
1

CFD WITH OPENSOURCE SOFTWARE

A COURSE AT CHALMERS UNIVERSITY OF TECHNOLOGY

TAUGHT BY HÅKAN NILSSON

Study Questions and Answers:

Transient simulation of opening and closing guide vanes of a hydraulic turbine

Developed for OpenFOAM-2.4.x

Author: Peer reviewed by:

ABHISHEK SARAF THEJESHWAR SADANANDA

 HÅKAN NILSSON

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some other OpenSource

software are introduced to the students. Any reader should be aware that it might not be free of errors. Still, it might be

useful for someone who would like learn some details similar to the ones presented in the report and in the accompanying

files. The material has gone through a review process. The role of the reviewer is to go through the tutorial and make sure

that it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no responsibility for the

contents.

January 21, 2016

2

Learning Outcomes

The reader will learn:

 How to implement a new mesh motion library to give rotational motion.

 The basics of Rodrigues rotation.

 How to set up the case to perform rotating motion.

 How to create a new dynamic mesh class combining solidBodyMotionFvMesh class and

dynamicRefineFvMesh class.

3

Chapter 1

Guide vane rotation test case

1.1 Objective

This report is aimed to present an investigation and capability findings of OpenFOAM-2.4x in handling

transient flows when there is some mesh deformation in the computational domain.

1.2 Introduction

In the case of hydraulic turbines the inflow to the rotor is controlled by opening or closing of the guide

vanes in order to achieve the optimal efficiency of the turbine. In this case an investigation will be carried

out on the guide vanes of a Francis turbine where the guide vanes rotate, thus causing pressure and

velocity fluctuations both upstream and downstream of the guide vane stage. A two-dimensional

representation of the distributor (the housing for all the guide vanes is called the distributor) is shown in

the figure 1. In order to check OpenFOAM’s dynamic mesh handling capability each guide vane will be

given a certain rotation about their respective centres which will require adapting the grid at each time

step.

Figure 1: 2-D Schematic diagram of the distributor

This tutorial describes how to modify and use the mesh motion libraries in OpenFOAM to give rotation to

each guide vane. In total, there are 16 guide vanes in this case and we shall explore the use of the

transient incompressible flow solver pimpleDyMFoam to estimate the pressure distribution on each

guide vane as they rotate during the simulation. The moment acting on each guide vane is also

calculated. For convenience of the reader, the main dimensions of the distributor are listed in table 1.

Name Units Dimension

Inlet Diameter m 0.475

Outlet Diameter m 0.335

Guide Vane Height m 0.104

Pitch Circle Diameter m 0.400

Table 1: Basic dimensions of the distributor

4

1.3 Pre-processing

This section covers the necessary steps needed to setup the guide vane case. It includes the procedure to

generate the mesh, implement the rotation of each guide vane as well discusses the necessary boundary

conditions.

The case directory “TME205_asaraf” must be downloaded from the course homepage and copied to the

to the reader’s local run directory of OpenFOAM 2.4.x. The case directory should then be unpacked.

1.3.1 Meshing

The geometry shown in figure 1 consists of 16 guide vanes equally spaced in an annular manner. The

initial mesh is generated for one guide vane passage and subsequently OpenFOAM utilities such as

“transformPoints”, “mergeMeshes” and “stitchMesh” are used to generate the mesh for the entire

distributor.

In the tutorial directory “/TME205_asaraf/Guidevanerotation”, the “Test” directory will be used as a base

case to carry out operations to achieve the desired mesh. In order to visualize the patch names and the

mesh for one guide vane passage the following command much be entered in the terminal.

cd $FOAM_RUN/TME205_asaraf/Guidevanerotation

blockMesh -case Test

Figure 2: Initial mesh of one Guide Vane passage

The initial mesh shown in the figure 2 is a 2D mesh. The top and bottom patches have been set to type

“empty” and hence are not labelled in the figure 2. In view that individual rotation is to be given to each

guide vane, the names of each of the guide vane patches are to be given as (GV1,GV2,GV3,GV4.....GV16).

Since there are 16 guide vanes passages that will form the complete mesh of the distributor, the mesh

generated in the previous step for one guide vane passage is rotated 16 times in order to get the

complete geometry of the distributor. This step is performed using the “transformPoints” utility. In order

to merge and stitch the rotated meshes, master and slave patches need to be defined for each of the 16

guide vane passages. Hence, the patch names LHS and RHS are renamed as

(LHS1,LHS2,LHS3,LHS4.....LHS16) and (RHS1,RHS2,RHS3,RHS4.....RHS16) respectively. After renaming the

patches the “mergeMeshes” and “stitchMesh” utilities are used to generate the mesh of the distributor.

5

The above mentioned steps for meshing are consolidated in a script file namely “meshgeneration” which

is located in “/TME205_asaraf/Guidevanerotation” directory. The mesh generation script carries out all

the steps required to generate the mesh. In order to make the script executable, the following command

line input must be given.

chmod +x meshgeneration

The mesh is now generated by executing the following command in the

“/TME205_asaraf/Guidevanerotation” directory.

./meshgeneration

The mesh generated using the “meshgeneration” script is shown in figure 3. At this stage the complete

mesh of the distributor is generated, but the boundary file located in the “/Test/constant/polyMesh”

directory contains the master and slave patches and need to be removed. The modifications to the

“/Test/boundary” file need to be done in accordance to what is given in Appendix A. In addition, a

reference “boundary” file located in the “Guidevanerotation/readytorun/constant/polyMesh” directory.

It can be copied using the following command.

cp -r readytorun/constant/polyMesh/boundary Test/constant/polyMesh/boundary

Figure 3: 2D mesh of distributor

1.3.2 Implementing rotation of each guide vane

This section describes the steps to create a new mesh motion library in order to give rotational motion to

each of the guide vanes. In this case, the “angularOscillatingVelocity” library is going to be used as a

reference. The library chosen here gives oscillating motion by defining velocity of each node on a patch

about a fixed axis and centre. This library will be modified, in order to give only rotational motion to the

patch. The library can be found at the given location.

$FOAM_SRC/fvMotionSolver/pointPatchFields/derived/angularOscillatingVelocity/

The above mentioned library is copied to the “TME205_asaraf/Guidevanerotation” directory, using the

following commands.

cp -r $FOAM_SRC/fvMotionSolver/pointPatchFields/derived\

angularOscillatingVelocity $FOAM_RUN/TME205_asaraf/Guidevanerotation

6

The files and folders are renamed as follows.

cd $FOAM_RUN/TME205_asaraf/Guidevanerotation

mv angularOscillatingVelocity librotationVelocity

cd librotationVelocity

mv angularOscillatingVelocityPointPatchVectorField.C\

librotationVelocityPointPatchVectorField.C

mv angularOscillatingVelocityPointPatchVectorField.H\

librotationVelocityPointPatchVectorField.H

In order to make a distinction between the original library and this one the string “angularOscillating” in

the names of the “.H” and “.C” files is replaced with “librotation”. This replacement has to be done inside

these source files. Then the string “angularOscillating” is changed to librotation in the .C- and .H -files as

follows.

sed -e "s/angularOscillating/librotation/g"\

librotationVelocityPointPatchVectorField.C > tmp.C

mv tmp.C librotationVelocityPointPatchVectorField.C

sed -e "s/angularOscillating/librotation/g"\

librotationVelocityPointPatchVectorField.H > tmp.H

mv tmp.H librotationVelocityPointPatchVectorField.H

In order to compile the code, the “Make” directory needs to be created inside the “librotationVelocity”
directory. In addition the “Make/files” and “Make/options” files need to be created. This is done using
the following commands.

mkdir Make

cd Make/

touch files options

The “Make/files” and “Make/options” files should be set in the manner as mentioned in code 1 and code
2 respectively.

Code 1: “Make/files” file
librotationVelocityPointPatchVectorField.C

LIB = $(FOAM_USER_LIBBIN)/librotationVelocity

Note the addition of “USER” in line 2 of code 1, this places the library in the user library directory and

makes it impossible for the user to overwrite any original OpenFOAM libraries.

Code 2: “Make/options”
EXE_INC = \

 -I$FOAM_SRC/triSurface/lnInclude \

 -I$FOAM_SRC/meshTools/lnInclude \

 -I$FOAM_SRC/dynamicMesh/lnInclude \

 -I$FOAM_SRC/finiteVolume/lnInclude \

 -I$FOAM_SRC/fvMotionSolver/lnInclude

LIB_LIBS = \

 -ltriSurface \

 -lmeshTools \

 -ldynamicMesh \

 -lfiniteVolume

At this stage it is advised to test that the library compiles or not in order. This is done using the following

command.

wmake libso

In case there are no compilation errors, the user can proceed with modifying the library as follows.

The declared variables located at line 47 in the “librotationVelocityPointPatchVectorField.H” file are as

follows.

7

vector axis_;

vector origin_;

scalar angle0_;

scalar amplitude_;

scalar omega_;

pointField p0_;

The declared variables need to be modified and set as follows:
vector axis_;

vector origin_;

scalar angle0_;

pointField p0_;

These variables are used to choose the different settings for the boundary conditions. This is further

explained in section 1.3.3.

The next step is to remove the old initialized variables in the constructors of

“librotationVelocityPointPatchVectorField.C” file with the variables initialized in the

“librotationVelocityPointPatchVectorField.H” file. The changes to the code between line 47 and line 52,

line 65 and line 69, line 97 and line 102, line 114 and line 119 in the

“librotationVelocityPointPatchVectorField.C” file are shown in code 3, code 4, code 5 and code 6

respectively.

Code 3: Changes in line 47 to line 52 in “librotationVelocityPointPatchVectorField.C” file
axis_(vector::zero),

origin_(vector::zero),

angle0_(0.0),

p0_(p.localPoints())

Code 4: Changes in line 65 to line 69 in “librotationVelocityPointPatchVectorField.C” file
axis_(dict.lookup("axis")),

origin_(dict.lookup("origin")),

angle0_(readScalar(dict.lookup("angle")))

Code 5: Changes in line 97 to line 102 in “librotationVelocityPointPatchVectorField.C” file
axis_(ptf.axis_),

origin_(ptf.origin_),

angle0_(ptf.angle_),

p0_(ptf.p0_)

Code 6: Changes in line 114 to line 119 in “librotationVelocityPointPatchVectorField.C” file
axis_(ptf.axis_),

origin_(ptf.origin_),

angle0_(ptf.angle_),

p0_(ptf.p0_)

The code 3 initializes the values of the variables namely “axis”, “origin”, “angle0” and “p0”. Here “p0”

gives the absolute coordinates of the points on the patch. Code 4 instructs the code to look up the names

“axis”, “origin” and “angle0” which will be entered by the user.

At this stage, the variables have been updated in the constructors. Now the write functions need to be

updated. The write functions are located between line 181 and line 199 in the

“librotationVelocityPointPatchVectorField.C” file. These code between these need to be edited and

should be set as shown in code 7.

8

Code 7: Changes in line 181 to line 199 in “librotationVelocityPointPatchVectorField.C” file
void librotationVelocityPointPatchVectorField::write

(

 Ostream& os

) const

{

pointPatchField<vector>::write(os);

os.writeKeyword("axis")

<< axis_ << token::END_STATEMENT << nl;

os.writeKeyword("origin")

<< origin_ << token::END_STATEMENT << nl;

os.writeKeyword("angle0")

<< angle0_ << token::END_STATEMENT << nl;

p0_.writeEntry("p0", os);

writeEntry("value", os);

}

The main part of this library which defines the movement of the patches is presented between line 162

and line 175 in the “librotationVelocityPointPatchVectorField.C” file. Here, the velocity of each point on a

specific patch is calculated for each time step. But since the library copied was meant for producing

oscillating motion, some modifications are made to the member functions in order to make this newly

created library only implement rotational motion. Hence we start by replacing the old member functions

which define motion. The old member function is shown in code 8 and is to be replaced by the updated

member function shown in code 9.

Code 8: Old member function in “librotationVelocityPointPatchVectorField.C” file
scalar angle = angle0_ + amplitude_*sin(omega_*t.value());

vector axisHat = axis_/mag(axis_);

vectorField p0Rel = p0_ - origin_;

vectorField::operator=

(

(

p0_ + p0Rel*(cos(angle) - 1)

+ (axisHat ^ p0Rel*sin(angle))

+ (axisHat & p0Rel)*(1 - cos(angle))*axisHat

- p.localPoints()

)/t.deltaT().value()) ;

fixedValuePointPatchVectorField<vector>::updateCoeffs();

}

Code 9: Updated member function in “librotationVelocityPointPatchVectorField.C” file

scalar rotangle = angle0_*((Foam::constant::mathematical::pi)/180)*t.value();

vector axisHat = axis_/mag(axis_);

vectorField p0Rel(p0_ - origin_);

vectorField::operator=

(

(

p0_

+ p0Rel*(cos(rotangle) - 1)

+ (axisHat ^ p0Rel*sin(rotangle))

+ (axisHat & p0Rel)*(1 - cos(rotangle))*axisHat

- p.localPoints()

)/t.deltaTValue()

);

The mechanism of the rotating velocity function is shown in the figure 4. In this the origin of rotation is

located in the centre of the guide vane.

9

Figure 4: Schematic diagram of mechanism of rotation velocity function

In line 1 of code 9, the angle of rotation namely “angle0” is used to calculate a new angle for the rotation

arm. The rotation arm connects the points on the rotating body to the centre of rotation is computed at

each time step employing the following equation.

rotangle = angle0*(pi/180)*t

The angle has been converted to radians as mathematical calculations in OpenFOAM uses radians as units
for angles. For this purpose, the following header file needs to be added to the
“librotationVelocityPointPatchVectorField.C” file.

#include "mathematicalConstants.H"

The above mentioned header file is to be added after the “#include “polyMesh.H”” header file. Hence the
user will be asked to input the rotation angle in degrees in the boundary condition in the “pointMotionU”
file.
As per the updated member function mentioned in code 9, “p0” is the coordinate for the rotating grid

point, (x0, y0, z0); “p0Rel” is the relative coordinate for the grids on the moving body with respect to the

centre of rotation, that is the origin ; “axisHat” is a unit vector which defines the axis of oscillation.

After computing the new angle (“rotangle”) of rotating arm, updated position of the grids on the moving

body is computed by applying the concept of Rodrigues rotation. According to this concept a vector can

be rotated by specifying the axis of rotation and the angle by which is should rotate. A basic concept of

Rodrigues rotation concept is shown in the figure 5 and followed by a general equation.

10

Figure 5: Example of Rodrigues rotation

As per the figure 5.

𝑣2⃗⃗⃗⃗ = 𝑝 + 𝑒2⃗⃗⃗⃗

𝑣2⃗⃗⃗⃗ = (𝑣1⃗⃗⃗⃗ ^ 𝑛⃗) 𝑛⃗ + 𝑒1⃗⃗⃗⃗ cos(𝑎𝑛𝑔𝑙𝑒) + 𝑓 sin (𝑎𝑛𝑔𝑙𝑒)

𝑣2⃗⃗⃗⃗ = 𝑣1⃗⃗⃗⃗ cos(𝑎𝑛𝑔𝑙𝑒) + (𝑣1⃗⃗⃗⃗ ^ 𝑛⃗) 𝑛⃗ (1 − cos(𝑎𝑛𝑔𝑙𝑒)) + (𝑛⃗ & 𝑣1⃗⃗⃗⃗)sin (𝑎𝑛𝑔𝑙𝑒)

A similarity can be observed between the above mentioned equation and the vector field operator

mentioned in line 15 of code 9, which calculates the position of the rotated point. The updated positions

of the moving grids on rotated body are divided by the time step, “deltaT”, which means that the output

of this function is a velocity.

Now, the new library can be used to implement rotational motion. To make the current library available

for the other applications, it should be compiled through the following command.

wmake libso

In addition, a reference directory “TME205_asaraf/librotationVelocity” is provided to verify the setup of

the newly defined library.

1.3.3 Boundary conditions and case set up

This section discusses the main boundary conditions that need to be set in order to run the tutorial case.

Now that the library has been compiled, the library needs to be made usable during run time. There

should be a link to this new library in the “controlDict” file located in the “Test/system/” directory, in

order to let the employed applications know about it. Inserting the following line to the “controlDict” file

does this.

libs ("librotationVelocity.so");

In this case the water enters the distributor both radially and tangentially. The water is entering the

distributor with a flow rate of 5m3/s. The velocity magnitude at the inlet of the distributor is calculated as

follows.

11

Velocity magnitude (U) = Flow Rate/Inlet Area = 5/1.019= 4.92 m/s

In this case the relative flow angle (beta), is given as 37 degrees. Therefore, radial and tangential

components of the velocity can be determined using trigonometric relations.

Radial velocity = U*cos (beta) = 4.9*cos (37) = 3.92m/s

Tangential velocity = U*sin (beta) = 4.9*sin (37) = 2.95m/s

rpm = Radial velocity/(0.5*0.10472*outer diameter) = 2.95/(0.5*0.10472*0.475) = 120

The setup of the “0.org/U” file is shown in code 10. Since the flow entering the entering the distributor, is

velocity driven, the boundary type for the “inlet” is taken as “cylindricalInletVelocity”. The “outlet” is

prescribed a Neumann boundary condition that is “zeroGradient”. Since this case is in 2D, the “top” and

“bottom” patches are set to “empty”. The boundary type of “GV1” in the “U” file is specified as

“movingWallVelocity”. Similarly the boundary conditions are to be set for the remaining 15 guide vanes

as per what is shown in Appendix B.

Code 10: “0.org/U” file
boundaryField

{

 inlet

 {

 type cylindricalInletVelocity;

 axis (0 0 1);

 centre (0 0 0);

 axialVelocity 0;

 radialVelocity -3.92;

 rpm 120;

 value uniform (0 0 0);

 }

 outlet

 {

 type zeroGradient;

 }

 top

 {

 type empty;

 }

 bottom

 {

 type empty;

 }

 GV1

 {

 type movingWallVelocity;

 value uniform (0 0 0);

 }

}

The boundary conditions for mesh motion for one of the guide vanes (GV1) is shown in code 11. The

“0.org/pointMotionU” file primarily calls the new library that gives velocity at each node of the boundary.

Hence the boundary type for “GV1” is specified as “librotationVelocity”. The variable “angle0” defines the

velocity of grid points in degrees per second. Similarly the boundary conditions are to be set for the

remaining 15 guide vanes. The setup of the “0.org/pointMotionU” file should be similar to what is shown

in Appendix C.

Code 11: “0.org/pointMotionU” file
boundaryField

{

 inlet

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 outlet

 {

 type fixedValue;

12

 value uniform (0 0 0);

 }

 top

 {

 type empty;

 }

 bottom

 {

 type empty;

 }

 GV1

 {

 type librotationVelocity;

 axis (0 0 1);

 origin (0.0780350 .3923143 0);// Centre of Rotation

 angle -3;// Degrees per second

 value uniform (0 0 0);

 }

}

A snippet of the “0.org/p” file for one guide vane is shown in code 12. In code 12, it can be seen that

Neumann boundary condition is applied to the “inlet” and “GV1” patches respectively. The boundary

conditions are to be set for the remaining 15 guide vanes. The setup of the “0.org/p” file should be

similar to what is shown in Appendix D.

Code 12: “0.org/p” file
boundaryField

{

 inlet

 {

 type zeroGradient;

 }

 outlet

 {

 type fixedValue;

 value uniform 0;

 }

 top

 {

 type empty;

 }

 bottom

 {

 type empty;

 }

 GV1

 {

 type zeroGradient;

 }

}

The setup of the “dynamicMeshDict” file located in the “/Test/constant” directory is shown in code 13.

The “dynamicMeshDict” file is already setup in the “/Test/constant” directory and code 13 does not need

to be implemented and the settings in the code are discussed.

Code 13: “dynamicMeshDict” file
FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object dynamicMeshDict;

}

// * //

dynamicFvMesh dynamicMotionSolverFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

solver velocityLaplacian;

velocityLaplacianCoeffs

13

{

diffusivity uniform;

}

In this case we are using the dynamic mesh type that is, “dynamicMotionSolverFvMesh” and are using

the “velocityLaplacian” solver to solve for motion. It should be noted that, the “velocityLaplacian” solver

interprets the motion of the patch points in terms of velocity of moving points.

The forces and moments acting on each guide vane are calculated using the “forces” function object. The

“forces” file is located in the “/Test/system” directory. The setup of the “forces” file is shown in code 14,

which calculates the forces and moments acting on one guide vane (GV1).

Code 14: “forces” file
forces1

{

 type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

 log yes;

 patches (GV1);

 pName p;

 UName U;

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (0.07804 0.39231 0);// Axis coordinates

}

Similarly, the forces and moments need to be calculated for the remaining 15 guide vanes. The setup of

the “forces” file must be similar to what is shown in Appendix E. Additionally, the forces and moments on

each of the guide vanes needs to be calculated during run time therefore the force function object needs

to be called in “controlDict” file located in the “/Test/system” directory. This is done by adding the

following lines at the end of the “controlDict” file.

functions

{#include "forces"}

It is required to carry out some settings in “fvSolution” file located in the “/Test/system” directory and

define the solver for mesh motion application. This is done by adding the following lines to the “solvers”

sub-dictionary in the “fvSolution” file. The lines to be added are shown in code 15.

Code 15: “fvSolution” file
 cellMotionU
 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-08;

 relTol 0;

 }

 cellMotionUx

 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-08;

 relTol 0;

 }

The complete setup of the “fvSolution” file is located in Appendix F. The solvers in the “fvSolution” file

specifies each linear-solver that is used for each discretised equation. The syntax for each entry within

solvers uses a keyword that is the word relating to the variable being solved in the particular equation.

The choices for “solvers” are presented in Table 2.

14

Solver Keyword

Preconditioned (bi-)conjugate gradient PCG/PBiCG*

Solver using a smoother smoothSolver

Generalised geometric-algebraic multi-grid GAMG

*PCG for symmetric matrices, PBiCG for asymmetric

Table 2. Solver Options

There is a range of options for preconditioning of matrices in the conjugate gradient solvers, represented

by the preconditioner keyword in the solver dictionary. The preconditioners are listed in Table 3.

Preconditioner Keyword

Diagonal incomplete-Cholesky (symmetric) DIC

Faster diagonal incomplete-Cholesky (DIC with
caching)

FDIC

Diagonal incomplete-LU (asymmetric) DILU

Diagonal diagonal

Geometric-algebraic multi-grid GAMG

No preconditioning none

Table 3. Preconditioner options

1.3.4 Running the application

The main steps for the setup of this tutorial have been enumerated above. A reference directory namely

“TME205_asaraf/Guidevanerotation/readytorun” has been provided which can be used to verify the

setup of this tutorial. In the “TME205_asaraf/Guidevanerotation/Test” directory the following commands

are executed to run the case.

mv 0.org 0

pimpleDyMFoam

1.3.5 Results

The results of the simulation are visualized using “paraview” and shown in figure 6 and figure 7. In this

case each guide vane has alternate rotation. It means that if guide vane1 rotates in counter clockwise

direction then the guide vanes adjacent to it rotate in the clockwise direction.

Figure 6: Velocity surface contours at time=1second and total rotation of 3 degrees

15

Figure 7: Pressure Surface Contours time=1second and total rotation of 3 degrees

After the simulation is complete the moments on each of the guide vanes will be calculated and stored in

the “Test/postProcessing” directory. There will be 16 sub directories namely “forces1, forces2,

forces3….forces16” inside the “Test/postProcessing” directory. For example, the data for guide vane1 will

be stored in the “Test/postProcessing/forces1/0” directory in the “forces” file. The data from this file

cannot to used directly and needs to be rearranged in order to extract the moments. This is done by using

a python script namely “new.py” which is located in the “Test” directory. The python script will give the

output in the form of a “.txt” which has the simulation time in column 1, the lift forces in column 2, the

drag forces in column 3 and the moments in column 4. This “.txt” file can be used to plot the data for the

guide vane. The python script needs to be executed in the “Test” directory as follows.

./new.py

In case the user wants to extract data for each of the guide vanes, the user will have to specify the path

of the “postProcessing/forces1/0/forces” file in line 7 of the “new.py” script. In addition, the name of the

output “.txt” file can be controlled by changing the name specified in the line 48 of the “new.py” script.

The “new.py” script is attached in the Appendix G.

The moments acting on each guide vane is calculated with respect to their centre of rotations is shown in

figure 8.

Figure 8: Moments versus simulation time

16

Chapter 2

Alternate Finding - Building a new dynamic mesh class

This section discusses the process of building of a new dynamic mesh class, which combines solid body

motion and adaptive hexahedral mesh refinement. The “solidBodyMotionFvMesh” class gives linear and

rotational motion to the mesh whereas the “dynamicRefineFvMesh” class refines the mesh based on a

scalar field value. This new dynamic mesh class cannot be used for the above mentioned guide vane case

as there is no scalar transport quantity which can be used as a basis to refine the mesh. Hence in this

section the procedure to construct a new dynamic mesh class will be discussed and a tutorial will be

executed to test the validity of the new dynamic mesh class.

2.1 Background

The “dynamicFvMesh” is an abstract class of the “fvMesh” class. Hence, while combining two dynamic

mesh classes namely solidBodyMotionFvMesh and dynamicRefineFvMesh, multiple inheritance cannot be

used as it would lead to calling the constructor of fvMesh twice and would cause multiple meshes to be

allocated. A simplified class diagram of dynamic mesh classes is shown in figure 9.

fvMesh
+movePoints(const pointField& new points): bool

dynamicFvMesh

+ update(): bool

dynamicMotionSolverFvMesh solidBodyMotionFvMesh dynamicRefineFvMesh

+ update(): bool + update(): bool + update(): bool

Figure 9: Class diagram for dynamic mesh classes

Therefore we proceed by combining the dynamic mesh classes by using the concept of virtual inheritance

as shown in figure 10.

dynamicFvMesh

+update(): bool

solidBodyMotionFvMesh dynamicRefineFvMesh

+ update(): bool + update(): bool

mydynamicFvMesh

+update(): bool

Figure 10: Class diagram of new dynamic mesh class

Upon investigation into the source codes of solidBodyMotionFvMesh and dynamicRefineFvMesh, it is

observed that it is easier to rebuild the solidBodyMotionFvMesh than to rebuild the

dynamicRefineFvMesh which is very complex. Therefore, the new class “mydynamicFvMesh” will inherit

from dynamicRefineFvMesh and is chosen as the base class and some elements from

solidBodyMotionFvMesh are reused.

17

2.2 Implementing a new dynamic mesh class

The first step is to create a new directory at the location “$FOAM_RUN/TME205_asaraf/meshrefinetest”

cd $FOAM_RUN/TME205_asaraf/meshrefinetest

mkdir mydynamicFvMesh

cd mydynamicFvMesh

We will now generate the class files as follows:

foamNew source C mydynamicFvMesh

foamNew source H mydynamicFvMesh

In order to compile this new library, Make/files and Make/options need to be created.

mkdir Make

cd Make

touch files options

The “Make/files” file should be setup as follows.
mydynamicFvMesh.C

LIB = $(FOAM_USER_LIBBIN)/mydynamicFvMesh

The “Make/options” file should be setup as follows.
EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/dynamicMesh/lnInclude \

-I$(LIB_SRC)/dynamicFvMesh/lnInclude

EXE_LIBS = \

-lfiniteVolume \

-ldynamicMesh \

-ldynamicFvMesh

The newly created “mydynamicFvMesh.C” and “mydynamicFvMesh.H” files need to be cleaned up and

setup as shown in code 16 and code 17 respectively.

Code 16: “mydynamicFvMesh.C” file
#include "mydynamicFvMesh.H"

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::mydynamicFvMesh::mydynamicFvMesh()

{}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::mydynamicFvMesh::~mydynamicFvMesh()

{}

// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //

Code 17: “mydynamicFvMesh.H” file
#ifndef mydynamicFvMesh_H

#define mydynamicFvMesh_H

// * //

namespace Foam

{

class mydynamicFvMesh

:

public

{ //- Dictionary of solid body motion control parameters

 //- The motion control function

 //- The reference points which are transformed

public:

 // Runtime type information

 // Constructors

18

 // Construct from objectRegistry, and read/write options

 mydynamicFvMesh();

 // Destructor

 ~mydynamicFvMesh();

 // Member Functions

};

} // End namespace Foam

#endif

Now in the “mydynamicFvMesh.C” and “mydynamicFvMesh.H” files, the dynamicRefineFvMesh is

inherited into the code. The modified part of the “mydynamicFvMesh.H” file is shown in code 18. In code

18, the header file “#include "dynamicRefineFvMesh.H"” is added to the code. In addition, in line 10 of

code 18, the “dynamicRefineFvMesh” is defined as a public variable.

Code 18: “mydynamicFvMesh.H” file
#ifndef mydynamicFvMesh_H

#define mydynamicFvMesh_H

#include "dynamicRefineFvMesh.H"

// * //

namespace Foam

{

class mydynamicFvMesh

:

public dynamicRefineFvMesh

According to figure 10, the new dynamic mesh class is to be derived using virtual inheritance, hence in

the “mydynamicFvMesh.H” file the following changes need to be made to the destructor. The changes

are shown in code 19.

Code 19: “mydynamicFvMesh.H” file
// Destructor

 virtual ~mydynamicFvMesh();

Now the global static variable is declared in the “mydynamicFvMesh.H” file. It is shown in code 20.

Code 20: “mydynamicFvMesh.H” file
public:

// Runtime type information

TypeName ("mydynamicFvMesh");

After declaring the type name, the corresponding header file is added which will allow the code to use

“TypeName”. The addition made to the “mydynamicFvMesh.H” file is shown in code 21.

Code 21: “mydynamicFvMesh.H” file
#include "dynamicRefineFvMesh.H"

#include "typeInfo.H"

Now in the “mydynamicFvMesh.C” file, the static type name variable and debug switches are defined.
This is shown in line 5 of code 22. In addition to make new dynamic mesh class usable at run time it
needs to be added to the run time selectable table. This is done by line 6 in code 22 and the
corresponding header file “#include "addToRunTimeSelectionTable.H"” is added as shown in line 2 of
code 22.

19

Code 22: “mydynamicFvMesh.H” file
#include "mydynamicFvMesh.H"

#include "addToRunTimeSelectionTable.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam {

 defineTypeNameAndDebug(mydynamicFvMesh, 0);

 addToRunTimeSelectionTable(dynamicFvMesh, mydynamicFvMesh, IOobject);

}

The class is made usable by declaring the update member function. The additions to the

“mydynamicFvMesh.H” file and “mydynamicFvMesh.C” file are shown in code 23 and code 24

respectively.

Code 23: “mydynamicFvMesh.H” file
// Member Functions

virtual bool update();

Code 24: “mydynamicFvMesh.C” file
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

bool Foam::mydynamicFvMesh::update()

{

dynamicRefineFvMesh::update();

return true ;

}

The constructors in the “mydynamicFvMesh.H” and “mydynamicFvMesh.C” files are modified to create

an interface of the new class that will ask the code to follow the “dynamicRefineFvMesh” class. This is

shown in the code 25 and code 26 respectively.

Code 25: “mydynamicFvMesh.H” file
// Construct from objectRegistry, and read/write options

explicit mydynamicFvMesh(const IOobject& io);

Code 26: “mydynamicFvMesh.C” file
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::mydynamicFvMesh::mydynamicFvMesh(const IOobject& io)

:

 dynamicRefineFvMesh(io)

{}

The solid body motion needs to be added to the “mydynamicFvMesh” class. For the newly created

class, only a few attributes of the “solidBodyMotionFvMesh” class will be used. The source files of

“solidBodyMotionFvMesh” class is located in the

“$FOAM_SRC/dynamicFvMesh/solidBodyMotionFvMesh” directory. Note that, the new class will not

be able to employ cell subset motion. The constructor of the source “solidBodyMotionFvMesh.C” file

is reused, specifically the code from line 50 to line 77. This constructor will aid in adding solid body

motion coefficients to the class. The constructor for the new class should be modified as shown in

code 27.

20

Code 27: “mydynamicFvMesh.C” file
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::mydynamicFvMesh::mydynamicFvMesh(const IOobject& io)

:

 dynamicRefineFvMesh(io),

 motionCoeffs_

 (

 IOdictionary

 (

 IOobject

 (

 "dynamicMeshDict",

 io.time().constant(),

 *this,

 IOobject::MUST_READ_IF_MODIFIED,

 IOobject::NO_WRITE,

 false

)

).subDict(typeName + "Coeffs")

),

 SBMFPtr_(solidBodyMotionFunction::New(motionCoeffs_, io.time())),

 undisplacedPoints_

 (

 IOobject

 (

 "points",

 io.time().constant(),

 meshSubDir,

 *this,

 IOobject::MUST_READ,

 IOobject::NO_WRITE,

 false

)

)

{}

The “mydynamicFvMesh.H” file needs to be modified to allow the user to input solid body motion

coefficients in the “dynamicMeshDict” file. These modifications are done between line 13 and line 20. In

addition the “#include "solidBodyMotionFunction.H"” header file is added and shown in line 2 of code 28.

Code 28: “mydynamicFvMesh.H” file
#include "dynamicRefineFvMesh.H"

#include "solidBodyMotionFunction.H"

#include "typeInfo.H"

#include "dictionary.H"

#include "pointIOField.H"

// * //

namespace Foam

{

class mydynamicFvMesh

:

 public dynamicRefineFvMesh

{

 //- Dictionary of solid body motion control parameters

 const dictionary motionCoeffs_;

 //- The motion control function

 autoPtr<solidBodyMotionFunction> SBMFPtr_;

 //- The reference points which are transformed

 pointIOField undisplacedPoints_;

Now the update member function for the new dynamic mesh class needs to be defined. The code

between the line 90 and the line 113 in the source file “solidBodyMotionFvMesh.C” is used to define the

solid body motion. Some parts of the above mentioned source code will be incorporated of this dynamic

mesh class. The line 7 in the code 29 is added so that the points of the mesh can be moved and also

ensure that the motion points are synchronized with the new mesh points generated after mesh

refinement.

21

Code 29: “mydynamicFvMesh.C” file
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

bool Foam::mydynamicFvMesh::update()

{

dynamicRefineFvMesh::update();

undisplacedPoints_ = this->points();

 static bool hasWarned = false;

 fvMesh::movePoints

 (

 transform

 (

 SBMFPtr_().transformation(),

 undisplacedPoints_

)

);

 if (foundObject<volVectorField>("U"))

 {

 const_cast<volVectorField&>(lookupObject<volVectorField>("U"))

 .correctBoundaryConditions();

 }

 else if (!hasWarned)

 {

 hasWarned = true;

 WarningIn("solidBodyPointMotionSolver::update()")

 << "Did not find volVectorField U."

 << "Not updating U boundary conditions." << endl;

 }

return true ;

}

As a final step, two more header files need to be included in the “mydynamicFvMesh.C” file. They are to
be added after the “#include "addToRunTimeSelectionTable.H"” header file. They are shown in code 30.

Code 30: “mydynamicFvMesh.C” file
#include "volFields.H"

#include "transformField.H"

Now the library can be compiled using the command

wmake libso

A reference directory namely “meshRefine” located in the “/TME205_asaraf” directory and can be used

to debug the code in case there are errors during the compilation.

2.3 Running the mesh refinement tutorial case

The main objective of this tutorial is to test the newly defined dynamic mesh class and verify whether

adaptive mesh refinement occurs along with the solid body motion. This tutorial will be executed using

the “interDyMFoam” solver as it has dynamic mesh handling capabilities. The new dynamic mesh class

will be tested using the tutorial “Test” located in the “TME205_asaraf/meshrefinetest” directory.

2.3.1 Meshing

The geometry is a cube of dimensions 1m x 1m x 2m. The mesh is generated using “blockMesh”. The

“blockMeshDict” file is located in the “meshrefinetest/Test/constant/polyMesh”. The mesh generated is

shown in figure 11. The “blockMeshDict” file is set as per what is mentioned in Appendix H.

22

Figure 11: Hexahedral mesh of the test case

In this case since we are conducting adaptive mesh refinement we must specify some scalar field like

volume fraction which can be used as a basis for conducting mesh refinement. In this tutorial, the phase

is referred to as “alpha.phase1”. The volume fraction of “alpha.phase1” is set using the “setFieldsDict”

dictionary located in the “meshrefinetest/Test/system” directory. The file is already setup in the tutorial,

but the settings for the “setFieldsDict” are shown in the code 31 to discuss how the scalar field is

introduced. As per the code 31, the “alpha.phase1” is located inside the computational domain and

occupies a volume equivalent to a sphere of radius 0.15m.

Code 31: “setFieldsDict” file
defaultFieldValues

(

 volScalarFieldValue alpha.phase1 0

);

regions

(

 sphereToCell

 {

 centre (0.5 0.5 0.5);

 radius 0.15;

 fieldValues (volScalarFieldValue alpha.phase1 1);

 }

);

In regard to the new dynamic mesh class created, both the solid body motion as well as adaptive mesh

refinement coefficents are specified in the “dynamicMeshDict” file. The “dynamicMeshDict” file is

located in the “/meshrefinetest/Test/constant” directory. The setup of the “dynamicMeshDict” dictionary

is shown in code 32. Since the file is already provided in the tutorial, the code 32 is shown just to discuss

the properties of the “dynamicMeshDict” file pertaining to this case.

It can be seen in the code 32 that the user has entered the “dynamicFvMesh” type as

“mydynamicFvmesh” that allows the user to supply both solid body motion coefficients as well as

adaptive mesh refinement coefficients. The solid body motion coefficients suggest that the entire mesh is

having a linear motion in the negative z-direction with a velocity of -0.1m/s.

23

Code 32: “dynamicMeshDict” file
dynamicFvMesh mydynamicFvMesh;

mydynamicFvMeshCoeffs

{

 solidBodyMotionFunction linearMotion;

 linearMotionCoeffs

 {

 velocity (0 0 -0.1);

 }

}

dynamicRefineFvMeshCoeffs

{

 // How often to refine

 refineInterval 1;

 // Field to be refinement on

 field alpha.phase1;

 // Refine field inbetween lower..upper

 lowerRefineLevel 0.0001;

 upperRefineLevel 0.999;

 // If value < unrefineLevel unrefine

 unrefineLevel 10;

 // Have slower than 2:1 refinement

 nBufferLayers 3;

 // Refine cells only up to maxRefinement levels

 maxRefinement 1;

 // Stop refinement if maxCells reached

 maxCells 100000;

 // Flux field and corresponding velocity field. Fluxes on changed

 // faces get recalculated by interpolating the velocity. Use 'none'

 // on surfaceScalarFields that do not need to be reinterpolated.

 correctFluxes

 (

 (phi none)

 (nHatf none)

 (rhoPhi none)

 (ghf none)

 (phiAlpha none)

);

 // Write the refinement level as a volScalarField

 dumpLevel false;

}

// *** //

In the “dynamicRefineFvmesh” coefficients, the field is chosen as “alpha.phase1” which is the volume

fraction of the scalar field. Therefore, the refinement based on the scalar field value of “alpha.phase1”

will be restricted by setting the “lowerRefineLevel” and “UpperRefineLevel” values of the volume fraction

of “alpha.phase1”. The other entries are used to determine as to what refinement level is desired. One

must note that “dynamicRefineFvMesh” works by monitoring the scalar field values and then merges and

splits the cells in order to refine the mesh. The line 31 to line 37 in code 32 deals with recalculation of

fluxes after the refinement takes place. In this case, since the main concern is with implementing the new

dynamic mesh class the “correctFluxes” are all set to “none”.

2.3.2 Running the tutorial

In order to make the new dynamic mesh class usable during the run time, the following line must be

added to the “controlDict” file located in the “meshrefinetest/Test/system” directory.

libs (“mydynamicFvMesh.so”);

The case is supplied with an “Allrun” script in the “meshrefinetest/Test” directory which performs all the

operations to run the case. It is executed as follows.

./Allrun

24

2.3.3 Results

The results of the simulation can be visualized in “paraview”. The total simulation time for the tutorial is

0.25 seconds. The result of the simulation are shown in figure 12, figure 13 and figure 14.

Figure 12: Initial mesh at time = 0 seconds

Figure 13: Mesh motion and refinement at time = 0.15 seconds

25

Figure 14: Mesh motion and refinement at time = 0.25 seconds

26

Study Questions

 If we need to run the mesh motion library we have created, what line of code should be added and

where?

 How do we run the “forces” function object during run time? What line of code should be added and

where?

 In the new dynamic mesh class that has been created, is cell subset motion possible?

 In the new dynamic mesh class, what is the importance of using virtual inheritance?

27

Appendix A: “boundary” file for the Guide vane case

Location of the file:

TME205_asaraf/Guidevanerotation/Test/constant/polyMesh

The following lines of code are employed in this tutorial:

FoamFile

{

 version 2.0;

 format ascii;

 class polyBoundaryMesh;

 location "0.001/polyMesh";

 object boundary;

}

// * //

20

(

 inlet

 {

 type patch;

 nFaces 384;

 startFace 24720;

 }

 outlet

 {

 type patch;

 nFaces 352;

 startFace 25104;

 }

 top

 {

 type empty;

 inGroups 1(empty);

 nFaces 12544;

 startFace 25456;

 }

 bottom

 {

 type empty;

 inGroups 1(empty);

 nFaces 12544;

 startFace 38000;

 }

 GV1

 {

 type wall;

 inGroups 1(wall);

 nFaces 66;

 startFace 50544;

 }

 GV2

 {

 type wall;

 inGroups 1(wall);

 nFaces 66;

 startFace 50610;

 }

 GV3

 {

 type wall;

 inGroups 1(wall);

 nFaces 66;

 startFace 50676;

 }

 GV4

 {

 type wall;

 inGroups 1(wall);

 nFaces 66;

 startFace 50742;

 }

 GV5

 {

 type wall;

 inGroups 1(wall);

 nFaces 66;

 startFace 50808;

 }

 GV6

 {

 type wall;

 inGroups 1(wall);

 nFaces 66;

28

 startFace 50874;

 }

 GV7

 {

 type wall;

 inGroups 1(wall);

 nFaces 66;

 startFace 50940;

 }

 GV8

 {

 type wall;

 inGroups 1(wall);

 nFaces 66;

 startFace 51006;

 }

 GV9

 {

 type wall;

 inGroups 1(wall);

 nFaces 66;

 startFace 51072;

 }

 GV10

 {

 type wall;

 inGroups 1(wall);

 nFaces 66;

 startFace 51138;

 }

 GV11

 {

 type wall;

 inGroups 1(wall);

 nFaces 66;

 startFace 51204;

 }

 GV12

 {

 type wall;

 inGroups 1(wall);

 nFaces 66;

 startFace 51270;

 }

 GV13

 {

 type wall;

 inGroups 1(wall);

 nFaces 66;

 startFace 51336;

 }

 GV14

 {

 type wall;

 inGroups 1(wall);

 nFaces 66;

 startFace 51402;

 }

 GV15

 {

 type wall;

 inGroups 1(wall);

 nFaces 66;

 startFace 51468;

 }

 GV16

 {

 type wall;

 inGroups 1(wall);

 nFaces 66;

 startFace 51534;

 }

)

29

Appendix B: “0.org/U” file for the Guide vane case

Location of the file:

TME205_asaraf/Guidevanerotation/Test/0.org

The following lines of code are employed in this tutorial:

FoamFile

{

 version 2.0;

 format ascii;

 class volVectorField;

 object U;

}

// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 inlet

 {

 type cylindricalInletVelocity;

 axis (0 0 1);

 centre (0 0 0);

 axialVelocity 0;

 radialVelocity -3.92;

 rpm 120;

 value uniform (0 0 0);

 }

 outlet

 {

 type zeroGradient;

 }

 top

 {

 type empty;

 }

 bottom

 {

 type empty;

 }

 GV1

 {

 type movingWallVelocity;

 value uniform (0 0 0);

 }

 GV2

 {

 type movingWallVelocity;

 value uniform (0 0 0);

 }

 GV3

 {

 type movingWallVelocity;

 value uniform (0 0 0);

 }

 GV4

 {

 type movingWallVelocity;

 value uniform (0 0 0);

 }

 GV5

 {

 type movingWallVelocity;

 value uniform (0 0 0);

 }

 GV6

 {

 type movingWallVelocity;

 value uniform (0 0 0);

 }

 GV7

 {

 type movingWallVelocity;

 value uniform (0 0 0);

 }

GV8

 {

30

 type movingWallVelocity;

 value uniform (0 0 0);

 }

GV9

 {

 type movingWallVelocity;

 value uniform (0 0 0);

 }

GV10

 {

 type movingWallVelocity;

 value uniform (0 0 0);

 }

GV11

 {

 type movingWallVelocity;

 value uniform (0 0 0);

 }

GV12

 {

 type movingWallVelocity;

 value uniform (0 0 0);

 }

GV13

 {

 type movingWallVelocity;

 value uniform (0 0 0);

 }

GV14

 {

 type movingWallVelocity;

 value uniform (0 0 0);

 }

GV15

 {

 type movingWallVelocity;

 value uniform (0 0 0);

 }

GV16

 {

 type movingWallVelocity;

 value uniform (0 0 0);

 }

}

31

Appendix C: “0.org/pointMotionU” file for the Guide vane case

Location of the file:

TME205_asaraf/Guidevanerotation/Test/0.org

The following lines of code are employed in this tutorial:

FoamFile

{

 version 2.0;

 format ascii;

 class pointVectorField;

 object pointMotionU;

}

// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 inlet

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 outlet

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 top

 {

 type empty;

 }

 bottom

 {

 type empty;

 }

 GV1

 {

 type librotationVelocity;

 axis (0 0 1);

 origin (0.0780350 .3923143 0);// Center of Rotation

 angle0 -4;// Degrees per second

 value uniform (0 0 0);

 }

 GV2

 {

 type librotationVelocity;

 axis (0 0 1);

 origin (0.22223 0.33259 0);// Center of Rotation

 angle0 3;// Degrees per second

 value uniform (0 0 0);

 }

 GV3

 {

 type librotationVelocity;

 axis (0 0 1);

 origin (0.33259 0.22223 0);// Center of Rotation

 angle0 -3;// Degrees per second

 value uniform (0 0 0);

 }

 GV4

 {

 type librotationVelocity;

 axis (0 0 1);

 origin (0.39231 0.07804 0);// Center of Rotation

 angle0 3;// Degrees per second

 value uniform (0 0 0);

 }

 GV5

 {

 type librotationVelocity;

 axis (0 0 1);

 origin (0.39231 -0.07804 0);// Center of Rotation

 angle0 -3;// Degrees per second

 value uniform (0 0 0);

 }

 GV6

 {

32

 type librotationVelocity;

 axis (0 0 1);

 origin (0.33259 -0.22223 0);// Center of Rotation

 angle0 3;// Degrees per second

 value uniform (0 0 0);

 }

 GV7

 {

 type librotationVelocity;

 axis (0 0 1);

 origin (0.22223 -0.33259 0);// Center of Rotation

 angle0 -3;// Degrees per second

 value uniform (0 0 0);

 }

 GV8

 {

 type librotationVelocity;

 axis (0 0 1);

 origin (0.07804 -0.39231 0);// Center of Rotation

 angle0 3;// Degrees per second

 value uniform (0 0 0);

 }

 GV9

 {

 type librotationVelocity;

 axis (0 0 1);

 origin (-0.07804 -0.39231 0);// Center of Rotation

 angle0 -3;// Degrees per second

 value uniform (0 0 0);

 }

 GV10

 {

 type librotationVelocity;

 axis (0 0 1);

 origin (-0.22223 -0.33259 0);// Center of Rotation

 angle0 3;// Degrees per second

 value uniform (0 0 0);

 }

 GV11

 {

 type librotationVelocity;

 axis (0 0 1);

 origin (-0.33259 -0.22223 0);// Center of Rotation

 angle0 -3;// Degrees per second

 value uniform (0 0 0);

 }

 GV12

 {

 type librotationVelocity;

 axis (0 0 1);

 origin (-0.39231 -0.07804 0);// Center of Rotation

 angle0 3;// Degrees per second

 value uniform (0 0 0);

 }

 GV13

 {

 type librotationVelocity;

 axis (0 0 1);

 origin (-0.39231 0.07804 0);// Center of Rotation

 angle0 -3;// Degrees per second

 value uniform (0 0 0);

 }

 GV14

 {

 type librotationVelocity;

 axis (0 0 1);

 origin (-0.33259 0.22223 0);// Center of Rotation

 angle0 3;// Degrees per second

 value uniform (0 0 0);

 }

 GV15

 {

 type librotationVelocity;

 axis (0 0 1);

 origin (-0.22223 0.33259 0);// Center of Rotation

 angle0 -3;// Degrees per second

 value uniform (0 0 0);

 }

 GV16

 {

 type librotationVelocity;

 axis (0 0 1);

 origin (-0.07804 0.39231 0);// Center of Rotation

 angle0 3;// Degrees per second

 value uniform (0 0 0);

 }}

33

Appendix D: “0.org/p” file for the Guide vane case

Location of the file:

TME205_asaraf/Guidevanerotation/Test/0.org

The following lines of code are employed in this tutorial:

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object p;

}

// * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

 inlet

 {

 type zeroGradient;

 }

 outlet

 {

 type fixedValue;

 value uniform 0;

 }

 top

 {

 type empty;

 }

 bottom

 {

 type empty;

 }

 GV1

 {

 type zeroGradient;

 }

 GV2

 {

 type zeroGradient;

 }

 GV3

 {

 type zeroGradient;

 }

 GV4

 {

 type zeroGradient;

 }

 GV5

 {

 type zeroGradient;

 }

 GV6

 {

 type zeroGradient;

 }

 GV7

 {

 type zeroGradient;

 }

 GV8

34

 {

 type zeroGradient;

 }

 GV9

 {

 type zeroGradient;

 }

 GV10

 {

 type zeroGradient;

 }

 GV11

 {

 type zeroGradient;

 }

 GV12

 {

 type zeroGradient;

 }

 GV13

 {

 type zeroGradient;

 }

 GV14

 {

 type zeroGradient;

 }

 GV15

 {

 type zeroGradient;

 }

 GV16

 {

 type zeroGradient;

 }

}

35

Appendix E: “forces” file for the Guide vane case

Location of the file:

TME205_asaraf/Guidevanerotation/Test/system

The following lines of code are employed in this tutorial:

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.4.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

forces1

{

 type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

 log yes;

 patches (GV1);

 pName p;

 UName U;

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (0.07804 0.39231 0); // Rotation around axis

}

forces2

{

 type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

 log yes;

 patches (GV2);

 pName p;

 UName U;

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (0.22223 0.33259 0); // Rotation around axis

}

forces3

{ type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

 log yes;

 patches (GV3);

 pName p;

 UName U;

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (0.33259 0.22223 0); // Rotation around axis

}

forces4

{

 type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

 log yes;

 patches (GV4);

 pName p;

 UName U;

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (0.39231 0.07804 0); // Rotation around axis

}

forces5

{

 type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

 log yes;

 patches (GV5);

 pName p;

 UName U;

36

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (0.39231 -0.07804 0); // Rotation around axis

}

forces6

{

 type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

 log yes;

 patches (GV6);

 pName p;

 UName U;

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (0.33259 -0.22223 0); // Rotation around axis

}

forces7

{

 type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

 log yes;

 patches (GV7);

 pName p;

 UName U;

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (0.22223 -0.33259 0); // Rotation around axis

}

forces8

{

 type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

 log yes;

 patches (GV8);

 pName p;

 UName U;

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (0.07804 -0.39231 0); // Rotation around axis

}

forces9

{

 type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

 log yes;

 patches (GV9);

 pName p;

 UName U;

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (-0.07804 -0.39231 0); // Rotation around axis

}

forces10

{

 type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

 log yes;

 patches (GV10);

 pName p;

 UName U;

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (-0.22223 -0.33259 0); // Rotation around axis

}

forces11

{

 type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

37

 log yes;

 patches (GV11);

 pName p;

 UName U;

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (-0.33259 -0.22223 0); // Rotation around axis

}

forces12

{

 type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

 log yes;

 patches (GV12);

 pName p;

 UName U;

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (-0.39231 -0.07804 0); // Rotation around axis

}

forces13

{

 type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

 log yes;

 patches (GV13);

 pName p;

 UName U;

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (-0.39231 0.07804 0); // Rotation around axis

}

forces14

{

 type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

 log yes;

 patches (GV14);

 pName p;

 UName U;

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (-0.33259 0.22223 0); // Rotation around axis

}

forces15

{

 type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

 log yes;

 patches (GV15);

 pName p;

 UName U;

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (-0.22223 0.33259 0); // Rotation around axis

}

forces16

{ type forces;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 timeInterval 1;

 log yes;

 patches (GV16);

 pName p;

 UName U;

 rhoName rhoInf; // Indicates incompressible

 log true;

 rhoInf 1; // Redundant for incompressible

 CofR (-0.07804 0.39231 0); // Rotation around axis

}

38

Appendix F: “fvSolution” file for the Guide vane case

Location of the file:

TME205_asaraf/Guidevanerotation/Test/system

The following lines of code are employed in this tutorial:

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object fvSolution;

}

// * //

solvers

{

 pcorr

 {

 solver GAMG;

 tolerance 0.02;

 relTol 0;

 smoother GaussSeidel;

 nPreSweeps 0;

 nPostSweeps 2;

 cacheAgglomeration true;

 agglomerator faceAreaPair;

 nCellsInCoarsestLevel 10;

 mergeLevels 1;

 }

 p

 {

 $pcorr

 tolerance 1e-7;

 relTol 0.01;

 }

 pFinal

 {

 $p;

 tolerance 1e-7;

 relTol 0;

 }

 "(U|k|omega)"

 {

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-06;

 relTol 0.1;

 }

 "(U|k|omega)Final"

 {

 $U;

 tolerance 1e-06;

 relTol 0;

 }

 cellMotionU

 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-08;

 relTol 0;

 }

 cellMotionUx

 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-08;

 relTol 0;

 }

}

PIMPLE

{

 correctPhi yes;

 nOuterCorrectors 2;

 nCorrectors 1;

 nNonOrthogonalCorrectors 0;

relaxationFactors

39

{

 fields

 {

 p 0.3;

 }

 equations

 {

 "(U|k|omega)" 0.7;

 "(U|k|omega)Final" 1.0;

 }

}

cache

{

 grad(U);

}

40

Appendix G: “new.py” python script for the Guide vane case

Location of the file:

TME205_asaraf/Guidevanerotation/Test/

The following lines of code are employed in this tutorial:

#!/usr/bin/python

import os

import sys

import math

forces_file = "postProcessing/forces16/0/forces.dat"

if not os.path.isfile(forces_file):

 print "Forces file not found at "+forces_file

 print "Be sure that the case has been run and you have the right directory!"

 print "Exiting."

 sys.exit()

def line2dict(line):

 tokens_unprocessed = line.split()

 tokens = [x.replace(")","").replace("(","") for x in tokens_unprocessed]

 floats = [float(x) for x in tokens]

 data_dict = {}

 data_dict['time'] = floats[0]

 force_dict = {}

 force_dict['pressure'] = floats[1:4]

 force_dict['viscous'] = floats[4:7]

 force_dict['porous'] = floats[7:10]

 moment_dict = {}

 moment_dict['pressure'] = floats[10:13]

 moment_dict['viscous'] = floats[13:16]

 moment_dict['porous'] = floats[16:19]

 data_dict['force'] = force_dict

 data_dict['moment'] = moment_dict

 return data_dict

time = []

drag = []

lift = []

moment = []

with open(forces_file,"r") as datafile:

 for line in datafile:

 if line[0] == "#":

 continue

 data_dict = line2dict(line)

 time += [data_dict['time']]

 drag += [data_dict['force']['pressure'][0] + data_dict['force']['viscous'][0]]

 lift += [data_dict['force']['pressure'][1] + data_dict['force']['viscous'][1]]

 moment += [data_dict['moment']['pressure'][2] + data_dict['moment']['viscous'][2]]

datafile.close()

outputfile = open('forces16.txt','w')

for i in range(0,len(time)):

 outputfile.write(str(time[i])+' '+str(lift[i])+' '+str(drag[i])+' '+str(moment[i])+'\n')

outputfile.close()

41

Appendix H: “blockMeshDict” file script for the “mydynamicFvMesh” class tutorial

Location of the file:

TME205_asaraf/meshrefinetest/Test/constant/polyMesh

The following lines of code are employed in this tutorial:

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object blockMeshDict;

}

// * //

convertToMeters 1;

vertices

(

 (0 0 0)

 (1 0 0)

 (1 1 0)

 (0 1 0)

 (0 0 2)

 (1 0 2)

 (1 1 2)

 (0 1 2)

);

blocks

(

 hex (0 1 2 3 4 5 6 7) (20 20 40) simpleGrading (1 1 1)

);

edges

(

);

boundary

(

 fixed

 {

 type patch;

 faces

 (

 (2 6 5 1)

 (1 5 4 0)

 (3 7 6 2)

 (0 4 7 3)

);

 }

 top

 {

 type patch;

 faces

 (

 (4 5 6 7)

);

 }

 bottom

 {

 type patch;

 faces

 (

 (0 3 2 1)

);

 }

);

mergePatchPairs

(

);

// *** //

