is put on understanding the various types of BC at an inlet and at an atmospheric
surface.

The theory of it:

e ... The theory of Reynolds transport theorem for a moving control volume is presented. The
theory of existing BC and the necessity to develop new BC to model moving inlet BC is
presented.

How it is implemented:

e ... The standard governing equations in a modified interFoam solver with energy equation for
welding simulation is discussed. A moving heat source is modeled as the surface energy source
term active on the liquid surface and treated explicitly in the energy conservation equation.
A detailed derivation of the governing equations for moving reference frame is presented. The
formulation and implementation of a new BC capable of handling periodical injection of droplet
through moving inlet BC is discussed.

How to modify it:

e ...The modification is performed in two steps. Initially, a description of creating a user copy
of an existing solver is presented. The interFoam solver is copied and modified with inclusion
of energy conservation equation formulated with temperature.

In the second step, the modified solver from the first step is further modified where governing
equations are transformed to a reference frame attached to a moving heat source. The de-
tailed derivation of new sets of governing equations in moving reference frame are derived and
presented. Description of an additional term in the governing equations due to the moving
reference frame is presented and implemented in the solver. Simulation of falling droplets from
inlet boundary condition is performed with the two approaches and the results are compared
and discussed.

Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:
e Fundementals of Heat and mass Transfer , book by Frank. P Incropera

e Run standard tutorials like damBreak tutorial

Contents

1 Introduction

2 The interFoam solver

2.1 Governing equations L e

2.2 Tutorial L
3 Free surface thermal flow

3.1 The energy equation L

3.2 Creating fields L

3.3 Moving heat source L L

4 Governing equations in MRF

4.1 Reynolds transport theorem L Lo
4.2 Reynolds transport theorem for moving control volume
4.3 Motionin MRFo
4.4 Derivation e e e
4.4.1 Continuity equation L
4.4.2 Momentum equation Lo
4.4.3 Alphaequation L
4.4.4 Energy equation e e e e
4.5 Implementation in OpenFOAM
4.5.1 Modification of UEqn.H oo
4.5.2 Modification of alphakqn.H o000
4.5.3 Modification of TEqn.H oo
4.5.4 Construct fields L
5 Formulating a new boundary condition
5.1 Getting startedo
6 Setting up a test case
6.1 Test Case 1 o . e
6.1.1 The beamProperties dictionary
6.1.2 The 0/U file
6.1.3 The 0/alpha.steel.org file
6.2 Test Case 2 e e
7 Results
7.1 Temperature distribution L L Lo
7.2 Surface deformation

8 Future work

(=}

11
11
15
17

19
19
19
20
20
20
21
22
22
23
23
23
24
24

26
26

35
35
35
36
37
39

40
40
40

43

Chapter 1

Introduction

Droplet injection on a pool has a wide range of applications such as inkjet printing, spray cooling, or
welding. It is common to observe relative motion between drop injector and the pool in several of the
engineering applications. When considering welding for instance, a heat source and a feeding wire
moves with uniform speed relative to a base metal. Figure 1.1 shows a typical schematic of a welding
process where the wire is moving and melting under the effect of heat source at the same time. The
droplets formed by the melting of the wire are transferred into the melt pool. The movement of the
wire relative to the base metal results in layers of deposited beads. To simulate such process, it is of
common practice to simplify the physics and simply to inject liquid droplets in the computational
domain [1] [2].

Wire and heat source moving direction

Base metal

Figure 1.1: Schematic of a moving heat source relative to a base metal.

The problem addressed here is to model the relative motion between a drop injector attached
to a heat source and a liquid pool. The relative motion is usually neglected while performing CFD
simulations. Modeling the relative motion often requires the implementation of a complex bound-
ary condition which could be computationally expensive. However, the interest in performing CFD
simulation often lies in modeling relative motion between two bodies to capture real physics. While
modeling relative motion in welding or AM for instance, the most common approach is to imple-
ment a moving heat source in a fixed coordinate system [3]. The other approach is to transform the
governing equations to a reference frame attached to a moving heat source [4] [5]. The aim of this
tutorial is to model relative motion between a drop injector fixed to a heat source and a liquid pool
through both approaches.

CHAPTER 1. INTRODUCTION

As the liquid droplets are falling through a gas medium, the multiphase solver interFoam is
selected for this purpose. The interFoam sovler is discussed in Chapter 2. As the studied problem
is temperature dependent, the interFoam sovler is modified and a new solver is created by adding
the energy equation, which is presented in Chapter 3. The incoming heat source is added as an
energy source term. The modified interFoam solver with energy equation is further modified in
Chapter 4 to create an additional solver for addressing the problem in moving reference frame. The
governing equations in this solver are modified to a coordinate system moving with the heat source.
The theoretical background to modify the governing equations is based on the Reynolds transport
theorem for moving control volume. The modified form of equations are derived and the method to
implement in OpenFOAM is discussed in Chapter 4. A new boundary condition capable of handling
periodically falling and simultaneously moving droplet is formulated and implemented in Chapter
5. Two identical test cases with slightly different boundary conditions are set up in Chapter 6. Test
case 1 with heat source and drop injector moving through the computational domain is solved with
solver in fixed coordinate system. In test case 2, the location of the heat source and drop injector
remains stationary and the test case is solved with the solver modified for moving reference frame.
Results are discussed and analyzed in Chapter 7. Future work is suggested in Chapter 8.

Chapter 2

The interFoam solver

This chapter contains a description of the interFoam solver and the accompanying test case in
OpenFOAM version 3.0.1. The solver is located at FOAM_SOLVERS/multiphase/interFoam. The
interFoam solver is a transient solver for two incompressible isothermal immiscible fluids using the
Volume of Fluid, VOF, method based on phase-fraction for interface capturing. In the VOF method
implemented in the interFoam solver, the transport equation for volume fraction of one phase is
solved simultaneously with the continuity and momentum equations. The thermodynamic and
transport properties such as viscosity, density and specific heat are of mixture type and calculated
as a weighted average based on the distribution of volume fraction.

2.1 Governing equations

The governing equations solved in the interFoam solver are the continuity equation, momentum
equation and conservation equation for phase fraction using VOF method

dp B
o TV (V) =0, (2.1)
00U+ V- (pUU) = ~Vp 4 V- (g (VU + (VU))) + pg + F, (2.2
aa—cz—l—v~ (aU)+V-((1-a)alU,) =0. (2.3)

where p is the density, U the velocity vector, ¢ is the time, p is the pressure, p.rs is the effective
viscosity, g the gravitational acceleration, F's is the surface tension force acting on the interface.
Equation 2.3 is the transport equation of the scalar function «. The value of « is 1 in cells with
only one phase, 0 in a cells with only the other phase and ranges between 0 and 1 in interface cells
containing both of the phases. In Eq. 2.3, the third term on the left hand side is an additional
artificial compression term with artificial compressive velocity U,. The artificial term is introduced
to allow necessary compression at the interface.

Open the main source file interFoam.C and have a look. The code in the main source file
interFoam.C starts with several include files to set up a frame work for the finite volume simulation.

#include "fvCFD.H"

#include "CMULES.H"

#include "EulerDdtScheme.H"
#include "localEulerDdtScheme.H"

2.1. GOVERNING EQUATIONS CHAPTER 2. THE INTERFOAM SOLVER

#include "CrankNicolsonDdtScheme.H"

#include "subCycle.H"

#include "immiscibleIncompressibleTwoPhaseMixture.H"
#include "turbulentTransportModel.H"

#include "pimpleControl.H"

#include "fvIOoptionList.H"

#include "CorrectPhi.H"

#include "fixedFluxPressureFvPatchScalarField.H"
#include "localEulerDdtScheme.H"

#include "fvcSmooth.H"

It is followed by the main function. It contains several classes for time and mesh control.

int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"

pimpleControl pimple(mesh);

#include "createTimeControls.H"
#include "createRDeltaT.H"
#include "initContinuityErrs.H"
#include "createFields.H"
#include "createMRF.H"

#include "createFvOptions.H"
#include "correctPhi.H"

if (ILTS)

{
#include "readTimeControls.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"

The time loop is initiated with {while (runTime.run())}. The new time step is calculated in the
time loop based on the Courant Number. The major concern in free surface simulation using VOF
method is the conservation of phase fraction [6]. A stable solution of phase fraction, requires small
time step. In order to achieve stable solution without significantly increasing simulation time, the
time step is divided and the calculation of phase fraction is performed in a number of sub cycle in
\#include alphaEqnSubCycle.H. Inside the time loop, pimple loop is initiated for pressure-velocity
coupling.

Info<< "\nStarting time loop\n" << endl;

while (runTime.run())

{

2.1. GOVERNING EQUATIONS CHAPTER 2. THE INTERFOAM SOLVER

2.2. TUTORIAL CHAPTER 2. THE INTERFOAM SOLVER

#include UEqun.H initiates the solving of momentum equation mentioned in Eq. 2.2. In OpenFOAM
language, it is written as

fvVectorMatrix UEqn
(
fvm: :ddt (rho, U)
+ fvm::div(rhoPhi, U)
+ MRF.DDt(rho, U)
+ turbulence->divDevRhoReff (rho, U)
fvOptions(rho, U)
);

UEgn.relax();

#include UEqn.H is followed by a pressure correction loop which contains #include pEqn.H that
iteratively calculates and corrects the pressure value. Turbulence is also corrected in the same loop
after the correction of pressure value. The time step finishes with runTime.write() which writes
out the information about time and residuals. A new time step is calculateed again based on the
Courant number. It continues until the criteria for convergence are met, or the maximum number
of iterations is reached.

2.2 Tutorial

A comprehensive set of tutorials for multiphase simulation using the interFoam solver is available in
OpenFOAM package. All the tutorials are accessed by environment variable tut in terminal window
after the initialization of OpenFOAM. Go to

cd FOAM_TUTORIALS/multiphase/interFoam/laminar
1s

There are three test cases. We will look into damBreak tutorial. Copy the test case to the appropriate
user directory.

cd FOAM_RUN
cp -r $FOAM_TUTORIALS/multiphase/interFoam/laminar/damBreak .
cd damBreak

The test case folder contains three sub-directories, they are: 0, constant and system. First, we will
have a look at the constant directory.

cd constant

The folder contains the properties of the fluid and the parameters that remains constant dur-
ing the simulation. We see that the sub-directories contain four files namely dynamicMeshDict, g,
transportProperties and turbulenceProperties. The g file sets the value of the gravitational
acceleration and its direction. The dynamicMeshDict file specifies whether the mesh is static or dy-
namic. The turbulenceProperties file specifies the turbulence model to be used in the simulation.
Since no turbulence model is used in this test case, it is set to laminar. The transportProperties
file contains information about the properties of the fluids. The fluid properties in the test case
are kinematic viscosity (v) and density (p) of air and water specified by the keyword nu and rho
respectively. Additionally, the surface tension (o) of water is also specified by the keyword sigma.

The system sub-directory contains the dictionary blockMeshDict where the information about
the mesh such as vertices, blocks, name and type of boundary surface is stored. You can generate the

2.2. TUTORIAL CHAPTER 2. THE INTERFOAM SOLVER

mesh by using blockMesh utility. The other dictionaries in the system-directory are related to sim-
ulation settings. The controlDict contains the parameters for simulation control. The fvSchemes
dictionaries consist of the numerical discretization scheme for each term. The fvSolution dictionary
consists of all the setting concerning solver, relaxation factors, maximum residuals and pressure-
velocity correction loop.The decomposeParDict dictionary contains information to decompose the
test case to run in parallel mode. The setFiedlsDict dictionary contains information to initialize
specific fields in a certain region of the domain.

The 0 sub-directory contains the individual files of the fields e.g. velocity and pressure. In each
file, the value of the variables at the initial condition and the boundary condition are specified. In
the damBreak tutorial, there are three variables alpha.water.org, p_rgh and U.

Open alpha.water.org file with the editor of your choice.
0/alpha.water.org

The BC for alpha.water on all the walls is set to zeroGradient. The BC on the atmospheric surface
is set to inletOutlet. inletOutlet BC is identical to zeroGradient BC when the flow goes out of
the computational domain. However, in case of backward flow, when the velocity vector next to the
patch of atmospheric surface is directed into the domain, inletOutlet BC changes to fixedValue
type BC. The value of the fixedValue is given in this case by inletValue.

Open p_rgh file.
0/p_rgh

The BC for p_rgh on all the walls is set to fixedFluxPressure. This boundary condition precedes
the generally used zeroGradient BC for p_rgh when the solution domain contains body forces such
as gravity and surface tension. The BC on the atmosphere surface is set to totalPressure.

Open U file.
0/U

The BC for U on all the walls is set to fixedValue type with 0 velocity in each direction. The BC on
the atmosphere surface is set to pressureInletOutletVelocity. The pressureInletOutletVelocity
BC is identical to zeroGradient BC for outflow. For inflow, the velocity is obtained from the the
patch-face normal component of the internal-cell value.

In the damBreak tutorial, the computational domain is 2D and a column of water is initialized
in a rectangular field near left wall. Copy the original file in 0 sub-directory before running setFields
utility

cp 0/alphawater.org O/alphawater

Now, run setFields utility by typing setFields.
Run the test case and write the log-file
interFoam >& log.damBreak

when the simulation is complete, visualize the results in paraview by running paraFoam.

10

Chapter 3

Free surface thermal flow

The energy conservation equation formulated with temperature is included for free surface thermal
flow analysis in the interFoam solver. The modified solver is named interThermalFoam. The
modified solver is used to simulate temperature distribution, droplet injection and its impact on the
surface of the liquid pool. The energy conservation equation in CFD in terms of partial derivatives
is written as

aT
pCp—y + V- (pCpUT) =V - (KVT) + S, (3.1)

where Cp is the specific heat, T is the temperature, K the thermal conductivity and St is the heat
source term. The heat source term in the welding application for instance could be in the form of
laser, arc, electron beam etc. The intensity of these heat sources in CFD simulation are usually

assumed to have Gaussian [1], top-hat [7], and double-ellipsoid [8], [9] distribution. The heat source
term with a Gaussian distribution is assumed in this study and given as
nQ 2
hs = - 3.2
= 2y (12, o2

where 7 is the efficiency, Q is the power, r is the radial coordinate (distance between a point and
the centre of the heat source in x and y directions) and 7y, is the effective radius.

3.1 The energy equation

The interFoam solver in OpenFOAM version 3.0.1 is modified to include the energy conservation
equation mentioned in Eq. 3.1. The first step is to copy the interFoam solver to the user defined
directory for solvers and change the name of the solver directory and main solver file.

mkdir $WM_PROJECT_USER_DIR/applications/solvers
cd $WM_PROJECT_USER_DIR/applications/solvers/
cp -r $FOAM_SOLVERS/multiphase/interFoam/ .

mv interFoam interThermalFoam

cd interThermalFoam

mv interFoam.C interThermalFoam.C

Now, update Make/files either by opening via text editor and manually modifying or by running
the commands

sed -i s/"interFoam"/"interThermalFoam"/g Make/files
sed -i s/"FOAM_APPBIN"/"FOAM_USER_APPBIN"/g Make/files

11

3.1. THE ENERGY EQUATION CHAPTER 3. FREE SURFACE THERMAL FLOW

Once again make sure the code in Make/files looks like

interThermalFoam.C
EXE = $(FOAM_USER_APPBIN)/interThermalFoam

Create a file named TEqn.H and in it write the following lines of code to implement energy
conservation equation

surfaceScalarField alphalf = min(max(fvc::interpolate(alphal), scalar(0)), scalar(1l));
kappaf = alphalf*kappal + (1.0 - alphalf)x*kappaZ2;

fvScalarMatrix TEqn

(
fvm: :ddt (rhoCp, T)
+fvm: :div(rhoPhiCpf, T)
—-fvm: :laplacian(kappaf, T)
)3

TEqn.relax();

solve (TEqn == Qhs*mag(fvc::grad(alphal))*factor);

In the above energy conservation equation written in OpenFOAM language, Qhs is the heat
source term with Gaussian distribution given in Eq. 3.2. The heat source term is explicitly coupled
with the energy equation. The definition of the parameters and initialization of the heat source is
discussed in section 3.2.

The variable rhoCp depends on alpha and it is updated with every sub cycle of the alpha equation.
Open alphaEqnSubCycle.H with the editor of your choice and add the following line of code at the
end.

rhoCp == alphal*rhol*cpl + alpha2*rho2*cp2;

The variable rhoPhiCpf is updated with every alpha iteration. Open alphaEqn.H and add the
following line of code after the equation of rhoPhi at two instances.

rhoPhiCpf = alphaPhi*(rhol*cpl - rho2*cp2) + phiCN*rho2*cp2;

The density ratio between liquid pool and gas phase can be very high. A high density ratio
generates spurious current at the interface due to smearing of volume forces. Therefore, a redis-
tribution term, called ”factor” is used to redistribute the forces to the phase with higher density.
The approach of redistribution term was first proposed and used by Brackbill [10]. The equation for
factor is given as

2p
pl+ p2

The variable factor is updated with the update of pl and p2 in every subcycle of alpha equation.
Open alphaEqnSubCycle.H and add the following line of code between the equation of rho and
rhoCp.

factor = (3.3)

factor = scalar(2)*rho/(rhol+rho2);

Now, we should declare and initialize the new fields written in TEqn.H. We need three fields of
type volScalarField (T, rhoCp, and factor), three of type surfaceScalarField (i.e. alphalf,
kappaf, and rhoPhiCpf) and four of type dimensionedScalar (i.e. cpl, cp2, kappal, and kappa?2).
Open createFields.H and add the following lines of code after the end of volScalarField rho
(i.e. tho.0ldTime () ;) and before surfaceScalarField rhoPhi.

12

3.1. THE ENERGY EQUATION CHAPTER 3. FREE SURFACE THERMAL FLOW

3.1. THE ENERGY EQUATION CHAPTER 3. FREE SURFACE THERMAL FLOW

3.2. CREATING FIELDS CHAPTER 3. FREE SURFACE THERMAL FLOW

3.2 Creating fields

The next step is to create fields for the heat source and define and declare the variables required
for initialization and calculation of heat source mentioned in Eq. 3.2. Create a new file named
createlLaserFields.H and add

3.2. CREATING FIELDS CHAPTER 3. FREE SURFACE THERMAL FLOW

3.3. MOVING HEAT SOURCE CHAPTER 3. FREE SURFACE THERMAL FLOW

3.3 Moving heat source

So far we have added the energy equation, defined and declared the required variables and initialized
the heat source. In order to move the heat source, the local position vector r_local needs to be
updated at each deltaT. Create a file named updateLaserFields.H and add

In the final step, include new files to the source file interThermalFoam.C. Open interThermalFoam.C
and after #include "correctPhi.H", add

#include "createlLaserFields.H"

Then at the end of while (pimple.loop()), add

// update and move laser heat source
#include "updatelLaserField.H"

3.3. MOVING HEAT SOURCE CHAPTER 3. FREE SURFACE THERMAL FLOW

// energy conservation equation (expressed for T)
#include "TEgn.H"

Save and close the file. Now clean and compile.

wclean
wmake

Thus we added energy equation and explicitly coupled it with the heat source. The new variables
are declared, the new fields are constructed and initialized. After successful compilation, the solver
can be tested for the first test case with the moving heat source. The detail of the test case is
described in chapter 6.

18

Chapter 4

Governing equations in MRF

4.1 Reynolds transport theorem

When analyzing fluid flow, the finite region where the fundamental laws of conservation of mass,
momentum and energy are formulated is called control volume. The control volume concept allows
the study of net effect when fluid flows in and out of the finite region [11] . The study of fluid
flow with CFD mostly uses the concept of control-volume analysis. In control volume analysis, the
domain of interest is referred to system where the laws of fluid mechanics apply. The system is
separated from its surroundings by boundaries where the conditions of the fluids are usually known
or closely approximated. The most general form of Reynolds transport theorem for a fixed control
volume is written as

G Bu0= 5 ([sote) ([s omas). (1)

where B is any property of the fluid in the system such as energy or momentum and S is the amount
of B per unit mass in any small portion of the fluid, ¢ is time, C'V refers to control volume, CS
refers to control volume surface, p is the density of the fluid, dv is the volume of the small portion
of the fluid and V is the velocity of the fluid passing through the small control volume surface, n
is the outward pointing vector perpendicular to the control volume surface and dA is the area of a
small portion of the control volume surface.

4.2 Reynolds transport theorem for moving control volume

Most fluid mechanics problems are solved using fixed control volume. However, there are cases when
moving control volume is needed. Moving control volume simplifies the computationally expensive
fluid flow problem in many cases. Some cases where moving control volume is more efficient than
the fixed control volume is in the analysis of flow through jet engines, exhaust flow through a rocket
nozzle, or a moving ship on the surface of water.

In case of a moving control volume, an observer fixed to the control volume experiences relative
velocity Vi.; of fluid crossing through the control volume surface given by

Viee =V = Veov, (4.2)

where V' is the absolute velocity of the fluid and Vv is the velocity of the moving control volume.
Thus the Reynolds transport theorem for a uniformly moving control volume is written as

B =5 ([ot} + ([potvia-maa). (43)

19

4.3. MOTION IN MRF CHAPTER 4. GOVERNING EQUATIONS IN MRF

4.3 Motion in MRF

The solution of governing equations in a fixed coordinate system requires a significantly finer grid for
precise representation of the spatial distribution of a moving heat source. Additionally, in welding,
AM and similar applications, several molten droplets of metal impinge on the melt pool per second.
Therefore, a very small time step size is necessary for stable solution and to accurately predict the
dynamics of impinging droplets. In order to reduce computation time and cost, such a process
can be modeled on a moving reference frame with coordinate system attached to a moving heat
source. Thus, for a constant heat source speed and a sufficiently elongated liquid pool, the problem
transforms into a steady state after a short time. In such case, the heat source and droplet injector
are fixed in space whereas the liquid pool uniformly moves with a certain velocity. The velocity of
the liquid pool is the same as the heat source speed but in opposite direction.

In this chapter, the governing equations in the solver interThermalFoam are transformed to a
moving reference frame. As explained in section 4.2, the velocity of the computational domain in
MRF when the coordinate system is attached to a moving heat source is given as

Urel =U - Uweld) (44)

where U,¢; is the velocity at any point in the computational domain in MRF. U is the absolute
convective velocity of the fluid and Uyye;q is the uniform velocity of the moving coordinate system.
Using Eq. 4.4, the governing equations in the interThermalFoam solver introduced in chapter 3 are
modified to a moving reference frame. The derivation is explained in the following section.

4.4 Derivation

4.4.1 Continuity equation

The continuity equation in the interThermalFoam solver is given as

Ip
—+V-(pU)=0. 4.5
LV (oU) (45)
Replacing the convective velocity U by the relative velocity U,.;, we get
dp
— - (pUrer) = 0. 4.6
Eriid (PUrel) (4.6)
Substuting U,..; from Eq. 4.4 yields
dp
a +V- (p(U - Uweld)) =0, (47)
dp
5 + V- (pU) =V - (pUsera) = 0 . (4.8)

The third term on the left hand side becomes zero since the density, p and the welding velocity,
Uweiq are both constant. Thus we end up with the unchanged continuity equation as in Eq. 4.5,
namely

dp

STV (eU)=0. (4.9)

20

4.4. DERIVATION CHAPTER 4. GOVERNING EQUATIONS IN MRF

4.4.2 Momentum equation

The momentum equation in the interThermalFoam solver is given as

0
&pU + V- (pUU) = =Vp+ V- (ttess (VU + (VU)T)) + pg+ Fs . (4.10)
Replacing the convective velocity U by the relative velocity U,..; we get
0
*pU'rel +V- (pU'r‘elU'rel) = _VP +V- (,Ueff(VU'rel + (VUrel)T)) + pg + FS . (411)
ot
Substituting U,..; from Eq. 4.4 yields
Q(UfU)+ V- (p(U = Uperd) (U — Uperd)) =
at,ﬂ weld 14 weld weld - (412)
_VP +V. (,ueff(V(U - Uweld) + (V(U - Uweld))T)) +pg + FS .
The time derivative term on the left hand side of the Eq. 4.12 is simplified as
0 0 0 0
= _ = U — = = —oU. 4.1
8tp(U Uweld) atPU atpreld at,OU (3)

Here, % PUwela 1s 0 since p and Uyyeq are both constant. The convective term on the left hand side
of the Eq. 4.12 is simplified as

V- (p(U = Upera)(U — Unetra)) =

4.14
V- (pUU) -V (preldU) -V (pUUweld) +V- (preldUweld) . ()

The first term on the right hand side of Eq. 4.14 remains as it is. The second term on the right
hand side of Eq. 4.14 can be expanded into

V- (preldU) =p- (Uweld : VU) + U(Uweld : V,O) . (415)
since p is constant, the second term becomes 0 and we end up with
V- (PUweldU) =p- (Uweld . VU) . (4.16)

Similarly, the third and the fourth term on the right hand side of Eq. 4.14 also reduces to 0 since p
and Uyeq are both constant. Therefore the final solution of 4.14 can be written as

V- (p(U = Uwera)(U = Uyera)) =V - (pUU) = p - (Unera - VU) . (4.17)
The diffusive term on the right hand side of Eq. 4.12 is expanded as

V- (e f F(V(U = Unerd) + (VU = Upera))")) =

. . (4.18)
V- (/Leff(V(U) - V(Uweld)) + (V(U) - (V(Uweld)))) .

Since Uyerq is constant, V(Uyerq) becomes 0. Therefore, the diffusive term remains the same as the
original one in Eq. 4.10 namely

Vo (pef (VU = Ugeta) + (VU = Uyera)) ")) = V - (e fF(V(U) + (VU)T) . (4.19)

From Eq. 4.11, Eq. 4.13, Eq. 4.17, and Eq. 4.19, the final form of momentum equation in moving
reference frame can be written as

%pU +V - (pUU) = p- (Upeta - VU) = =Vp+V - (uef f(VU + (VU)")) + pg + Fs . (4.20)

21

4.4. DERIVATION CHAPTER 4. GOVERNING EQUATIONS IN MRF

4.4.3 Alpha equation

The equation of conservation of phase fraction given by alpha equation in the interThermalFoam
solver is written as

%+V'(QU)+V'((1—&)QUT)=O. (4.21)
Replacing the convective velocity U by the relative velocity U,..; we get
oo
En +V-(aUre) + V- (1 —a)al,)=0. (4.22)
oo
e +V - (a(U—=Upea)) + V- (1 —a)al,) =0. (4.23)
da
N +V-(aU) =V - (aUperd) + V- (1 —a)al,) =0. (4.24)

The third term on the left hand side is expanded into

V- (aneld) = (VOL) “Uyeld + o - (V ' Uweld) . (425)

Since, Uyerq is constant, (V - Uyerq) is 0. So we end up with

V- (OzUweld) = (Va) ~Uyeld - (4.26)
From Eq. 4.26 and 4.24, the final form of the alpha equation in reference frame is written as
foJe
n +V-(aU) = (Va) - Upea + V- (1 —a)al,) =0. (4.27)

4.4.4 Energy equation

The energy conservation equation in interThermalFoam solver introduced in chapter 3 is given in
Eq. 4.28

T
pCp%T +V - (pCpUT) -V - (KVT)=0. (4.28)

Replacing the convective velocity U by the relative velocity U,..;, we get

oT

pCp e + V- (pCpUsaT) = V - (KVT) = 0. (4.29)
oT
pCpE +V- (pCp(U - Uweld>T) -V (KVT) =0. (430)
oT
pCp— + V- (pCpUT) =V - (pCpUyerdT) =V - (KVT) =0. (4.31)

ot
The first and the second term on the left hand side of the equation Eq. 4.31 remains as it is. The
third term on the left had side of the equation can be expanded into

V- (,DCpreldT) = pCp . (Uweld . VT)) + T(UWeld . V(pCp)) . (4.32)

From Eq. 4.31 and 4.32, the final form of the energy conservation equation in moving reference
frame is written as

oT
pCp—r + V- (pCpUT) = V- (KVT) = pCp - (Uweta - VT)) + T(Uweid - V(pCp)) - (4.33)

22

4.5. IMPLEMENTATION IN OPENFOAMCHAPTER 4. GOVERNING EQUATIONS IN MRF

4.5 Implementation in OpenFOAM

In order to implement the governing equations in MRF in OpenFOAM, firstly copy interThermalFoam
sovler developed in Chapter 3 to a new solver named interThermalReferenceFoam solver in your user
application solver directory.

cd $WM_PROJECT_USER_DIR/applications/solvers/

cp -r interThermalFoam interThermalReferenceFoam
cd interThermalReferenceFoam

mv interThermalFoam.C interThermalReferenceFoam.C

Now, update make/files options either by opening and manually writing or by running command as
sed -i s/"interThermalFoam"/"interThermalReferenceFoam"/g Make/files
Once again make sure the code in make/files looks like

interThermalReferenceFoam.C
EXE = $(FOAM_USER_APPBIN)/interThermalReferenceFoam

The Make/options remains unchanged. Now clean and compile.

wclean
wmake

4.5.1 DModification of UEqn.H

The derivation of momentum equation in Eq. 4.20 in MRF has an additional divergence term induced
when a coordinate system is attached to a moving heat source with velocity Uyerq- The additional
term —p - (Uyerqd - VU) is written in OpenFOAM language as - rho*(fvc::grad(U) & Uweld). Open
UEqn.H and add it on the left hand side of the fvVectorMatrix UEqn.

fvVectorMatrix UEqn

(
fvm: :ddt (rho, U)
+ fvm::div(rhoPhi, U)
- rhox(fvc::grad(U) & Uweld) //additional term in MRF
+ MRF.DDt (rho, U)
+ turbulence->divDevRhoReff (rho, U)
fvOptions(rho, U)
);

UEgn.relax();

Save and close the file.

4.5.2 Modification of alphaEqn.H

The derivation of the alpha equation in Eq. 4.27 in MRF has an additional divergence term in-
duced when a coordinate system is attached to a moving heat source with velocity Uyeiq. The
additional term (V@) - Uyera in OpenFOAM language is written as (Uweld & fvc::grad(alphal)).
Open alphaEqn.H and add it on the left hand side of the fvScalarMatrix alphalEqn.

23

4.5. IMPLEMENTATION IN OPENFOAMCHAPTER 4. GOVERNING EQUATIONS IN MRF

fvScalarMatrix alphalEqn

(
(
LTS
? fv::localEulerDdtScheme<scalar>(mesh) .fvmDdt (alphal)
: fv::EulerDdtScheme<scalar>(mesh) .fvmDdt (alphal)
)
+ fv::gaussConvectionScheme<scalar>
(
mesh,
phiCN,
upwind<scalar>(mesh, phiCN)
) .fvmDiv(phiCN, alphal)
- (Uweld & fvc::grad(alphal)) //additional term in MRF
)3

Save and close the file.

4.5.3 Modification of TEqn.H

The derivation of energy equation in MRF in Eq. 4.32 has two additional divergence term induced
when a coordinate system is attached to a moving heat source with velocity Uyeq. To implement
the governing equations in MRF, open TEqn.H and add two lines of code on the right hand side of
fvScalarMatrix TEqn as shown

fvScalarMatrix TEqn

(
fvm: :ddt (rhoCp, T)
// convective term
+ fvm::div(rhoPhiCpf, T)
// heat conduction
- fvm::laplacian(kappaf, T)
rhoCp * (Uweld & fvc::grad(T)) //additional term in MRF
+ T * (Uweld & fvc::grad(rhoCp)) //additional term in MRF
)3

TEqn.relax();

solve (TEqn == Qhs*mag(fvc::grad(alphal))*factor);

Save and close the file.

4.5.4 Construct fields

The next step is to define a vector field U,eq. Open createLaserFields.H and just below the
declaration of dimensionedVector Ulaser, add

Info<< "Reading field Uweld\n" << endl;
volVectorField Uweld

24

4.5. IMPLEMENTATION IN OPENFOAMCHAPTER 4. GOVERNING EQUATIONS IN MRF

(
I0object
(
"Uweld",
runTime.timeName(),
mesh,
IOobject: :NO_READ,
I0object: :NO_WRITE
),
mesh,
dimensionedVector ("Uweld",dimensionSet(0,1,-1,0,0,0,0), Ulaser.value())
);

For a solver in MRF, the heat source and drop injector stays stationary at its initial loca-
tion and does not need to be moved and updated at each deltaT. Open the main solver file
interThermalReferenceFoam.C and comment or delete #include "updatelLaserFields.H"

// move the laser source
//#include "updateLaserFields.H"

Save and close interThermalReferenceFoam.C. Open createLaserFields.H file and change the
equation for r_local as

volScalarField r_local = Foam::sqrt
(
Foam: :sqr(cellCentre.component (vector: :X) - (Xbeam0. component (vector: :X)))
+Foam: : sqr(cellCentre. component (vector: : Z) - (XbeamO . component (vector: :Z)))

)3
Save and close createLaserFields.H. Now clean and compile.

wclean
wmake

In Chapter 4, the new solver named interThermalReferenceFoam is created and the governing
equations are modified in the moving reference frame. The equation of the local position vector
r_local is updated to keep the heat source stationary. After the compilation, the solver can be tested
for the second test case where heat source and drop injector remain fixed in a moving coordinate
system. The details of the test case are described in chapter 6.

25

Chapter 5

Formulating a new boundary
condition

As the heat source moves along the liquid pool, the droplets periodically fall into the liquid pool
at certain frequency. To simplify this phenomenon, liquid droplets are periodically injected through
the inlet boundary. However, there is no standard OpenFOAM BC to handle such a recurring and
moving inlet boundary condition. Therefore, a new BC is formulated in this chapter where the
user can input the initial location of the droplet, frequency of droplet formation, radius of droplet,
velocity of falling droplet and velocity of droplet moving parallel to the liquid pool.

5.1 Getting started

The usual way to start formulating a new boundary condition is to first find the existing one that
would be most closest to what you would like to do. Here, we will first copy oscillatingFixedValue
boundary condition to the user directory and rename localTranslatingFixedValue.

mkdir -p $WM_PROJECT_USER_DIR/SRC/myBCs/myFiniteVolume/fields/fvPatchFields/derived
cd $WM_PROJECT_USER_DIR/SRC/myBCs/myFiniteVolume/fields/fvPatchFields/derived

cp -r $FOAM_SRC/finiteVolume/fields/fvPatchFields/derived/oscillatingFixedValue
localTranslatingFixedValue

Rename all the files inside localTranslatingFixedValue folder. localTranslatingFixedValue is
the name of the new boundary condition.

cd localTranslatingFixedValue

mv oscillatingFixedValueFvPatchField.H localTranslatingFixedValueFvPatchField.H

mv oscillatingFixedValueFvPatchField.C localTranslatingFixedValueFvPatchField.C

mv oscillatingFixedValueFvPatchFields.H localTranslatingFixedValueFvPatchFields.H

mv oscillatingFixedValueFvPatchField.C localTranslatingFixedValueFvPatchFields.C

mv oscillatingFixedValueFvPatchFieldFwd.H localTranslatingFixedValueFvPatchFieldFwd.H

Replace all the ”oscillating” string in all the files with ”localTranslating”.
sed -i s/oscillating/localTranslating/g localTranslatingFixedValueFvPatchFieldx

Start with localTranslatingFixedValueFvPatchField.H and modify the private data as

26

5.1. GETTING STARTEDCHAPTER 5. FORMULATING A NEW BOUNDARY CONDITION

Comment or delete the the declared private member function.

Replace the member functions with

5.1. GETTING STARTEDCHAPTER 5. FORMULATING A NEW BOUNDARY CONDITION

5.1. GETTING STARTEDCHAPTER 5. FORMULATING A NEW BOUNDARY CONDITION

Save and close localTranslatingFixedValueFvPatchField.H file.
Open localTranslatingFixedValueFvPatchField.C file and do the following modifications.
Comment or delete the private member function with the definition of currentScale() function.

Modify the constructors to

5.1. GETTING STARTEDCHAPTER 5. FORMULATING A NEW BOUNDARY CONDITION

dropRadius_(Q),
faceCentres_(p.C£()),
dropTranslatingVelocity_Q),
dropFrequency_ ()

{3

template<class Type>
localTranslatingFixedValueFvPatchField<Type>::localTranslatingFixedValueFvPatchField
(

const localTranslatingFixedValueFvPatchField<Type>& ptf,

const fvPatch& p,

const DimensionedField<Type, volMesh>& iF,

const fvPatchFieldMapper& mapper

)
fixedValueFvPatchField<Type>(ptf, p, iF, mapper),
dropInletValue_(ptf.dropInletValue_, mapper),
dropOutsideValue_(ptf.dropOutsideValue_, mapper)
{3

template<class Type>
localTranslatingFixedValueFvPatchField<Type>::localTranslatingFixedValueFvPatchField
(

const fvPatch& p,

const DimensionedField<Type, volMesh>& iF,

const dictionary& dict

fixedValueFvPatchField<Type>(p, iF),
dropInletValue_("dropInletValue", dict, p.size()),
dropOutsideValue_("dropOutsideValue", dict, p.size()),
dropCentre0_(dict.lookup("dropCentre0")),
dropCentre_(dict.lookup("dropCentre")),
dropRadius_(dict.lookup("dropRadius")),

faceCentres_(p.C£()),
dropTranslatingVelocity_(dict.lookup("dropTranslatingVelocity")),
dropFrequency_(readScalar(dict.lookup("dropFrequency")))

if (dict.found("value"))
{
fixedValueFvPatchField<Type>: :operator==
(
Field<Type>("value", dict, p.size())
)s
}
else
{
fvPatchField<Type>: :operator==(dropOutsideValue_) ;
Field<Type>& patchfield = *this;
forAll(p.C£(),i) //go through all the cells in the current patch

30

5.1. GETTING STARTEDCHAPTER 5. FORMULATING A NEW BOUNDARY CONDITION
{
bool isDrop=false;//isInlet could be a better name.
forAll(dropRadius_, j)//go through all the holes
{
if (mag(p.Cf () [i]-dropCentre_[jl)<=dropRadius_[j]){isDrop=true;}
{
if (isDrop){patchfield.data() [i]= dropInletValue_[i];?}
}
}
¥
}
}

template<class Type>
localTranslatingFixedValueFvPatchField<Type>::localTranslatingFixedValueFvPatchField

(

{3+

const localTranslatingFixedValueFvPatchField<Type>& ptf

fixedValueFvPatchField<Type> (ptf),
dropInletValue_(ptf.dropInletValue_),
dropOutsideValue_(ptf.dropOutsideValue_),
dropCentre0_(ptf.dropCentrel_),
dropCentre_(ptf.dropCentre_),
dropRadius_(ptf.dropRadius_),
dropTranslatingVelocity_(ptf.dropTranslatingVelocity_),
dropFrequency_(ptf.dropFrequency_)

template<class Type>
localTranslatingFixedValueFvPatchField<Type>::localTranslatingFixedValueFvPatchField

(

{3

const localTranslatingFixedValueFvPatchField<Type>& ptf,
const DimensionedField<Type, volMesh>& iF

fixedValueFvPatchField<Type>(ptf, iF),
dropInletValue_(ptf.dropInletValue_),
dropOutsideValue_(ptf.dropOutsideValue_),
dropCentre0_(ptf.dropCentrel_),
dropCentre_(ptf.dropCentre_),
dropRadius_(ptf.dropRadius_),
dropTranslatingVelocity_(ptf.dropTranslatingVelocity_),
dropFrequency_(ptf.dropFrequency_)

// * % * % % % x k% % * *x % *x % *End of Constructors * * * % * % * % % * x *x x //

Modify the Member Functions to

31

5.1. GETTING STARTEDCHAPTER 5. FORMULATING A NEW BOUNDARY CONDITION

template<class Type>
void localTranslatingFixedValueFvPatchField<Type>::autoMap

(
const fvPatchFieldMapper& m

)

{
fixedValueFvPatchField<Type>: :autoMap (m) ;
dropInletValue_.autoMap(m) ;
dropOutsideValue_.autoMap(m) ;
faceCentres_.autoMap(m);

}

template<class Type>
void localTranslatingFixedValueFvPatchField<Type>: :rmap

(
const fvPatchField<Type>& ptf,
const labellList& addr

)

{
fixedValueFvPatchField<Type>: :rmap(ptf, addr);
const localTranslatingFixedValueFvPatchField<Type>& tiptf =
refCast<const localTranslatingFixedValueFvPatchField<Type> >(ptf);
dropInletValue_.rmap(tiptf.dropInletValue_, addr);
dropOutsideValue_.rmap(tiptf.dropOutsideValue_, addr);
faceCentres_.rmap(tiptf.faceCentres_, addr);

}

template<class Type>
void localTranslatingFixedValueFvPatchField<Type>: :updateCoeffs()
{

if (this->updated())

{
return;
}
scalar t_ = this->db().time() .value(); //indirect access to the runTime.
float tinj_ = 1/(2*dropFrequency_); //Droplet injection time.
const int ninj = floor(t_/tinj_); //Number of droplet injection
if (curTimeIndex_ '= this->db().time() .timeIndex())
{

fvPatchField<Type>: :operator==(dropInletValue_) ;
Field<Type>& patchfield = *this;
forAll (this->faceCentres(),i)
{

bool isDrop=false;

forAll (dropRadius_, j)

{

if (mag(this->faceCentres() [i]-dropCentre_[j])<=dropRadius_[j]
&& (t_ > 0.5 && ninj % 2 == 0)){isDrop=true;}

32

5.1. GETTING STARTEDCHAPTER 5. FORMULATING A NEW BOUNDARY CONDITION

if (!isDrop){patchfield.data() [i]= dropOutsideValue_[i];}
}
curTimeIndex_ = this->db().time() .timeIndex();
dropCentre_ dropCentreO_ + dropTranslatingVelocity_ * t_;
Info << "curTimeIndex_" << curTimeIndex_ << endl;

}
fixedValueFvPatchField<Type>: :updateCoeffs();

template<class Type>
void localTranslatingFixedValueFvPatchField<Type>: :write(Ostream& os) const
{
fixedValueFvPatchField<Type>: :write(os);
dropInletValue_.writeEntry("dropInletValue", os);
dropOutsideValue_.writeEntry("dropOutsideValue", os);
os.writeKeyword("dropCentre0")
<< dropCentreO_ << token::END_STATEMENT << nl;
os.writeKeyword("dropCentre")
<< dropCentre_ << token::END_STATEMENT << nl;
os.writeKeyword("dropRadius")
<< dropRadius_ << token::END_STATEMENT << nl;
os.writeKeyword("dropTranslatingVelocity")
<< dropTranslatingVelocity_ << token::END_STATEMENT << nl;
os.writeKeyword("dropFrequency")
<< dropFrequency_ << token::END_STATEMENT << nl;
}

// * % % % x % % % x *x *x *x xEnd of Member Functions * * * % % % % % % % x //

Create a Make directory by copying from the $FOAM_SRC/finiteVolume/Make

cd $WM_PROJECT_USER_DIR/SRC/myBCs
cp -r $FOAM_SRC/finiteVolume/Make

Remove all the lines from the original Make/files and replace it with

fvPatchFields = myFiniteVolume/fields/fvPatchFields

derivedFvPatchFields = $(fvPatchFields)/derived

$(derivedFvPatchFields) /localTranslatingFixedValue/localTranslatingFixedValueFvPatchFields.C
LIB = $(FOAM_USER_LIBBIN)/libmyBCs

Save and close.
Remove all the lines in Make/options file and add

EXE_INC = \
-I$(LIB_SRC)/triSurface/1nInclude \
-I$(LIB_SRC) /meshTools/1nInclude \
-I$(LIB_SRC)/finiteVolume/1nInclude

LIB_LIBS = \

-10penF0AM \

-ltriSurface \
-lmeshTools \
-1finiteVolume

33

5.1. GETTING STARTEDCHAPTER 5. FORMULATING A NEW BOUNDARY CONDITION

Save and close.

Clean and compile the library

wclean libso
wmake libso

The two solvers interThermalFoam and interThermalReferenceFoam, and the boundary con-
dition are ready to be applied for simulation. Chapter 6 describes setting up two test cases and
modeling relative motion from two different approaches.

34

Chapter 6

Setting up a test case

6.1 Test Case 1

The next step is to set up two new test cases by copying an existing test case of damBreak tutorial.
Initially, the vertices and the blocks are adjusted to modify the computational domain to 3D. The
two phases in transportProperties dictionary is modified from air and water phase to argon and
steel phase respectively. The corresponding value of transport properties is updated accordingly.
The thermophyscial properties of steel and argon is defined in the new dictionaries named thermo-
physical PropertiesPhasel and thermophysical PropertiesPhase2 respectively. The properties of heat
source is defined in a new dictionary named beamProperties in the constant directory. The initial
conditions and boundary conditions in 0 directory is changed as needed.

run
cp -r $FOAM_TUTORIALS/multiphase/interFoam/laminar/damBreak movingLaser
cd movingLaser

The first test case is named movingLaser. This test case is solved with interThermalFoam solver.
The test case is in the fixed coordinate system where the heat source and drop injector moves in the
computational domain. Since the problem is symmetric along the horizontal x-axis, only one half of
the computational domain is solved.

Since the main purpose of this tutorial is to model relative motion of heat source and a liquid
pool from two different approaches, the major modifications in the test case is to define laser beam
properties in a new dictionary named beamProperties in constant directory and to implement the
new BC for velocity field U and phase fraction field alpha.steel.org in 0 directory are given here.
The rest of the case files are available for download and not explained in detailed here.

6.1.1 The beamProperties dictionary

The properties of a laser beam heat source which is explicitly coupled with the energy conservation
equation is defined in a new dictionary called beamProperties. Create a new file named beamProp-
erties in constant directory and add

FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "constant";
object beamProperties;
}

35

6.1. TEST CASE 1 CHAPTER 6. SETTING UP A TEST CASE

// initial location of the laser beam source center
Xbeam0 Xbeam0 [0 1 0 00 0 0] (0.01 0.0 0.0);
// time from which the laser is switched on
timeStartLaser timeStartLaser [0 0 1 0 0 O 0] 0.0;
// radius of the laser beam
rBeam rBeam [0 1 0 0 0 O 0] 1.4e-3;
// absorptivity of the sample surface to the laser
eta_L eta_L [0 00000 0] 0.13;
// laser beam power
Q_L Q_L [1 2-300 0 0] 3850;
// Laser beam welding speed
Ulaser Ulaser [0 1 -1 0 0 0 0] (0.01 0 0); // moving laser beam with 0.01 m/s

6.1.2 The 0/U file

The new BC developed in Chapter 5 is implemented in dropInlet patch for velocity field. With this
BC, the users can define the droplet impinging velocity, radius, frequency and initial location. The
velocity of the droplet moving parallel to liquid pool given by drop Translating Velocity is the same
as the velocity of the heat source.

FoamFile
{
version 2.0;
format ascii;
class volVectorField;
location "o";
object U;
}
dimensions [01-10000];
internalField wuniform (0 0 0);
boundaryField
{
dropletInlet
{
type localTranslatingFixedValue;
value uniform (0 0 0);
dropInletValue uniform (0.0 -1.0 0);
dropOutsideValue uniform (0 0 0);
dropCentre0 ((0.01 0.01 0.0));
dropCentre ((0.01 0.01 0.0));
dropRadius (0.0006) ;
dropTranslatingVelocity ((0.01 0 0));
dropFrequency 167;
}
bottomSample
{
type fixedValue;
value uniform (0 0 0);
}
leftAndRightSample
{
type fixedValue;
value uniform (0 0 0);

36

6.1. TEST CASE 1 CHAPTER 6. SETTING UP A TEST CASE

X

backSample

{
type fixedValue;
value uniform (0 0 0);

X

topAtmosphere

{
type pressurelnletOutletVelocity;
value uniform (0 0 0);

X

leftAndRightAtmosphere

{
type pressurelnletOutletVelocity;
value uniform (0 0 0);

3

backAtmosphere

{
type pressurelnletOutletVelocity;
value uniform (0 0 0);

3

symmetryBc

{
type symmetryPlane;

by

6.1.3 The 0/alpha.steel.org file

Similarly, the new BC is also implemented in dropInlet patch for alpha field to model periodically
falling droplets.

FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object alpha.steel;
}
dimensions [00O0O0O0O0O0];
internalField uniform O;
boundaryField
{
dropletInlet
{
type localTranslatingFixedValue;
value uniform O;
dropInletValue uniform 1.0;
dropOutsideValue uniform O;
dropCentre0 ((0.01 0.01 0.0));
dropCentre ((0.01 0.01 0.0));
dropRadius (0.0006) ;
dropTranslatingVelocity ((0.01 0 O));
dropFrequency 167;

37

6.1. TEST CASE 1 CHAPTER 6. SETTING UP A TEST CASE

}

bottomSample

{
type fixedValue;
value uniform 1;

}

leftAndRightSample

{
type zeroGradient;

}

backSample

{
type zeroGradient;

}

topAtmosphere

{
type inletQOutlet;
inletValue uniform O;
value uniform O;

}

leftAndRightAtmosphere

{
type inletOutlet;
inletValue uniform O;
value uniform O;

}

backAtmosphere

{
type inletOutlet;
inletValue uniform O;
value uniform O;

}

symmetryBc

{
type symmetryPlane;

}

Now everything is set to run the first test case. Start by copying the original alpha.steel.org files

beefore running the setFields utility

cp 0/alpha.steel.org 0/alpha.steel

Generate mesh and run setFields.

blockMesh
setFields

Figure 6.1 shows the computational domain, mesh and the initial fields. Run the first solver, i.e.

interThermalFoam, and write output to a log file.

interThermalFoam >& log.tIterFoam &

38

6.2. TEST CASE 2 CHAPTER 6. SETTING UP A TEST CASE

dpha.steel
1.000e+00

0.75003

0.50002

0.25001

-3.735e-05

Figure 6.1: Computational domain with initial fields

6.2 Test Case 2

The second test case is called movingFrame. The test case is run using the second solver i.e.
interThermalReferenceFoam. Start by copying test case 1.

run
cp -r movinglaser movingFrame
cd movingFrame

In this test case, the laser beam stays stationary at its initial location which is implemented in
interThermalReferenceFoam solver. However unlike in test case 1, the location of the formation of
droplets also remains at the same location. This is handled by the boundary condition of alpha.steel
and U by setting drop Translating Velocity to (0, 0, 0). Open alpha.steel.org file and under the
boundary condition for dropInlet patch inside boundaryField, change drop Translating Velocty to

dropTranslatingVelocity ((0 0 0));

Save and close the file.

Do the same as above in 0/U file as well.
dropTranslatingVelocity ((0 0 0));

Save and close the file. Everything else remains the same for test case 2 and it is ready to be run.
Start by copying the original alpha.steel.org files before turrning the setFields utility

cp 0/alpha.steel.org 0/alpha.steel

Generate mesh and run setFields

blockMesh
setFeids

Run the second solver, i.e. interThermalReferenceFoam, and write output to a log file.

interThermalReferenceFoam >& log.interThermalReferenceFoam &

39

Chapter 7

Results

7.1 Temperature distribution

Figure 7.1 shows a comparison of temperature distribution on the surface of liquid steel at 0.5s
between movingLaser and movingFrame test case. The temperature distribution on the steel surface
agrees very well between the two cases. Similarly Figure 7.2 shows a comparison of temperature
distribution along symmetrical plane between two test cases. The temperature distributions agree
very well with minor variation in argon gas phase. The white horizontal line in Figure 7.2 represents
the interface between steel and argon gas phase.

(b)

|
3.000e+02 725 1150 15675 2.000e+03

Figure 7.1: Temperature distribution on top metal surface at 0.5s (a) Moving Laser (b) Moving Frame.

7.2 Surface deformation

Figure 7.3 shows comparison of surface deformation on the liquid steel surface produced by the
impact of the droplet. The surface deformation between the two test cases agrees very well.

Furthermore, the simulation time for a test case in moving reference frame is 11.25% lower than
for a test case with moving heat source using AMD Opteron(tm) Processor 6386 SE. For cases with

40

7.2. SURFACE DEFORMATION CHAPTER 7. RESULTS

(a)

(b)

3.000e+02 675 1350 2025 3.000e+03

Figure 7.2: Temperature distribution along symmetrical plane at 0.5s (a) Moving Laser (b) Moving Frame.

longer simulation time, the solver modified for moving reference frame provide significant time saving
with fairly identical results.

From the analysis of the results obtained from the test cases with moving heat source and
moving reference frame, we can draw the conclusion that the implementation of governing equations
in moving reference frame are fairly accurate to model relative motion between two bodies.

41

7.2. SURFACE DEFORMATION CHAPTER 7. RESULTS

55

55

y (mm)

m— o ving Laser
45 —— MovingFrame

3,5

10 11 12 13 14 15 16 17 18 15 20

X (mm)

Figure 7.3: Deformation on liquid steel due to droplet impact at 0.52s.

42

Chapter 8

Future work

Both of the the solver discussed in the report can be improved by considering other phenomenon
occurring in similar engineering applications. For example including Marangoni convection and
phase change described in [12] would allow the use of the modified solver for welding simulation.
Additionally, for similar multiphysics simulations with relative motion between two bodies, governing
equations in moving reference frame can be similarly derived and used in simulations to reduce
computational time.

43

Study questions

1. What is the most widely used distribution model for the heat source term in welding applica-
tion?

2. What is factor? Why is it used in multiphase flow simulation with high density ratio?

3. How to modify governing equations to a moving reference frame and implement in Open-
FOAM?

4. Why is it important to construct and declare the fields of the variables in source term in a
separate file?

5. Why is it important to model motion in moving reference frame?
6. How to formulate new BC form an existing BC?

7. What member data do you need to declare to formulate BC for periodically falling droplets.

44

Bibliography

[1]

Junling Hu, H Guo, and Hai-Lung Tsai. Weld pool dynamics and the formation of ripples in 3d
gas metal arc welding. International Journal of Heat and Mass Transfer, 51(9-10):2537-2552,
2008.

Xiangman Zhou, Haiou Zhang, Guilan Wang, and Xingwang Bai. Three-dimensional numerical
simulation of arc and metal transport in arc welding based additive manufacturing. International
Journal of Heat and Mass Transfer, 103:521-537, 2016.

Akash Aggarwal and Arvind Kumar. Particle scale modelling of selective laser melting-based
additive manufacturing process using open-source cfd code openfoam. Transactions of the
Indian Institute of Metals, 71(11):2813-2817, 2018.

Vaibhav K Arghode, Arvind Kumar, Suresh Sundarraj, and Pradip Dutta. Computational
modeling of gmaw process for joining dissimilar aluminum alloys. Numerical Heat Transfer,
Part A: Applications, 53(4):432-455, 2008.

Renzhi Hu, Xin Chen, Guang Yang, Shuili Gong, and Shengyong Pang. Metal transfer in wire
feeding-based electron beam 3d printing: Modes, dynamics, and transition criterion. Interna-
tional Journal of Heat and Mass Transfer, 126:877-887, 2018.

S Marquez Damian. Description and utilization of interfoam multiphase solver. URL:
http://infofich. unl. edu. ar/upload/3be0el606502652747704b948¢c4caa7523¢8eab2. pdf, 2012.

Mickael Courtois, Muriel Carin, Philippe Le Masson, Sadok Gaied, and Mikhaél Balabane. A
complete model of keyhole and melt pool dynamics to analyze instabilities and collapse during
laser welding. 2014.

Pei-quan Xu, Chen-ming Bao, Feng-gui Lu, Chun-wei Ma, Jian-ping He, Hai-chao Cui, and
Shang-lei Yang. Numerical simulation of laser—tungsten inert arc deep penetration welding
between wc—co cemented carbide and invar alloys. The International Journal of Advanced
Manufacturing Technology, 53(9-12):1049-1062, 2011.

John Goldak, Aditya Chakravarti, and Malcolm Bibby. A new finite element model for welding
heat sources. Metallurgical transactions B, 15(2):299-305, 1984.

Jeremiah U Brackbill, Douglas B Kothe, and Charles Zemach. A continuum method for mod-
eling surface tension. Journal of computational physics, 100(2):335-354, 1992.

Frank M White. Fluid mechanics. 2015.

AD Brent, Vaughan R Voller, and KTJ Reid. Enthalpy-porosity technique for modeling
convection-diffusion phase change: application to the melting of a pure metal. Numerical Heat
Transfer, Part A Applications, 13(3):297-318, 1988.

45

	Introduction
	The interFoam solver
	Governing equations
	Tutorial

	Free surface thermal flow
	The energy equation
	Creating fields
	Moving heat source

	Governing equations in MRF
	Reynolds transport theorem
	Reynolds transport theorem for moving control volume
	Motion in MRF
	Derivation
	Continuity equation
	Momentum equation
	Alpha equation
	Energy equation

	Implementation in OpenFOAM
	Modification of UEqn.H
	Modification of alphaEqn.H
	Modification of TEqn.H
	Construct fields

	Formulating a new boundary condition
	Getting started

	Setting up a test case
	Test Case 1
	The beamProperties dictionary
	The 0/U file
	The 0/alpha.steel.org file

	Test Case 2

	Results
	Temperature distribution
	Surface deformation

	Future work

